一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种高效率Q235B微钛化钢种生产工艺的制作方法

2022-02-22 17:41:10 来源:中国专利 TAG:

一种高效率q235b微钛化钢种生产工艺
技术领域
1.本发明涉及炼钢工艺技术领域,具体的,涉及一种高效率q235b微钛化钢种生产工艺。


背景技术:

2.q235b有一定的伸长率、强度,良好的韧性和铸造性,易于冲压和焊接,广泛用于一般机械零件的制造。主要用于建筑、桥梁工程上质量要求较高的焊接结构件。化学成分一般c:0.14%-0.18%,si:≤0.3%,mn:0.4%-0.6%。
3.q235b作为常用的普通碳素结构用钢,对产品的强度、可塑性、可焊性和韧脆转变温度都有一定的要求。为保证q235b钢种在满足客户折弯工艺要求的同时,大多数钢厂采取“过精炼”生产工艺,这种工艺增加了成本,同时还造成质量过剩。常规q235b碳含量控制在0.14%-0.18%,处于裂纹敏感区,易出现表面质量缺陷,制约拉速的提升,常规q235b拉速为1.25m/min。因此,如何研究在满足客户冷折弯工艺的同时,低成本高效率生产工艺,势在必行。


技术实现要素:

4.本发明提出一种高效率q235b微钛化钢种生产工艺,解决了现有技术中的无法满足冷折弯工艺的同时低成本高效率生产工艺的问题。
5.本发明的技术方案如下:
6.一种高效率q235b微钛化钢种,由以下重量份成分组成:
7.c:0.04%-0.07%、si:≤0.10%、mn:0.35%-0.55%、p:≤0.040%、s:≤0.035%、als:0.010%-0.050%、ti:0.030%-0.050%、余量为fe。
8.作为进一步的技术方案,所述高效率q235b微钛化钢种,由以下重量份成分组成:
9.c:0.06%、si:≤0.05%、mn:0.40%、p:≤0.025%、s:≤0.020%、als:0.020%、ti:0.040%、余量为fe。
10.本发明还提出一种高效率q235b微钛化钢种生产工艺,包括以下步骤:
11.s1、将混铁炉或铁水包折罐;
12.s2、转炉炼钢;
13.s3、加入钛铁合金进行脱氧合金化;
14.s4、吹氩站精炼;
15.s5、板坯连铸、板坯加热;
16.s6、粗轧切头尾、中轧切头;
17.s7、预精轧、精轧机组轧制;
18.s8、水冷、集卷、打捆、标识、称重、检验、卸卷、入库。
19.作为进一步的技术方案,所述转炉炼钢出钢1-1.5min内投入白灰、脱硫剂,出钢时间4-5min,所述白灰加入2kg/t、脱硫剂450-550kg/t。
20.作为进一步的技术方案,所述脱硫剂包括以下组分:cao:≥50%、sio2:≤4%、al2o3:20-35%、al:≥12%、caf2:≤3%。
21.作为进一步的技术方案,所述脱硫剂的熔点≤1380℃,水分≤0.5%,粒度5-20mm。
22.作为进一步的技术方案,所述吹氩站精炼时,喂线点位于吹氩孔的正上方,控制钙铁线喂线速率为200-240m/min,白渣后喂入钙线,控制钙线喂线速率90-110m/min,控制[ca]/[al]比值在0.06-0.15。
[0023]
钙铁线(ca30%)喂线速率为200~240m/min,收得率在8%~15%,进入钢水后反应剧烈,如果线速太快,容易出现钢水大翻,如果钢包净空不够,就会出现钢水溢出烧坏钢包车等设备。如果线速太慢,纯钙线进入不了钢水,在钢渣表面反应,不但影响钙的收得率,同时也会造成钢渣喷溅,钢水二次氧化严重。综合考虑安全、收得率的因素,喂钙线速率90~110m/min,钢包净空≥450mm。钙线喂入量过多,可能会在钢水浇注过程中侵蚀中间包塞棒头,影响设备稳定性,且增加了钙处理成本。若喂入量不够,钢中夹杂物变性不充分,影响钢水质量,严重时会堵塞中间包浸入式水口造成钢水絮流断浇事故。控制[ca]/[al]比值在0.06-0.15范围,既保证钢水质量,又降低生产成本。喂线点位于吹氩孔正上方位置,影响钙的收得率及喂线效果,调整喂线导管至吹氩孔前方,让喂入的钙线正好与钢水翻滚方向相同,提高了钙处理效果。
[0024]
作为进一步的技术方案,所述转炉出钢时开启钢包底吹氩,且控制流量在300-450l/min,吹氩时间≥8min。
[0025]
作为进一步的技术方案,其特征在于,所述板坯连铸过程中,中包过热度控制20-25℃,中包烘烤温度≥1000℃。
[0026]
作为进一步的技术方案,所述板坯连铸过程中,对钢水加盖操作并在钢水表面加覆盖剂0.8-1.0kg/t(钢水)。
[0027]
作为进一步的技术方案,通过添加白灰提高渣的碱度,补加铝粉降低渣中氧化铁的含量,提高提高cao活度。
[0028]
本发明的有益效果为:
[0029]
1、本发明通过对大量的生产数据及缺陷样品分析,最终确定了该工艺:通过加钛降碳及转炉炉后“渣洗”脱硫及钙处理工艺,连铸工序采取低过热度浇铸,降低钢中硫化物及成品带状组织对产品及性能的影响,达到冷折弯工艺要求。加钛降碳q235b拉速能达到1.65m/min,且铸坯表面质量及中间质量达到最优水平,与sphc低碳钢质量保持一致。
[0030]
2、本发明主要通过加钛铁降低碳含量,使碳含量处于包晶钢范围以外,减少钢坯裂纹敏感性,改善铸坯内部质量,并根据低碳钢工艺生产提高连铸拉速;配合转炉炉后“渣洗”脱硫及钙处理工艺,连铸工序采取低过热度浇铸,降低钢中硫化物及成品带状组织对性能的影响,达到所需的冷折弯工艺要求,是一种低成本高效率折弯的q235b钢种生产工艺。
[0031]
3、由于在转炉过程中需要控制温度和成分中硫的含量,通过添加脱硫剂并控制脱硫剂的用量来增强搅拌带来的温降,出钢温度会比较正常情况提高10-20℃,在出钢过程中投入白灰、脱硫剂,加入钛铁合金进行脱氧合金化,用高温钢水强大的搅拌能,流量在300-450l/min能快速地形成cao-al2o3熔渣。钢水下冲形成漩涡不断将熔渣卷入钢水中,同时在底吹氩气气泡上浮与钢流向下流动的共同作用下使钢液形成紊流,加大反应面积,促进钢渣界面硫的传质,使反应趋向平衡,控制出钢时间从而减小下渣量(挡渣塞 镁碳质整体出
钢口 挡渣球)。
[0032]
4、渣钢之间硫分配比随着硫容的增加而逐渐增大,随着渣的氧化性增强而逐渐减小。本发明中提高渣的碱度可以适当补加部分白灰,降低渣中w(feo)可适当补加铝粉,以降低渣中w(feo)及w(mno),提高cao活度,将会使脱硫反应朝着有利于脱硫的方向进行,创造良好的钢渣混冲效果,形成具有较强脱硫能力的顶渣。
[0033]
5、连铸浇铸过程:中包过热度控制20-25℃。1)完善中间包烘烤制度:浇铸过程中,中间包蓄热的吸热量占整个中间包内钢水热损失的40%-50%,所以加强烘烤,尤其是非绝热板内衬的中间,要求中包烘烤温度≥1000℃;2)浇铸过程中间包加盖及钢水表面加覆盖剂0.8-1.0kg/t,用空心预熔中空中包覆盖剂可有效阻止钢液表面的热辐射,大量节省热,降低钢水温降的速度。3)稳定生产节奏,减少因等钢导致的大包温降,控制待钢时间≤5min。4)连铸二冷水水表采用低碳钢sphc水表,拉速参照低碳钢高拉速拉坯。
具体实施方式
[0034]
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都涉及本发明保护的范围。本发明的实施例中,除特殊说明外,其他工艺路线按照常规操作进行即可。其中覆盖剂为市场上可以买到的现有技术。其中kg/t是添加物与钢水的质量比。
[0035]
实施例1
[0036]
组成:c:0.06%、si:0.06%、mn:0.40%、p:0.025%、s:0.020%、als:0.020%、ti:0.040%、余量为fe。
[0037]
工艺路线:混铁炉或铁水包折罐

转炉

脱氧合金化

吹氩站

板坯连铸机

板坯加热

粗轧切头尾

中轧切头

预精轧

精轧机组轧制

水冷

集卷

打捆、标识、称重、检验

卸卷

入库。
[0038]
在转炉出钢1min时,投入白灰2kg/t、脱硫剂5kg/t,其中脱硫剂包括以下组分:cao:51%、sio2:4%、al2o3:30%、al:12%、caf2:3%。
[0039]
转炉出钢时开启钢包底吹氩,且控制流量在300-350l/min,吹氩时间12min。其中,出钢时间控制4min。
[0040]
脱氧合金化中根据目标组成,按照常规方法添加钛铁合金。
[0041]
吹氩站精炼时,喂线点位于吹氩孔的正上方,控制钙铁线喂线速率为200-220m/min,控制钙线喂线速率90-100m/min,吹氩站精炼时,喂线点位于吹氩孔的正上方,控制钙铁线喂线速率为200-220m/min,白渣后喂入钙线,控制钙线喂线速率90-100m/min。控制[ca]/[al]比值在0.06-0.1,钙铁线(ca30%)喂线速率为200-220m/min。
[0042]
板坯连铸过程中,中包过热度控制20-25℃,中包烘烤温度1050℃,对钢水加盖操作并在钢水表面加覆盖剂0.8kg/t,连铸过程中,连铸机拉速1.63m/min。
[0043]
实施例2
[0044]
组成:c:0.05%、si:0.07%、mn:0.45%、p:0.022%、s:0.018%、als:0.027%、ti:0.035%、余量为fe。
[0045]
工艺路线:混铁炉或铁水包折罐

转炉

脱氧合金化(根据组成)

吹氩站

板坯
连铸机

板坯加热

粗轧切头尾

中轧切头

预精轧

精轧机组轧制

水冷

集卷

打捆、标识、称重、检验

卸卷

入库。
[0046]
在转炉出钢1.2min时,投入白灰2.3kg/t、脱硫剂4.8kg/t,其中脱硫剂包括以下组分:cao:55%、sio2:4%、al2o3:25%、al:14%、caf2:2%。
[0047]
转炉出钢时开启钢包底吹氩,且控制流量在350-400l/min,吹氩时间10min。其中,出钢时间控制5min。
[0048]
脱氧合金化中根据目标组成,按照常规方法添加钛铁合金。
[0049]
吹氩站精炼时,喂线点位于吹氩孔的正上方,控制钙铁线喂线速率为200-240m/min,控制钙线喂线速率100-110m/min,吹氩站精炼时,喂线点位于吹氩孔的正上方,控制钙铁线喂线速率为220-240m/min,白渣后喂入钙线,控制钙线喂线速率100-110m/min。控制[ca]/[al]比值在0.1-0.15,钙铁线(ca30%)喂线速率为220-240m/min。
[0050]
板坯连铸过程中,中包过热度控制20-25℃,中包烘烤温度1000℃,对钢水加盖操作并在钢水表面加覆盖剂9.0kg/t,连铸过程中,连铸机拉速1.65m/min。
[0051]
实施例3
[0052]
组成:c:0.06%、si:0.06%、mn:0.50%、p:0.024%、s:0.015%、als:0.015%、ti:0.030%、余量为fe。
[0053]
工艺路线:混铁炉或铁水包折罐

转炉

脱氧合金化

吹氩站

板坯连铸机

板坯加热

粗轧切头尾

中轧切头

预精轧

精轧机组轧制

水冷

集卷

打捆、标识、称重、检验

卸卷

入库。
[0054]
在转炉出钢1min时,投入白灰2.5kg/t、脱硫剂5.5kg/t,其中脱硫剂包括以下组分:cao:60%、sio2:3%、al2o3:21%、al:15%、caf2:1%。
[0055]
转炉出钢时开启钢包底吹氩,且控制流量在400-450l/min,吹氩时间8min。其中,出钢时间控制4min。
[0056]
脱氧合金化中根据目标组成,按照常规方法添加钛铁合金。
[0057]
吹氩站精炼时,喂线点位于吹氩孔的正上方,控制钙铁线喂线速率为200-240m/min,控制钙线喂线速率95-110m/min,吹氩站精炼时,喂线点位于吹氩孔的正上方,控制钙铁线喂线速率为210-230m/min,白渣后喂入钙线,控制钙线喂线速率90-105m/min,控制[ca]/[al]比值在0.08-0.12,钙铁线(ca30%)喂线速率为200-240m/min。
[0058]
板坯连铸过程中,中包过热度控制20-25℃,中包烘烤温度1000℃,对钢水加盖操作并在钢水表面加覆盖剂1.0kg/t,连铸过程中,连铸机拉速1.62m/min。
[0059]
实施例4
[0060]
组成:c:0.07%、si:0.08%、mn:0.38%、p:0.030%、s:0.028%、als:0.030%、ti:0.045%、余量为fe。
[0061]
工艺路线:混铁炉或铁水包折罐

转炉

脱氧合金化

吹氩站

板坯连铸机

板坯加热

粗轧切头尾

中轧切头

预精轧

精轧机组轧制

水冷

集卷

打捆、标识、称重、检验

卸卷

入库。
[0062]
在转炉出钢1min时,投入白灰2.5kg/t、脱硫剂4.5kg/t,其中脱硫剂包括以下组分:cao:50%、sio2:2%、al2o3:35%、al:12%、caf2:1%。
[0063]
转炉出钢时开启钢包底吹氩,且控制流量在380-420l/min,吹氩时间8min。其中,
出钢时间控制4min。
[0064]
脱氧合金化中根据目标组成,按照常规方法添加钛铁合金。
[0065]
吹氩站精炼时,喂线点位于吹氩孔的正上方,控制钙铁线喂线速率为200-240m/min,控制钙线喂线速率95-110m/min,吹氩站精炼时,喂线点位于吹氩孔的正上方,控制钙铁线喂线速率为210-230m/min,白渣后喂入钙线,控制钙线喂线速率90-105m/min,控制[ca]/[al]比值在0.08-0.12,钙铁线(ca30%)喂线速率为200-240m/min。
[0066]
板坯连铸过程中,中包过热度控制20-25℃,中包烘烤温度1000℃,对钢水加盖操作并在钢水表面加覆盖剂0.8kg/t,连铸过程中,连铸机拉速1.60m/min。
[0067]
对比例1
[0068]
与实施例1相比,原料及过程中其他的添加和控制均相同,不同的是在出钢时添加脱硫剂4kg/t,其他与实施例1相同。
[0069]
对比例2
[0070]
与实施例1相比,原料及过程中其他的添加和控制均相同,不同的是在出钢时添加脱硫剂6kg/t,其他与实施例1相同。
[0071]
对比例3
[0072]
与实施例1相比,原料及过程中其他的添加和控制均相同,不同的是在脱硫剂:cao:48%、sio2:4%、al2o3:30%、al:14%、caf2:4%。,其他与实施例1相同。
[0073]
实施例和对比例的组分及性能测试结果如表1和表2所示。
[0074]
表1实施例和对比例的组分(余量为fe)
[0075]
实施例csimnpsalsti实施例10.060.060.400.0250.0200.0200.040实施例20.050.070.450.0220.0180.0270.035实施例30.060.060.500.0240.0150.0150.030实施例40.070.080.380.0300.0280.0300.045对比例10.060.050.410.0260.0450.0150.042对比例20.060.100.450.0250.0190.0400.042对比例30.060.100.450.0240.0180.0400.042常规q235b0.180.250.400.0450.40//
[0076]
表2实施例和对比例的性能测试
[0077]
[0078][0079]
从上述实施例和对比例可以发现,本发明的过加钛降碳及转炉炉后“渣洗”脱硫及钙处理工艺,连铸工序采取低过热度浇铸,降低钢中硫化物及成品带状组织对产品及性能的影响,性能与常规q235b相近,通过提高拉速,能够提高24%的产能,实现了高效低能生产合格的q235b钢种。而对比例中,脱硫剂添加过多或者过少,以及脱硫剂的组分发生变化,会对q235b成品的180
°
折弯性能造成影响,而发明人通过无数次的实验探究,得到了最优的组分和用量,实验钢种性能及180
°
折弯全部符合要求。
[0080]
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献