一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

位置判定系统的制作方法

2022-02-20 12:28:10 来源:中国专利 TAG:

位置判定系统
1.相关申请的交叉引用
2.本发明基于在2019年4月26日申请的日本专利申请号2019-085381号,这里引用其记载内容。
技术领域
3.本发明涉及位置判定系统,是搭载于车辆而使用的系统,基于从由用户携带的便携终端使用1ghz以上的频带的电波而发送的无线信号的接收状况,来推定便携终端相对于车辆的相对位置。


背景技术:

4.人们提出了各种通过与由车辆的用户携带的便携终端实施无线通信来推定便携终端相对于车辆的位置。例如在专利文献1中,公开如下的结构:使用lf(low frequency:低频)带的电波从车辆朝向便携终端发送响应请求信号,基于能够接收到针对该响应请求信号的响应信号这一情形,判定便携终端是否存在于车室外的车辆附近(以下为室外工作区域)。此外,室外工作区域相当于允许便携终端执行基于与便携终端的无线通信的自动的车门的开锁的区域。从车辆对便携机的信号发送使用lf带的电波的理由是容易将无线信号的到达范围限定在车辆附近。在车辆中用于发送lf带的电波的天线的发送功率等被调整,以使无线信号仅到达该室外工作区域。
5.这样的位置判定系统用于根据便携终端的位置而实施规定的车辆控制的车辆用电子钥匙系统。车辆用电子钥匙系统包含根据便携终端的位置而自动控制车辆的车门的上锁状态、驱动源的运转状态的无钥匙进入及启动系统(以下,为peps系统)。
6.在车辆用电子钥匙系统中,从防盗等观点出发,作为系统要件,要求在用户离开车辆一定距离(例如2m)以上的情况下不执行基于与便携终端的无线通信的自动的车门的开锁。为了方便,将禁止基于与便携终端的无线通信的自动的车门的开锁的区域也记载为禁止区域。从禁止区域的观点出发,上述的室外工作区域被设定为与车辆相距至少2m以内的区域。一般地,室外工作区域多数情况下设定在与车辆相距1m以内或0.7m以内。
7.在专利文献2中,公开如下的车载装置,通过与由车辆的用户携带的便携终端实施依据bluetooth(注册商标)标准的无线通信,从而推定便携终端相对于车辆的位置。具体而言,如下所述。专利文献1所公开的车载装置例如从设置于驾驶席的脚下附近等车室内的底板面的通信装置(以下为车载通信机)定期发送针对便携终端请求响应信号的回送的请求信号。便携终端在接收来自车载通信机的请求信号的情况下,回送包含该请求信号的rssi(received signal strength indication:接收信号强度指示)的响应信号。车载装置将从便携终端回送的响应信号中包含的rssi保存于存储器。而且,在保存于存储器的最近5次的rssi的平均值超过规定的阈值的情况下,车载装置判定为便携终端存在于车室内。另一方面,在最近5次的rssi的平均值为阈值以下的情况下,判定为存在于车室外。
8.为了方便,将bluetooth等依据通信范围例如为几十米左右的规定的无线通信标
准的通信称为近距离通信。近距离通信使用例如2.4ghz等、1ghz以上的电波(以下,为高频电波)。这样的高频电波与lf带的电波相比具有直行性较强、容易被车辆的车身等金属体反射的性质。
9.专利文献1:日本特许第5438048号公报;
10.专利文献2:日本特许第6313114号公报。
11.有时希望使智能手机或可穿戴终端等便携式的信息处理终端作为车辆的密钥发挥功能。与之相伴,寻求如下的结构:能够取代lf带的电波而使用bluetooth等近距离通信中使用的高频电波的接收强度来判定便携终端相对于车辆的位置。这是因为一般地智能手机不具备发送接收lf带的电波的功能,另一方面,多数情况下具备bluetooth等近距离通信功能作为标准装备。
12.bluetooth等近距离通信中使用的高频电波与lf带的电波相比具有直行性较强、容易被车辆的车身等金属体反射的性质。高频电波与lf带的电波相比,由传播距离的引起信号强度的衰减程度较小。因此,在车辆与便携终端实施近距离通信的结构中,有时难以将车辆与便携终端的通信区域限定在车辆附近。
13.在车室内与车室外之间存在车辆的车身这样的阻碍电波的传播的要素,因此根据便携终端是存在于车室内还是存在于车室外,从便携终端发送的信号在车载通信机中的接收强度可能产生显著差。因此,通过专利文献2所公开的方法,能够以某程度的准确度来判别便携终端是否存在于车室内。
14.在专利文献2中,对于判别便携终端是存在于车室外的室外工作区域还是存在于禁止区域的方法没有进行任何研究。此外,在车室外的室外工作区域与禁止区域之间不存在车辆的车身这样的构造体。因此,在专利文献2所公开的结构中,有时在现实中很难基于接收强度来判别便携终端是存在于车室外的室外工作区域还是存在于禁止区域。


技术实现要素:

15.本发明的目的在于,提供一种位置判定系统,能够降低错误判定便携终端的位置的可能性。
16.本发明的一个方式的位置判定系统通过与由车辆的用户携带的便携终端使用1ghz以上的电波相互进行无线通信来判定便携终端相对于车辆的位置,其中,该车辆用的位置判定系统具备:车室外通信机,其设置于作为车辆的侧面部或者背面部的外表面部,具有用于接收从便携终端发送的无线信号的天线;以及位置判定部,其基于车室外通信机对来自便携终端的无线信号的接收状况,而判定在车室外与车辆相距规定的工作距离以内的区域即室外工作区域是否存在便携终端。天线构成为能够向规定的方向辐射主偏振波,并且向与主偏振波的辐射方向正交的方向辐射交叉偏振波,车室外通信机以向沿着安装有该车室外通信机的外表面部的方向辐射主偏振波、并且向与该外表面部垂直的方向辐射交叉偏振波的姿势设置。
17.根据上述结构,在车室外,形成有以车室外通信机的安装位置为基准,将车辆前后方向设为长边方向、将车宽方向设为短轴方向的椭圆体状的通信区域。因此,在便携终端在车室外存在于相对地靠近车辆的附近的室外工作区域内的情况下以及存在于相对地远离车辆的区域的情况下,由车室外通信机观测的接收强度能够产生显著差。由此,能够基于来
自便携终端的信号的接收状况而更高精度地判定便携终端在车室外的位置。即,根据上述的结构,能够降低错误判定便携终端的位置的可能性。
附图说明
18.图1是用于对车辆用电子钥匙系统的概略结构进行说明的图。
19.图2是用于对车辆的结构进行说明的图。
20.图3是表示车载系统的概略结构的框图。
21.图4是表示车载通信机的搭载位置的一例的概念图。
22.图5是表示车载通信机的概略结构的框图。
23.图6是表示车室外通信机的结构的一例的图。
24.图7是表示电路基板的结构的外观立体图。
25.图8是图7的viii-viii线处的剖视图。
26.图9是用于说明对置导体板与底板的位置关系的图。
27.图10是表示零阶谐振模式下的电流、电压以及电场分布的图。
28.图11是表示零阶谐振模式下的辐射特性的图。
29.图12是表示零阶谐振模式下的辐射特性的图。
30.图13是用于对底板激振模式的工作原理进行说明的图。
31.图14是用于对底板激振模式的工作原理进行说明的图。
32.图15是表示底板激振模式下的辐射特性的图。
33.图16是表示室外左侧通信机的安装位置和安装姿势的一例的图。
34.图17是表示车室外通信机(主要为侧方通信机)的指向性的图。
35.图18是用于对智能ecu的功能进行说明的图。
36.图19是用于对连接相关处理进行说明的流程图。
37.图20是用于对位置判定处理进行说明的流程图。
38.图21是用于对车辆用电子钥匙系统的要件进行说明的图。
39.图22是表示由室外左侧通信机提供的电场强度分布的模拟结果的图。
40.图23是表示车室外通信机的天线为偶极天线的情况下的、天线安装姿势与电场强度分布的关系的图。
41.图24是表示变形例1的天线的结构的图。
42.图25是用于对图24所示的天线构造中的短路部的位置进行说明的图。
43.图26是表示在对置导体板的中心形成有短路部的情况下的对置导体板上的电流分布的图。
44.图27是表示在从对置导体板的中心偏离的位置形成有短路部的情况下的对置导体板上的电流分布及其作用的图。
45.图28是表示变形例2的天线的结构的图。
46.图29是表示变形例3的天线的结构的图。
47.图30是表示变形例4的天线的结构的图。
48.图31是表示变形例5的天线的结构的图。
49.图32是表示变形例7的车室外通信机的构造的图。
具体实施方式
50.以下,使用附图对本发明的位置判定系统的实施方式的一例进行说明。图1是表示应用了本发明的位置判定系统的车辆用电子钥匙系统的概略结构的一例的图。如图1所示,车辆用电子钥匙系统具备:搭载于车辆hv的车载系统1;以及由该车辆hv的用户携带的通信终端即便携终端2。
51.(整体的概况)
52.车载系统1例如为无钥匙进入及启动系统(以下,为peps系统)等、构成车辆用电子钥匙系统的车辆侧的装置/系统。车载系统1通过与便携终端2实施使用了规定的频带的电波的无线通信,从而实施与便携终端2的位置对应的规定的车辆控制。例如车载系统1以能够确认便携终端2存在于针对车辆hv预先设定的室外工作区域rx内为条件,对车门进行上锁或者开锁。
53.室外工作区域rx相当于在车室外允许车载系统1对车辆控制的执行的区域。这里,作为一例,室外工作区域rx被设定为允许执行车载系统1对车门的上锁和开锁这样的车辆控制的区域。在本实施方式中,作为一例,车室外的与分别设置于驾驶席用车门、副驾驶席用车门以及行李箱门的外侧车门把手相距规定的工作距离(例如为0.7米)以内的区域被设定为室外工作区域rx。规定室外工作区域rx的大小的工作距离也可以为1m,也可以为1.5m。工作距离只要设定得比规定禁止区域的大小的禁止距离(2m)小即可。此外,外侧车门把手是指设置于车门的外侧面的用于开闭车门的把持部件。外侧车门把手例如也可以为闪光把手或弹出把手等、储存在车门板内的类型的车门把手。
54.本实施方式的车载系统1和便携终端2分别构成为,能够实施依据能够将通信距离设定为10米左右的规定的近距离无线通信标准的通信(以下,为近距离通信)。作为这里的近距离无线通信标准,例如能够采用bluetooth low energy(bluetooth为注册商标)、wi-fi(注册商标)、zigbee(注册商标)等。近距离无线通信标准例如只要能够提供几米~几十米左右的通信距离即可。作为一例,本实施方式的车载系统1与便携终端2构成为依据bluetooth low energy标准来实施无线通信。
55.便携终端2是与车载系统1相对应的作为车辆hv的电子钥匙发挥功能的装置。便携终端2只要是具备上述的近距离通信功能的用户能够携带的装置即可。例如能够使用智能手机作为便携终端2。便携终端2也可以是平板终端、可穿戴设备、便携用音乐播放器、便携用游戏机等。在作为近距离通信由便携终端2发送的信号中包含发送源信息。发送源信息例如为分配给便携终端2的固有的识别信息(以下,为终端id)。终端id作为用于识别其他的通信终端和便携终端2的信息发挥功能。
56.便携终端2通过以规定的发送间隔无线发送包含发送源信息的通信分组,从而针对具备近距离通信功能的周围的通信终端通知自身的存在(即广告)。以下,为了方便,将以广告为目的定期地发送的通信分组称为广告分组。
57.车载系统1通过上述的近距离通信功能来接收从便携终端2发送的信号(例如广告分组),由此检测出便携终端2存在于能够与车载系统1进行近距离通信的范围内。以下,将车载系统1能够通过近距离通信功能而与便携终端2相互进行数据通信的范围记载为通信区域。
58.在本实施方式中,作为一例,构成为通过接收从便携终端2依次发送的广告分组,
从而车载系统1检测出便携终端2存在于通信区域内,但不限于此。作为其他的方式,也可以构成为,车载系统1依次发送广告分组,基于与便携终端2的通信连接(所谓的连接)建立的情况,而检测出便携终端2存在于通信区域内。
59.(车辆hv的结构)
60.使用图2对车辆hv的结构进行说明。车辆hv例如是乘车定员人数为5人的乘用车。这里,作为一例,车辆hv具备前部座椅和后部座椅,并且在左侧设置有驾驶席(换言之方向盘)。此外,车辆hv也可以是在右侧设置有驾驶席的车辆。也可以是不具备后部座椅的车辆。车辆hv也可以是卡车等货车等。车辆hv也可以是出租车、露营车。此外,车辆hv也可以是用于车辆借出服务的车辆(所谓的租用车辆),也可以是用于车辆共享服务的车辆(所谓的共享车辆)。共享车辆中还包含用于在该车辆的管理者未使用个人所有的车辆的时间段向他人借出的服务的车辆。在车辆hv为用于上述服务的车辆(以下,服务车辆)的情况下,进行这些服务的利用契约的人物可能成为用户。即,具有使用车辆hv的权利的人物可能成为用户。
61.车辆hv的车身主要使用金属部件来实现。在这里的车身中,除了例如b柱等那样提供车身主体部的框架以外,还包含车身板。车身板包含车身侧板、顶板、后端板、发动机罩板、车门板等。但是,这里,作为一例,车门板中的与b柱42b重叠的部分、或者作为窗框部发挥功能的部分由树脂形成。
62.金属板具有反射电波的性质,因此车辆hv的车身反射电波。即,车辆hv的车身构成为阻断电波的直进性传播。这里的电波是指车载系统1与便携终端2的无线通信所使用的频带的电波(以下,为系统使用电波)。这里的系统使用电波是指2.4ghz带的电波。这里的阻断为理想性反射,但不限于此。能够将电波衰减规定的电平(以下,目标衰减电平)以上的结构相当于阻断电波的传播的结构。目标衰减电平只要是在车室内外,电波的信号强度产生有意的差的值即可,例如为10db。此外,目标衰减电平能够设定为5db以上的任意的值(例如10db、20db)。
63.车辆hv具有由顶板提供的顶部41,具备用于支承该顶板的多个柱42。作为柱42,车辆hv具备a柱42a、b柱42b和c柱42c。a柱42a相当于设置在前部座椅的前方的柱42。b柱42b相当于设置在前部座椅与后部座椅之间的柱42。c柱42c相当于设置在后部座椅斜后方的柱42。
64.各柱42的一部分或者全部使用高张力钢板等金属部件来实现。当然,作为其他的方式,柱42也可以是碳纤维制,也可以是树脂制。并且,也可以组合各种材料来实现。
65.车辆hv作为整体构成为,在全部的车门关闭的情况下,系统使用电波仅经由窗部43从车室外进入车室内、或者从车室内泄漏到车室外。即,构成为窗部43作为系统使用电波的通道发挥作用。这里的窗部43是指前窗、设置于车辆hv的侧面部分的窗(所谓的侧窗)、后窗等。
66.作为其他的方式,设置于车辆hv的车门等的窗玻璃也可以构成为阻断系统使用电波的直进性传播。这里的窗玻璃是指在设置于车辆hv的窗部43配置的透明的部件,该原材料严格来说也可以不是玻璃。例如也可以使用丙烯酸树脂等来实现。即,这里的窗玻璃是指作为防风件发挥功能的透明的部件。
67.(车载系统1的结构)
68.接下来,对车载系统1的结构和工作进行描述。如图3所示,车载系统1具备智能
ecu11、多个车载通信机12、车门按钮13、启动按钮14、发动机ecu15以及车身ecu16。此外,ecu为electronic control unit(电子控制单元)的简称,是指电子控制装置。
69.智能ecu11是通过与便携终端2实施无线通信而执行车门的上锁开锁、发动机的启动等车辆控制的电子控制装置(ecu:electronic control unit)。该智能ecu11使用计算机来实现。即,智能ecu11具备:cpu111、闪存112、ram113、i/o114、以及将这些结构连接的总线等。cpu111为执行各种运算处理的运算处理装置。闪存112为能够改写的非易失性存储介质。ram113为易失性存储介质。i/o114是作为用于智能ecu11与例如车载通信机12等搭载于车辆hv的其他的装置进行通信的接口发挥功能的电路模块。i/o114可以使用模拟电路元件、ic等来实现。
70.在闪存112中登记有对用户所具有的便携终端2分配的终端id。在闪存112中储存有用于使计算机作为智能ecu11发挥功能的程序(以下,为位置判定程序)等。上述的位置判定程序只要储存于非迁移实体记录介质(non-transitory tangible storage medium)即可。cpu111执行位置判定程序相当于执行与位置判定程序对应的方法。
71.此外,在闪存112中,作为用于智能ecu11基于来自便携终端2的信号的接收强度而判定便携终端2的位置的阈值(以下,为判定用阈值),保存有车室内相当值pin和工作阈值prx这两个参数。车室内相当值pin为用于判定为便携终端2存在于车室内的阈值。工作阈值prx为用于判定为便携终端2存在于车室外的室外工作区域rx的阈值。车室内相当值pin相当于车室内判定值。关于车室内相当值pin、工作阈值prx的技术意义、设定方法、智能ecu11的详细情况,另外后述说明。
72.车载通信机12为搭载于车辆hv的用于实施近距离通信的通信模块。各车载通信机12构成为能够发送接收2400mhz至2500mhz(中心频率为2.45ghz)的电波。各车载通信机12经由专用的通信线或者车辆内网络与智能ecu11能够相互通信地连接。对各车载通信机12设定固有的通信机编号。通信机编号为相当于便携终端2的终端id的信息。通信机编号作为用于识别多个车载通信机12的信息发挥功能。
73.在本实施方式的车载系统1中,作为车载通信机12,如图4所示,具备至少一个车室内通信机12α和多个车室外通信机12β。车室内通信机12α为设置在车室内的车载通信机12,车室外通信机12β为配设在车辆hv的外表面部的车载通信机12。这里的外表面部是指车辆hv中与车室外空间相接的车身部分,包含车辆hv的侧面部、背面部和前面部。作为车室外通信机12β,本实施方式的车载系统1具备室外左侧通信机12l、室外右侧通信机12m和室外后方通信机12n。
74.各车载通信机12承担将从便携终端2发送的信号的接收强度提供给智能ecu11的作用。此外,车室内通信机12α兼有作为数据通信机的作用,该数据通信机承担智能ecu11与便携终端2发送接收数据的作用。图4是车辆hv的概念性的俯视图,为了对各种车载通信机12的设置位置进行说明而透过顶部41来表示。
75.图5概略地表示车载通信机12的电结构。如图5所示,车载通信机12具备天线121、发送接收电路122和通信微型计算机123。
76.天线121是用于发送接收在与便携终端2的无线通信中使用的频带(以下,为系统使用频带)的电波的线。这里的系统使用频带为从2400mhz到2500mhz的2.4ghz带。系统使用频带与天线121的工作带域对应。此外,系统使用频带只要包含按照bluetooth标准使用的
2400mhz~2480mhz即可。系统使用频带的上限频率、下限频率能够根据与便携终端2的通信标准而适当地变更。天线121与发送接收电路122电连接。关于天线121的具体的结构,另外后述说明。发送接收电路122对由天线121接收到的信号进行解调,并提供给通信微型计算机123。发送接收电路122对经由通信微型计算机123从智能ecu11输入的信号进行调制,并向天线121输出,作为电波辐射。发送接收电路122与通信微型计算机123能够相互通信地连接。
77.发送接收电路122具备依次检测由天线121接收到的信号的强度的接收强度检测部124。接收强度检测部124能够通过多种电路结构来实现。接收强度检测部124检测出的接收强度与接收数据中包含的终端id相对应地依次提供给通信微型计算机123。此外,接收强度例如只要由功率的单位[dbm]来表现即可。将接收强度与终端id相对应的数据称为接收强度数据。接收强度检测部124相当于强度检测部。
[0078]
通信微型计算机123为对发送接收电路122的工作进行控制的微型计算机。根据其他的观点,通信微型计算机123相当于控制与智能ecu11的数据交接的微型计算机。通信微型计算机123将从发送接收电路122输入的接收数据与接收强度相对应地提供给智能ecu11。通信微型计算机123具备对便携终端2的终端id进行认证,并且基于来自智能ecu11的请求而与便携终端2实施加密通信的功能。作为加密化的方式,能够引用bluetooth所规定的方式等多种方式。关于id的认证方式,也能够引用bluetooth所规定的方式等多种方式。
[0079]
车门按钮13是用于用户对车辆hv的车门进行开锁和上锁的按钮。车门按钮13设置在车辆hv的外侧车门把手或者其附近。车门按钮13若被用户按下,则将表示该内容的电信号输出给智能ecu11。车门按钮13相当于用于智能ecu11受理用户的开锁指示和上锁指示的结构。此外,作为用于受理用户的开锁指示和上锁指示的至少任意一方的结构,也可以采用触摸传感器。
[0080]
启动按钮14为用于用户启动驱动源(例如发动机)的按钮开关。若启动按钮14被用户进行按压操作,则将表示其内容的电信号输出给智能ecu11。此外,这里,作为一例,车辆hv为具备发动机来作为动力源的车辆,但不限于此。车辆hv也可以是电动汽车或混合动力车。在车辆hv为具备马达来作为驱动源的车辆的情况下,启动按钮14为用于使驱动用的马达启动的开关。
[0081]
发动机ecu15是对搭载于车辆hv的发动机的工作进行控制的ecu。例如发动机ecu15若从智能ecu11取得指示发动机的启动的启动指示信号,则使发动机启动。
[0082]
车身ecu16为基于来自智能ecu11的请求来控制车载致动器17的ecu。车身ecu16与各种车载致动器17、各种车载传感器18能够通信地连接。这里的车载致动器17例如是构成各车门的锁定机构的门锁马达或用于调整座椅位置的致动器(以下,为座椅致动器)等。这里的车载传感器18是按照每个车门而配置的门控开关等。门控开关为检测车门的开闭的传感器。车身ecu16例如基于来自智能ecu11的请求,而对设置于车辆hv的各车门的门锁马达输出规定的控制信号,由此对各车门进行上锁或者开锁。
[0083]
(车室内通信机12α的作用和结构)
[0084]
车室内通信机12α配置于车室内的规定位置,以使车室内成为强电场区域。强电场区域是指从车载通信机12发送的信号保持规定的阈值(以下,为强电场阈值)以上的强度而
传播的区域。强电场阈值被设定为作为近距离通信的信号充分强的电平。例如强电场阈值为-35dbm(-0.316μw)。由于无线信号的传播路径具有可逆性,因此根据其他的观点,强电场区域也是车载通信机12中的从便携终端2发送的信号的接收强度为规定的阈值以上的区域。
[0085]
车室内通信机12α能够设置于车室内的任意的位置。但是,有时优选为,兼有作为数据通信机的作用的车室内通信机12α配置在能够看到车室内和车室外的车门附近的位置。车室内和车室外的车门附近能够看到的位置例如为车室内的顶棚部分。这里,作为一例,车室内通信机12α配置在挡风玻璃的上端中央部(即车室后视镜附近)。作为车室内通信机12α的设置位置,也可以采用仪表板49的车宽方向中央部、顶置控制台、顶棚部的中央部等。此外,在便携终端2存在于车室内通信机12α的视野外的情况下,也能够通过构造物处的反射等而使便携终端2与车室内通信机12α能够实施无线通信。因此,车室内通信机12α也可以设置于中央控制台48、驾驶席的脚下、底板部等车室外成为视野外的位置。
[0086]
某个车载通信机12的视野内是指从该车载通信机12发送的信号能够直接到达的区域。由于无线信号的传播路径具有可逆性,因此,某个车载通信机12的视野内,换言之,相当于该车载通信机12能够直接接收从便携终端2发送的信号的区域。某个车载通信机12的视野外是指从该车载通信机12发送的信号未直接到达的区域。由于无线信号的传播路径具有可逆性,因此某个车载通信机12的视野外,换言之,相当于该车载通信机12无法直接接收从便携终端2发送的信号的区域。此外,从便携终端2发送的信号被各种构造物反射,由此也能够到达视野外。
[0087]
在作为数据通信机的车室内通信机12α所具备的非易失性存储器中保存有终端信息。终端信息例如为认证密钥、终端id等。终端信息可以通过用户实施密钥交换协议的执行操作(所谓的配对)来登记。此外,在车辆hv为服务车辆的情况下,终端信息也可以从管理服务车辆的运行的外部服务器分发。在车辆hv由多个用户使用的情况下,保存各用户持有的便携终端2的终端信息。
[0088]
作为数据通信机的车室内通信机12α若接收来自便携终端2的广告分组,则使用保存完毕的终端信息而自动地建立与便携终端2的通信连接。而且,智能ecu11与便携终端2实施数据的发送接收。此外,车室内通信机12α若建立与便携终端2的通信连接,则将通信连接的便携终端2的终端id提供给智能ecu11。
[0089]
根据bluetooth标准,以跳频方式实施加密化的数据通信。跳频方式是按照时间依次切换通信所使用的信道的通信方式。具体而言,在bluetooth标准中,通过跳频/频谱扩散方式(fhss:frequency hopping spread spectrum)进行数据通信。在bluetooth low energy(以下,为bluetoothle)中,准备从0号到39号的40个信道,其中的从0号到36号的37个信道能够用于数据通信。此外,从37号到39号这3个信道为用于广告分组的发送的信道。
[0090]
车室内通信机12α在建立与便携终端2的通信连接的情况下,一边依次变更37个信道一边与便携终端2实施数据的发送接收。此时,车室内通信机12α针对智能ecu11,依次提供表示与便携终端2的通信所使用的信道的信息(以下,为信道信息)。信道信息也可以是具体的信道号,也可以是表示使用信道的迁移规则的参数(所谓的hopincrement)。hopincrement是在通信连接时随机决定的从5到16的数字。信道信息有时优选包含当前的信道编号和hopincrement。
[0091]
车室内通信机12α也可以存在多个。车室内通信机12α的数量也可以是2个、3个、4个以上。例如,作为车室内通信机12α,也可以具备配设于驾驶席的脚下附近的车载通信机12和配设于行李箱区域的底板部的车载通信机12这两个车室内通信机12α。车室内通信机12α也可以在左右的b柱42b的室内侧面各配设一个。此外,车室内通信机12α也可以配置于后部座椅用的车门的室内侧面或后部座椅的底板面。不兼有作为数据通信机的作用的车室内通信机12α有时优选设置在车室外成为视野外的位置。车室内通信机12α可以配置在1个或者多个规定的位置,以使车室内的大半(更优选为全部区域)成为强电场区域。
[0092]
作为构成车室内通信机12α的天线121,能够采用贴片天线、偶极天线、单极天线、倒f天线、倒l天线、零阶谐振天线等多种天线构造。车室内通信机12α的天线121也可以是后述的底板延伸型零阶谐振天线、短路部偏移型零阶谐振天线、半波长型零阶谐振天线。车室内通信机12α的设置位置、安装姿势和设置个数只要鉴于天线121的指向性和车室内形状而适当地设计即可。
[0093]
(车室外通信机12β的构造)
[0094]
接下来对车室外通信机12β的构造进行说明。作为车室外通信机12β的室外左侧通信机12l、室外右侧通信机12m以及室外后方通信机12n都具有相同的天线构造。以下,系统使用电波的波长(以下,也记载为对象波长)由“λ”表示。例如“λ/2”和“0.5λ”是指对象波长的一半的长度,“λ/4”和“0.25λ”是指对象波长的4分之1的长度。此外,真空中和空气中的2.45ghz的电波的波长(即λ)为122mm。
[0095]
如图6所示,车室外通信机12β具备电路基板5和外壳6。电路基板5具备底板51、支承板52、对置导体板53、短路部54和电路部55。将底板51、对置导体板53和短路部54组合而成的结构相当于车室外通信机12β的天线121(以下,也记载为车室外天线121β)。此外,图7是电路基板5的外观立体图。图8是图7所示的viii-viii线处的剖视图。在图7和图8中省略外壳6的图示。为了方便,以下,将相对于底板51设置有对置导体板53的一侧作为车室外通信机12β的上侧而进行各部的说明。即,从底板51朝向对置导体板53的方向相当于车室外通信机12β的上方向。从对置导体板53朝向底板51的方向相当于车室外通信机12β的下方向。
[0096]
底板51是将铜等导体作为原材料的板状的导体部件。底板51沿着支承板52的下侧面设置。这里的板状还包含金属箔这样的薄膜状。即,底板51也可以通过电镀等而在印刷布线板等树脂制的板的表面上形成图案。该底板51与同轴电缆的外部导体或者支承板52所具备的接地层电连接,而提供车室外通信机12β的接地电位(换言之,为接地电位)。
[0097]
底板51形成为长方形。底板51的短边的长度例如设定为电气上相当于0.4λ的值。底板51的长边的长度在电气上设定为1.2λ。这里的电气长度是指考虑了边缘电场、电介质引起的波长缩短效果等的有效长度。此外,在支承板52使用相对介电常数4.3的电介质而形成的情况下,底板51表面上的波长由于作为支承板52的电介质的波长缩短效果而成为60mm左右。因此,电气上相当于1.2λ的长度为72mm。
[0098]
图6等所示的x轴表示底板51的长边方向,y轴表示底板51的短边方向,z轴表示上下方向。由这些x轴、y轴和z轴构成的三维坐标系(以下,为天线坐标系)为用于对车室外通信机12β的结构进行说明的概念。此外,作为其他的方式,在底板51为正方形的情况下,能够将沿着任意的1边的方向设为x轴。在底板51为圆形的情况下,能够将与底板51平行的任意的方向设为x轴。y轴只要是与底板51平行且与x轴正交的方向即可。此外,在底板51为长方
形或长椭圆等、存在长边方向和短边方向的形状的情况下,能够将该长边方向设为x轴方向。此外,z轴被设定为天线121的上方向为正方向。
[0099]
底板51有时优选为将相互正交的两个直线分别作为对称的轴而线对称的形状(以下,为2方向线对称形状)。2方向线对称形状是指将某个直线作为对称轴而线对称,并且关于与该直线正交的其他的直线也线对称的图形。2方向线对称形状例如有椭圆形、长方形、圆形、正方形、正六边形、正八边形、菱形等。底板51有时优选为直径形成得比1个波长的圆大。某个部件的平面形状是指从上方观察该部件的形状。
[0100]
支承板52为矩形状的平板部件。支承板52承担将底板51和对置导体板53隔开规定的间隔而相互对置配置的作用。支承板52在俯视时形成为与底板51大致相同的大小。支承板52使用具有规定的相对介电常数的电介质来实现。支承板52能够引用例如将玻璃环氧树脂等作为基材的印刷电路基板。这里,作为一例,支承板52使用相对介电常数4.3的玻璃环氧树脂(换言之,fr4:flame retardant type(阻燃型)4)来实现。
[0101]
在本实施方式中,作为一例,支承板52的厚度例如形成为1.5mm。支承板52的厚度相当于底板51与对置导体板53的间隔。通过调整支承板52的厚度,能够调整对置导体板53与底板51的间隔。支承板52的厚度的具体值只要通过模拟或试验而适当地决定即可。支承板52的厚度也可以为2.0mm、3.0mm等。此外,支承板52的波长由于电介质的波长缩短效果而成为60mm左右。因此,厚度1.5mm这样的值相当于电气上对象波长的40分之1(即λ/40)。此外,在本实施方式中采用底板51与对置导体板53之间填充了作为支承板52的树脂的结构,但不限于此。底板51与对置导体板53之间也可以为中空或真空。并且,也可以将以上例示的构造组合。
[0102]
对置导体板53为将铜等导体作为原材料的板状的导体部件。像上述那样,这里的板状还包含铜箔等薄膜状。对置导体板53配置为隔着支承板52而与底板51对置。对置导体板53也可以与底板51同样,在印刷布线板等树脂制的板的表面形成图案。这里的平行不限于完全的平行。也可以倾斜几度至十度左右。即,可以包含大致平行的状态(所谓的大致平行的状态)。
[0103]
通过将对置导体板53与底板51相互对置配置,从而形成与对置导体板53的面积、对置导体板53与底板51的间隔对应的静电电容。对置导体板53形成为如下的大小,形成与短路部54所具备的电感在规定的对象频率下进行并联谐振的静电电容。对象频率是指作为发送接收的对象的频率。车载通信机12的工作带域的中心频率(这里为2.45ghz)相当于对象频率和通信频率。
[0104]
对置导体板53的面积只要以提供所希望的静电电容的方式(进而以对象频率进行工作)适当地设计即可。例如对置导体板53形成为一边在电气上为12mm的正方形。对置导体板53的表面上的波长由于支承板52的波长缩短效果而成为60mm左右,因此12mm这样的值在电气上相当于0.2λ。当然,对置导体板53的一边的长度能够适当地变更,也可以为14mm、15mm、20mm、25mm等。
[0105]
此外,这里,作为一例,对置导体板53的形状为正方形,但作为其他的结构,对置导体板53的平面形状也可以为圆形、正八边形、正六边形等。对置导体板53也可以为长方形、长椭圆形等。对置导体板53有时优选为2方向线对称形状。对置导体板53有时更优选为圆形、正方形、长方形、平行四边形等点对称的图形。
[0106]
也可以在对置导体板53设置狭缝、或者将角部倒圆。对置导体板53的缘部也可以局部或者整体上形成为曲折形状。2方向线对称的形状还包含在其缘部设置有微小的(几mm左右的)凹凸的形状。设置于对置导体板53的缘部的、不影响工作的程度的凹凸能够忽略处理。针对该对置导体板53的平面形状的技术思想对于上述的底板51也是同样的。
[0107]
对置导体板53使用微带线路551与电路部55连接。对置导体板53与微带线路551的连接部位相当于天线121的供电点531。微带线路551相当于供电线。此外,作为对对置导体板53的供电方式,除了直接连结供电方式之外,还能够采用电磁耦合方式等多种方式。电磁耦合方式是指利用了供电用的微带线路等与对置导体板53的电磁耦合的供电方式。供电点531只要设置于在从电路部55观察时天线121的输入输出阻抗整合的位置即可。换言之,供电点531只要设置于回损成为规定的允许电平的位置即可。供电点531例如能够配置于对置导体板53的缘部、中央区域等任意的位置。
[0108]
如图9所示,对置导体板53以某1组的对边与x轴平行、并且另一组的对边与y轴平行的姿势与底板51对置配置。但是,配置成其中心从底板51的中心向x轴方向偏移规定量。具体而言,对置导体板53配置为,其中心成为从底板51的中心向x轴方向电气地偏移对象波长的20分之1(即0.05λ)的位置。根据另一观点,该结构相当于将底板51相对于对置导体板53非对称地配置的结构。
[0109]
底板51的中心(以下,为底板中心)与对置导体板53的中心的x轴方向上的距离(以下,为底板偏移量δsa)不限于0.05λ。底板偏移量δsa也可以为0.08λ、0.04λ、0.25λ等。底板偏移量δsa也可以设定为0.125λ(=λ/8)。底板偏移量δsa在俯视时在对置导体板53不超出底板51的外侧的范围中能够适当地变更。对置导体板53配置为至少全部区域(换言之为整面)与底板51对置。底板偏移量δsa相当于底板51的中心与对置导体板53的中心的偏移量。
[0110]
在图9中,为了明示底板51与对置导体板53的位置关系,而透过支承板52(即省略图示)。图9所示的单点划线lx1表示穿过底板51的中心并与x轴平行的直线,单点划线ly1表示穿过底板51的中心并与y轴平行的直线。双点划线ly2表示穿过对置导体板53的中心并与y轴平行的直线。根据其他的观点,直线lx1相当于底板51或对置导体板53的对称轴。直线ly1相当于底板51的对称轴。直线ly2相当于对置导体板53的对称轴。
[0111]
对置导体板53从与底板51同心的位置向x轴方向错开规定量地配置,因此单点划线lx1也穿过对置导体板53的中心。即,单点划线lx1相当于与x轴平行的直线且穿过底板51与对置导体板53的中心的直线。直线lx1与直线ly1的交点相当于底板中心,直线lx1与直线ly2的交点相当于对置导体板53的中心(以下,导体板中心)。导体板中心相当于对置导体板53的重心。在本实施方式中,对置导体板53为正方形,因此导体板中心相当于对置导体板53的两个对角线的交点。此外,底板51与对置导体板53同心的配置方式相当于在俯视时对置导体板53的中心与底板51的中心重叠的配置方式。
[0112]
短路部54为将底板51和对置导体板53电连接的导电性的部件。短路部54只要是一端与底板51电连接、另一端与对置导体板53电连接的线状的部件即可。短路部54例如使用设置在作为支承板52的印刷电路基板的通孔来实现。短路部54也可以使用导电性的销来实现。通过调整短路部54的长度、直径,能够调整短路部54所具备的电感。
[0113]
短路部54例如设置成位于导体板中心。此外,短路部54的形成位置不需要严格地
与导体板中心一致。短路部54也可以从导体板中心偏移几mm左右。短路部54只要形成在对置导体板53的中央区域即可。对置导体板53的中央区域是指比将从导体板中心到缘部以1:5内分的点连结的线靠内侧的区域。根据其他的观点,中央区域相当于将对置导体板53相似缩小为6分之1左右的同心图形重叠的区域。
[0114]
电路部55为包含发送接收电路122、通信微型计算机123、电源电路等的电路模块。电路部55为ic、模拟电路元件、连接器等多种部件的电集合体。电路部55形成在支承板52中配置有对置导体板53的一侧的面(以下,为基板上表面52a)。例如,电路部55使用在基板上表面52a上位于非对称部511的上方的区域而形成。微带线路551为用于对对置导体板53供电的线状导体。微带线路551的一端与对置导体板53连接,另一端与电路部55连接。此外,微带线路551也可以形成在支承板52的内部。
[0115]
外壳6为收纳电路基板5的结构。外壳6例如是通过将构成为能够在上下方向上分离的上外壳和下外壳组合而构成的。外壳6例如使用聚碳酸酯(pc:polycarbonate)树脂而构成。此外,作为外壳6的材料,能够采用在pc树脂中混合了丙烯腈-丁二烯-苯乙烯共聚物(所谓的abs)而得的合成树脂、聚丙烯(pp:polypropylene)等多种树脂。
[0116]
外壳6具备外壳底部61、外壳侧壁部62以及外壳顶棚部63。外壳底部61为提供外壳6的底部的结构。外壳底部61形成为平板状。在外壳6内,电路基板5配置为隔着形成于外壳底部61的肋(以下,为下侧肋)611而使底板51与外壳底部61对置。下侧肋611承担限制外壳6内的电路基板5的位置的作用。下侧肋611例如为从外壳底部61的规定位置朝向上侧一体地形成的凸状的结构。下侧肋611设置为与底板51的缘部抵接。下侧肋611形成为底板51与外壳底部61的间隔为λ/25以下(即5mm以下)。此外,下侧肋611也可以形成为从侧壁部62的内表面朝向壳体内侧突出。下侧肋611只要构成为从下侧支承电路基板5即可,也可以与侧壁部62一体地形成。
[0117]
外壳侧壁部62为提供外壳6的侧面的结构,从外壳底部61的缘部朝向上方竖立设置。外壳侧壁部62的高度被设计成外壳顶棚部63的内表面与对置导体板53的间隔为λ/25以下。外壳顶棚部63为提供外壳6的上表面部的结构。本实施方式的外壳顶棚部63形成为平板状。此外,作为外壳顶棚部63的形状,此外,能够采用圆顶型等多种形状。外壳顶棚部63构成为,内表面与基板上表面52a(进而对置导体板53)对置。在外壳顶棚部63的内侧面形成有上侧肋631。
[0118]
上侧肋631为从外壳顶棚部63的内表面的规定位置朝向下方形成的凸状的结构。上侧肋631设置为与对置导体板53的缘部抵接。上侧肋631与外壳6一体地形成。上侧肋631限制外壳6内的支承板52的位置。也可以对在上侧肋631中与对置导体板53的缘部连接的垂直面(即外侧面)赋予铜箔等金属图案。此外,上侧肋631是任意的要素,也可以不设置。
[0119]
在外壳6的内部,例如填充密封材料7。密封材料7相当于密封材。作为密封材料7,能够采用聚氨酯树脂(例如,聚氨酯预聚物)、环氧树脂、硅树脂等多种材料。根据在外壳6内填充密封材料7的结构,还能够提高防水性、防尘性、耐振动性。此外,根据在外壳6内填充密封材料7的结构,位于对置导体板53的上方的密封材料7抑制底板垂直偏振波从对置导体板53的端部向对置导体板53的上侧的蔓延,起到提高向底板平行方向的辐射增益的效果。这里的底板平行方向是指从对置导体板53的中心朝向其缘部的方向。根据其他的观点,底板平行方向是指与穿过对置导体板53的中心的朝向底板51的垂线正交的方向。底板平行方向
相当于车室外通信机12β的横向(换言之为侧方)。此外,密封材料7是任意的要素,并不是必须的要素。在图6中,为了确保图的可视性,省略密封材料7的阴影。
[0120]
上侧肋631、密封材料7相当于承担抑制通过后述的零阶谐振模式辐射的垂直电场从对置导体板53的缘部向上侧蔓延的作用的结构(以下,为电波阻断体)。在本实施方式中公开的结构相当于在对置导体板53的上侧配置有使用导体或者电介质而构成的电波阻断体的结构。此外,包含上侧肋631的外壳6、密封材料7有时优选为相对介电常数较高且介电损耗角正切较小。例如,有时优选为相对介电常数为2.0以上,并且介电损耗角正切为0.03以下。若介电损耗角正切较高,则辐射能量作为热损失而损失的量增大。因此,外壳6、密封材料7有时优选使用介电损耗角正切更小的材料来实现。外壳6、密封材料7以介电常数越高则越抑制电场的蔓延的方式发挥作用。换言之,外壳6、密封材料7的介电常数越高,则提高底板平行方向的增益的效果越强。因此,作为外壳6、密封材料7的材料,使用介电常数较高的电介质来实现。
[0121]
(车室外通信机12β的工作)
[0122]
对车室外通信机12β的工作进行说明。车室外通信机12β的对置导体板53利用设置在其中央区域的短路部54与底板51短路,并且对置导体板53的面积成为形成与短路部54所具备的电感在对象频率下进行并联谐振的静电电容的面积。
[0123]
在对象频率及其附近,通过电感与静电电容之间的能量交换而产生并联谐振(所谓的lc并联谐振),在底板51与对置导体板53之间产生与底板51和对置导体板53垂直的电场。该垂直电场从短路部54朝向对置导体板53的缘部传播,在对置导体板53的缘部成为底板垂直偏振波,在空间中传播。这里的底板垂直偏振波是指电场的振动方向与底板51、对置导体板53垂直的电波。在车室外通信机12β以与水平面平行的姿势使用的情况下,底板垂直偏振波是指与底板面垂直的偏振波(即通常的垂直偏振波)。
[0124]
如图10所示,垂直电场的传播方向以短路部54为中心对称。因此,如图11所示,相对于底板平行方向的辐射特性为无指向性(换言之为全部方向性)。即,车室外通信机12β的主光束形成在从对置导体板53的中央区域朝向缘部的全部方向(即底板平行方向)。在底板51配置为水平的情况下,车室外通信机12β作为在水平方向上具备主光束的天线发挥功能。底板平行方向相当于主偏振波的辐射方向。此外,这里的底板平行面是指与底板51和对置导体板53平行的平面。
[0125]
短路部54配置在导体板中心,因此流过对置导体板53的电流以短路部54为中心对称。因此,在对置导体板53中从导体板中心沿某个方向流动的电流所产生的天线高度方向的电波被反向流动的电流所产生的电波抵消。即,由对置导体板53激励的电流无助于电波的辐射。如图12所示,在与底板51垂直的方向(以下,底板垂直方向)上不辐射电波。底板垂直方向在附图中相当于z轴正方向。以下,为了方便,将通过在底板51与对置导体板53之间形成的静电电容与短路部54所具备的电感的lc并联谐振而工作的模式称为零阶谐振模式。作为零阶谐振模式的车室外天线121β相当于电压系天线。具备上述结构的天线相当于构成为使用由对置导体板53与底板51形成的静电电容和短路部54所具备的电感在用于无线通信的频率即通信频率下进行并联谐振的天线。此外,也可以使用整合元件来调整零阶谐振模式的谐振频率。
[0126]
车室外天线121β由于从对置导体板53观察时底板51非对称地形成,因而也从底板
51辐射电波。具体如下所述。在本实施方式的车室外通信机12β中对置导体板53配置在从与底板51同心的位置向x轴方向电气地偏移对象波长的20分之1(即λ/20)的位置。根据将底板偏移量δsa设定为λ/20的方式,从x轴方向的端部起处于λ/10以内的区域成为对置导体板53的非对称部511。这里的非对称部511是指在底板51中从对置导体板53观察时成为非对称的区域。在图13和图14中,为了明示该区域,对非对称部511施加点图案的阴影。在底板51中从对置导体板53观察时具有对称性的最大区域也记载为对称性维持部512。对称性维持部512被设定为包含底板51的缘部的一部分。对称性维持部512的从中央区域到端部为止的x轴方向的长度为l/2-δsa。对称性维持部512的中心与对置导体板53的中心在俯视时一致。
[0127]
图13是概念性地表示流过底板51的电流的图。模拟的结果为,确认了通过lc并联谐振而流过底板51的电流主要沿着底板51的缘部流动。在图13中箭头的大小表示电流的振幅。在图13中透过支承板52(即省略图示)。
[0128]
从对置导体板53穿过短路部54而流入底板51的电流从短路部54朝向底板51的x轴方向的两端流动。成为底板51的电流的出入口的短路部54位于对称性维持部512的中心。因此,在对称性维持部512中,从短路部54朝向x轴方向两端流动的电流的方向相反,大小相等。从对称性维持部512的中央向某个方向(例如x轴正方向)流动的电流所产生的电磁波被像图14所示那样向相反方向(例如x轴负方向)流动的电流所形成的电磁波抵消(即相抵)。因此,实质上不从对称性维持部512辐射电波。
[0129]
流过非对称部511的电流所产生的电波未被相抵而残留。换言之,非对称部511的缘部作为辐射元件(实际上为线状天线)发挥作用。从底板51辐射的电波成为电场在与底板51平行的方向上振动的直线偏振波(以下,底板平行偏振波)。具体而言,从底板51辐射的电波成为电场的振动方向与x轴平行的直线偏振波(以下,为x轴平行偏振波)。该底板平行偏振波沿与x轴正交的方向辐射。即,底板平行偏振波还向车室外通信机12β的上方向(以下,为底板垂直方向)辐射。
[0130]
以下,将利用流过底板51的非对称部511的缘部的线状电流的工作模式称为底板激振模式。底板激振模式相当于在非对称部511与对称性维持部512相连的方向(这里为x轴方向)上电场振动的直线偏振波向与该缘部垂直的方向辐射的工作模式。作为底板激振模式的车室外通信机12β相当于通过感应电流而辐射电波的电流系天线。在车室外通信机12β以与水平面平行的姿势使用的情况下,底板平行偏振波相当于电场振动方向与底板面平行的直线偏振波(即水平偏振波)。图15是表示对将底板偏移量δsa的电气长度设定为0.05λ的车室外通信机12β的底板激振模式下的辐射特性进行模拟的结果的图。
[0131]
本实施方式的车室外通信机12β通过具有上述的构造,能够在沿底板平行方向形成光束的零阶谐振模式和沿底板垂直方向形成光束的底板激振模式这双方同时工作。此外,底板垂直方向的增益与底板平行方向的增益之比根据非对称部511的x轴方向的长度(以下,非对称部宽度w)而变动。非对称部宽度w只要适当地调整为得到所希望的增益比即可。但是,底板垂直方向的增益与底板平行方向的增益之比不仅受到非对称部宽度w的影响,还受到存在于车室外通信机12β的背面的车辆金属(例如b柱42b)与底板51的间隔的影响。非对称部宽度w是鉴于位于车室外通信机12β的背面的车体金属部与底板51的间隔,基于模拟等而设计的,以得到所希望的增益比。像上述那样,这里,非对称部宽度w被设定为0.1λ,但作为其他的方式,也可以设定为0.25λ。此外,非对称部宽度w相当于底板偏移量δ
sa的2倍值。因此,非对称部宽度w为0.25λ的结构相当于将底板偏移量δsa设定为0.125λ的结构。
[0132]
车室外通信机12β发送(辐射)电波时的工作与接收电波时的工作相互具有可逆性。即,根据上述车室外通信机12β,能够接收从底板平行方向到来的底板垂直偏振波,并且能够接收从底板垂直方向到来的底板平行偏振波。
[0133]
像以上说明的那样,车室外通信机12β通过在零阶谐振模式下工作,能够在底板平行方向的全部方向上发送接收底板垂直偏振波。与此同时,车室外通信机12β通过在底板激振模式下工作,能够在底板垂直方向上发送接收底板平行偏振波。车室外通信机12β能够在相互正交的方向上发送接收分别具有不同的偏振波面的电波。以下,将具有上述的构造的天线也称为底板延伸型零阶谐振天线。
[0134]
(车室外通信机12β的安装位置、安装姿势和作用)
[0135]
室外左侧通信机12l为用于将设置在车辆hv的左侧的前部座椅用的车门(以下,为前部左侧车门)的周边作为强电场区域的车载通信机12。这里,驾驶席配置在车辆hv的左侧,因此前部左侧车门相当于驾驶席用的车门。
[0136]
如图16所示,室外左侧通信机12l以底板51与b柱42b的表面对置并且x轴方向沿着b柱42b的长边方向的姿势安装于在车辆左侧设置的b柱42b的车室外侧的面。换言之,室外左侧通信机12l以底板51与外表面部(例如b柱42b的室外侧表面)对置的姿势安装。此外,室外左侧通信机12l也可以以上述的姿势安装在车门板内部与b柱42b重叠的部分。在底板51以与外表面部对置的姿势安装的方式中,能够包含底板51与车辆侧面部大致平行的状态(所谓的大致平行的状态)。在上述安装姿势中,还包含将底板51安装为沿着车辆外表面部的结构。
[0137]
根据以上的安装姿势,车室外通信机12β的底板垂直方向朝向与车辆的侧面部垂直的方向。底板平行方向为沿着车辆侧面部(换言之平行)的方向。即,室外左侧通信机12l以零阶谐振模式提供的指向性的中心与侧面部(具体而言为车门板)平行、并且底板激振模式提供的指向性的中心与侧面部垂直的姿势安装。通过零阶谐振模式而辐射的直线偏振波的电场振动方向(所谓的偏振波面)与车辆侧面部垂直。此外,这里的垂直并不限于严格的垂直,也可以倾斜30
°
左右。即,这里的垂直还包含大致垂直。平行、对置这样的表述也同样包含倾斜30
°
左右的状态。
[0138]
室外右侧通信机12m为用于将设置在车辆hv的右侧的前部座椅用的车门(以下,为前部右侧车门)的周边作为强电场区域的车载通信机12。这里,驾驶席配置在车辆hv的右侧,因此前部右侧车门相当于副驾驶席用的车门。
[0139]
室外右侧通信机12m在车辆hv的右侧的侧面部,配置在与室外左侧通信机12l相反侧的位置。室外右侧通信机12m相当于与室外左侧通信机12l成对的车载通信机12。室外右侧通信机12m以底板51与b柱42b的表面对置并且x轴方向沿着b柱42b的长边方向的姿势安装于在车辆右侧设置的b柱42b的外侧面。
[0140]
根据以上的安装位置和安装姿势,如图17所示,能够在与车辆侧面部平行的方向和与车辆侧面部垂直的方向这双方形成指向性。其结果为,在车辆hv的侧方(b柱附近),形成将车宽方向设为短边方向的扁平的大致椭圆体状的通信区域。此外,与车辆侧面部垂直的方向相当于与车宽方向平行并且远离车辆侧面部的方向(以下,为室外方向)。此外,将车
宽方向设为短边方向的扁平的大致椭圆体状的通信区域相当于在俯视时,将车辆的前后方向设为长轴的椭圆形状的通信区域。即,根据上述结构,能够形成将车辆前后方向设为长边方向的椭圆形状的通信区域。将车宽方向设为短边方向的扁平的大致椭圆体状的通信区域相当于在正面观察时,将车辆的高度方向设为长轴的椭圆形状的通信区域。即,根据上述结构,能够形成指向性朝向下方或上方的扁平的椭圆形状的通信区域。并且,车宽方向的增益来源于非对称部宽度w。因此,通过调整非对称部宽度w,还能够将车室外通信机12β的实质的通信范围限定在与车辆侧面部相距2m以内。根据该形成方式,金属制的b柱42b作为天线121的接地板/反射板发挥作用,因此能够提高底板垂直方向(车宽方向)的增益和天线向上的增益。
[0141]
室外后方通信机12n为用于在行李箱门附近形成强电场区域的车载通信机12。室外后方通信机12n配置在车辆后端部的车宽方向中央部。作为室外后方通信机12n的设置位置,例如能够采用行李箱用的车门把手、车牌号码附近、后保险杠的内部/下端部、后窗的上端部等。例如室外后方通信机12n以x轴沿着车宽方向并且z轴朝向车辆后方的姿势收纳在行李箱用的外侧车门把手内。
[0142]
根据该安装姿势,能够在沿着车辆背面部的方向和与车辆背面部垂直的方向双方形成指向性。其结果为,形成以室外后方通信机12n为中心并且将车宽方向设为长边方向的大致长椭圆体状的通信区域。此外,沿着车辆背面部的方向包含车宽方向、高度方向。与车辆背面部垂直的方向相当于车辆后方。对车辆后方的增益来源于非对称部宽度w,因此通过调整非对称部宽度w,也能够将室外后方通信机12n对车辆后方的实质的通信范围限定在与车辆后端部相距2m以内。
[0143]
以下,将车室外通信机12β中的室外左侧通信机12l和室外右侧通信机12m这样的、配设在左侧面部或者右侧面部的车载通信机12也记载为侧方通信机。此外,车载系统1所具备的车室外通信机12β的数量能够适当地变更。车室外通信机12β也可以为2个、4个等,也可以为5个以上。
[0144]
车室内通信机12α和车室外通信机12β都是主要用于将来自便携终端2的信号的接收强度报告给智能ecu11的结构。因此,以下将各种车室内通信机12α和车室外通信机12β也记载为强度观测机。各强度观测机向智能ecu11提供从便携终端2发送的信号的接收强度。
[0145]
(关于智能ecu11的功能)
[0146]
智能ecu11通过执行上述的位置判定程序,而提供与图18所示的各种功能模块对应的功能。即,作为功能模块,智能ecu11具备车辆信息取得部f1、通信处理部f2、认证处理部f3、位置判定部f4以及车辆控制部f5。
[0147]
车辆信息取得部f1从搭载于车辆hv的传感器、ecu(例如车身ecu16)、开关等取得表示车辆hv的状态的各种信息(以下,为车辆信息)。作为车辆信息,例如有车门的开闭状态、各车门的上锁/开锁状态、车门按钮13的按下的有无、启动按钮14的按下的有无等。车辆信息取得部f1基于上述的各种信息来确定车辆hv的当前的状态。例如在发动机关闭且全部的车门上锁的情况下,车辆信息取得部f1判定为车辆hv停车。当然,判定为车辆hv停车的条件只要适当地设计即可,能够应用多种判定条件等。
[0148]
取得表示各车门的上锁/开锁状态的信息相当于判定各车门的上锁/开锁状态、以及检测用户对车门的上锁操作/开锁操作。取得来自车门按钮13、启动按钮14的电信号相当
于检测针对这些按钮的用户操作。车辆信息取得部f1所取得的车辆信息还包含针对车辆hv的用户操作。此外,车辆信息所包含的信息的种类不限于上述的种类。未图示的档位传感器检测的档位、检测制动踏板是否被踏入的制动传感器的检测结果、停车制动器的工作状态等也包含在车辆信息中。
[0149]
通信处理部f2为与作为数据通信机的车载通信机12(这里为车室内通信机12α)协作而实施与便携终端2的数据的发送接收的结构。例如通信处理部f2生成以便携终端2为目的地的数据,并向车室内通信机12α输出。由此,将与所希望的数据对应的信号作为电波发送。通信处理部f2接收由车室内通信机12α接收到的来自便携终端2的数据。在本实施方式中,例如,智能ecu11与便携终端2的无线通信构成为加密地实施。此外,在本实施方式中,为了提高安全性,智能ecu11和便携终端2构成为对用于认证等的数据通信进行加密地实施,但不限于此。作为其他的方式,智能ecu11和便携终端2也可以构成为不加密地实施数据通信。
[0150]
通信处理部f2基于便携终端2与车室内通信机12α的通信连接建立的情况,而识别用户存在于车辆hv周边。通信处理部f2从车室内通信机12α取得进行通信连接的便携终端2的终端id。根据这样的结构,即使车辆hv是多个用户所共享的车辆,智能ecu11也能够基于与车室内通信机12α通信连接的便携终端2的终端id而确定存在于车辆hv周边的用户。
[0151]
作为通信处理部f2的智能ecu11从车室内通信机12α取得信道信息。由此,智能ecu11确定车室内通信机12α与便携终端2的通信所使用的信道。而且,通信处理部f2将从车室内通信机12α取得的信道信息和终端id作为参照信息分发给各强度观测机。根据参照信息所示的信道信息,各强度观测机如果接收bluetooth标准所具备的多个信道中的任意信道,则能够识别是否能够接收来自便携终端2的信号。强度观测机在通过参照信息所示的终端id而接收来自多个设备的信号的情况下,也能够确定应该将来自哪个设备的信号的接收强度报告给智能ecu1。
[0152]
认证处理部f3与车室内通信机12α协作,实施确认(换言之认证)通信对象为用户的便携终端2的处理。用于认证的通信经由车室内通信机12α被加密地实施。即,通过加密通信来实施认证处理。认证处理本身只要使用挑战-应答方式等多种方式来实施即可。这里,省略其详细的说明。认证处理所需要的数据(例如加密密钥)等分别保存于便携终端2和智能ecu11。认证处理部f3实施认证处理的定时例如只要为车室内通信机12α与便携终端2的通信连接建立的定时即可。认证处理部f3也可以构成为在车室内通信机12α与便携终端2进行通信连接的期间,以规定的周期实施认证处理。也可以构成为,在用户按下启动按钮14的情况下等,以针对车辆hv的规定的用户操作为触发来实施用于认证处理的加密通信。
[0153]
在bluetooth标准中车室内通信机12α与便携终端2的通信连接建立意味着车室内通信机12α的通信对象为预先登记的便携终端2。因此,智能ecu11也可以构成为,基于车室内通信机12α与便携终端2的通信连接建立的情况,而判定为便携终端2的认证成功。
[0154]
位置判定部f4为执行基于各车载通信机12与便携终端2的通信状况而推定便携终端2的位置的处理的结构。作为一例,本实施方式的位置判定部f4基于由多个车载通信机12分别提供的、来自便携终端2的信号的接收状况和接收强度而判定便携终端2存在于车室内、室外工作区域rx内以及区域外的哪个区域。这里的区域外是指车室外的、成为室外工作区域rx的外侧的区域。将区域外的、特别是与外侧车门把手相距规定的禁止距离以上的区
域称为禁止区域。从后述的防盗的观点出发,禁止距离被设定为2m。此外,便携终端2基本上由用户携带,因此判定便携终端2的位置相当于判定用户的位置。禁止距离也可以为1.6m、3m等。规定禁止区域的大小的禁止距离只要根据车辆被使用的地域等而适当地变更即可。
[0155]
作为用于判定便携终端2的位置的准备处理,位置判定部f4从作为强度观测机的多个车载通信机12依次取得来自便携终端2的信号的接收强度,并且按照每个取得源来区别所取得的接收强度并保存于ram113。而且,位置判定部f4基于保存于ram113的每个强度观测机的接收强度和登记于闪存112的各种判定用阈值来判定便携终端2是否存在于车室内。关于位置判定部f4基于每个强度观测机的接收强度来判定便携终端2的位置的方法的详细情况,另外后述说明。此外,位置判定部f4的判定结果由车辆控制部f5进行参照。
[0156]
车辆控制部f5采用如下的结构,在认证处理部f3对便携终端2的认证成功的情况下,与车身ecu16等协作地执行与便携终端2(换言之为用户)的位置和车辆hv的状态对应的车辆控制。车辆hv的状态由车辆信息取得部f1进行判定。便携终端2的位置由位置判定部f4进行判定。
[0157]
车辆控制部f5在车辆hv停车的状况下且在便携终端2存在于车室外,由用户按下车门按钮13的情况下,与车身ecu16协作而将车门的锁定机构开锁。例如在由位置判定部f4判定为便携终端2存在于车室内,并且检测出启动按钮14由用户按下的情况下,与发动机ecu15协作而启动发动机。这样车辆控制部f5构成为基本上以对车辆hv的用户操作为触发而执行与用户的位置和车辆hv的状态对应的车辆控制。但是,在车辆控制部f5能够实施的车辆控制中,也可以不需要对车辆hv的用户操作,而根据用户的位置自动地执行。
[0158]
(连接相关处理)
[0159]
接下来,使用图19所示的流程图对车载系统1实施的连接相关处理进行说明。连接相关处理是车载系统1与便携终端2的通信连接的建立的处理。图19所示的连接相关处理例如只要在作为数据通信机的车室内通信机12α接收来自便携终端2的广告分组的情况下开始即可。
[0160]
在步骤s101中建立车室内通信机12α与便携终端2的通信连接(换言之为连接)而移至步骤s102。此外,若建立车室内通信机12α与便携终端2的通信连接,则向智能ecu11提供与车室内通信机12α通信连接的便携终端2的终端id。在建立车室内通信机12α与便携终端2的通信连接的时刻,强度观测机成为休止模式的情况下,智能ecu11对强度观测机输出规定的控制信号,移至等待状态。休止模式例如是停止信号的接收功能的状态。休止模式还包含电源断开的状态。
[0161]
在步骤s102中车室内通信机12α基于来自智能ecu11的指示而定期地实施加密通信。此时交换的数据的内容只要是对于便携终端2请求响应信号的回送即可。也可以是挑战码等、用于认证便携终端2的数据。通过定期地与便携终端2实施无线通信,从而智能ecu11能够确认便携终端2存在于车室内或者车辆周边。
[0162]
在步骤s103中车室内通信机12α和智能ecu11协作,而开始参照信息的共享。具体而言,车室内通信机12α向智能ecu11依次提供进行通信连接的便携终端2的终端id和信道信息。智能ecu11将从车室内通信机12α提供的信道信息和终端id作为参照信息而依次分发给各强度观测机。
[0163]
在步骤s104中各强度观测机使用从智能ecu11提供的参照信息,开始观测来自便
携终端2的信号的接收强度。即,强度观测机将bluetooth标准所具备的多个信道中的、信道信息所示的编号的信道设定为接收对象。强度观测机根据从智能ecu11提供的信道信息而依次变更成为接收对象的信道。
[0164]
根据这样的结构,在便携终端2与车室内通信机12α实施跳频方式的无线通信的情况下,也取得来自便携终端2的信号的接收强度,并依次报告给智能ecu11。即,在确保车载系统1与便携终端2的通信的隐匿性(换言之安全性)的状态下,车载系统1所具备的各种车载通信机12能够检测来自便携终端2的信号的接收强度。
[0165]
在步骤s105中,强度观测机判定是否接收到包含参照信息所示的终端id的信号。在接收包含参照信息所示的终端id的信号的情况下,移至步骤s106。在步骤s106中向智能ecu11报告该接收信号的接收强度。即,在步骤s105~s106中各种强度观测机向智能ecu11报告由信道信息所示的信道接收到的信号中的、包含参照信息所示的终端id的信号的接收强度。此外,在步骤s105中在一定时间内未接收来自便携终端2的信号的情况下,只要执行步骤s108即可。
[0166]
在步骤s107中智能ecu11执行按照作为提供源的每个强度观测机来区别从各强度观测机提供的接收强度并保存于ram113的处理,移至步骤s108。在步骤s108中智能ecu11和车室内通信机12α协作,而判定与便携终端2的通信连接是否结束。与便携终端2的通信连接结束的情况是指例如车室内通信机12α无法接收来自便携终端2的信号的情况。在与便携终端2的通信连接结束的情况下,步骤s108进行肯定判定而执行步骤s109。另一方面,在仍维持与便携终端2的通信连接的情况下,返回步骤s105。
[0167]
在步骤s109中智能ecu11对强度观测机输出规定的控制信号,结束观测来自便携终端2的信号的接收强度的处理。例如智能ecu11使例如强度观测机移至休止模式。若步骤s109中的处理结束则结束本流程。
[0168]
(位置判定处理)
[0169]
接下来,使用图20所示的流程图对智能ecu11实施的位置判定处理进行说明。位置判定处理为用于判定便携终端2的位置的处理。在建立车室内通信机12α与便携终端2的通信连接的状态下,例如以规定的位置判定周期实施该位置判定处理。位置判定周期例如为200毫秒。位置判定周期也可以为100毫秒或300毫秒。
[0170]
在步骤s201中认证处理部f3与车室内通信机12α协作而执行认证便携终端2的处理,并移至步骤s202。步骤s201能够省略。在实施便携终端2的认证的定时能够适当地变更。在步骤s202中位置判定部f4基于保存于ram113的每个强度观测机的接收强度而计算关于各强度观测机的个别强度代表值。关于一个强度观测机的个别强度代表值是指代表地表示该强度观测机中的最近规定时间以内的接收强度的值。这里,作为一例,个别强度代表值为最近n个接收强度的平均值。这样的个别强度代表值相当于接收强度的移动平均值。
[0171]
在本实施方式中,n只要为2以上的自然数即可,在本实施方式中为5。在该情况下,位置判定部f4使用在最近5个时刻取得(换言之为采样)的便携终端2的接收强度来计算移动平均值。当然,n也可以为10或20等。此外,作为其他的方式,n也可以为1。n=1的结构相当于将最新的接收强度直接作为个别强度代表值而采用的结构。
[0172]
在步骤s202中,位置判定部f4计算将从车室内通信机12α提供的最近5个接收强度作为母集团的平均值,来作为车室内通信机12α中的个别强度代表值。此外,假设在具备多
个车室内通信机12α的情况下,关于各车室内通信机12α,分别计算将从该车室内通信机12α提供的最近5个接收强度作为母集团的平均值。
[0173]
位置判定部f4计算将从室外左侧通信机12l提供的最近5个接收强度作为母集团的平均值,来作为室外左侧通信机12l中的个别强度代表值。室外右侧通信机12m和室外后方通信机12n等其他的车室外通信机12β也同样,计算从该车室外通信机12β提供的最近5个接收强度的平均值。
[0174]
关于保存于ram113的接收强度的数量小于n个的强度观测机的个别强度代表值,作为数据欠缺部分的接收强度,只要代用相当于车载通信机12能够检测的接收强度的下限值的值而计算即可。车载通信机12能够检测的接收强度的下限值只要由车载通信机12的结构决定即可,例如为-60dbm等。
[0175]
例如,在因便携终端2的位置而只有车载系统1所具备的多个强度观测机的一部分能够接收来自便携终端2的信号的情况下,也能够实施后续的处理。例如,在由于便携终端2存在于车辆hv的车室外右侧而室外右侧通信机12m无法接收来自便携终端2的信号的情况下,也能够计算关于各个强度观测机的个别强度代表值。
[0176]
在本实施方式中,作为个别强度代表值使用最近n个接收强度的平均值,但不限于此。个别强度代表值也可以是最近n个接收强度的中央值或最大值。个别强度代表值也可以是从最近n个接收强度中除去最大值和最小值后的接收强度的平均值。个别强度代表值也可以是除去了瞬间的接收强度的变动成分的值。若步骤s202中的处理结束则移至步骤s203。
[0177]
在步骤s203中位置判定部f4基于关于一个或者多个车室内通信机12α的个别强度代表值,而决定室内机强度代表值pa。这里,作为一例,车室内通信机12α仅为一个,因此将关于该一个车室内通信机12α的个别强度代表值直接作为室内机强度代表值pa而采用。作为其他的方式,在具备多个车室内通信机12α的情况下,只要采用各车室内通信机12α中的个别强度代表值的最大值、平均值或者中央值来作为室内机强度代表值pa即可。
[0178]
在步骤s204中位置判定部f4基于关于各车室外通信机12β的个别强度代表值,而决定室外机强度代表值pb。本实施方式的位置判定部f4采用关于各车室外通信机12β的个别强度代表值的最大值来作为室外机强度代表值pb。若步骤s204中的处理结束则移至步骤s205。此外,室外机强度代表值pb也可以是各车室外通信机12β中的个别强度代表值的平均值或者中央值。
[0179]
在步骤s205中,位置判定部f4判定室外机强度代表值pb是否为工作阈值prx以上。如上所述,工作阈值prx为用于判定为便携终端2存在于室外工作区域rx的阈值。工作阈值prx只要将在室外工作区域rx内存在便携终端2的情况下能够观测的室外机强度代表值pb的最小值设计为基准即可。只要基于测定在室外工作区域rx内的各地点配置便携终端2时的室外机强度代表值pb的试验的结果,而决定在室外工作区域rx内存在便携终端2的情况下能够观测的室外机强度代表值pb的最小值即可。
[0180]
工作阈值prx优选设定为在车室内存在便携终端2的情况下能够观测的室外机强度代表值pb的最大值以上。根据基于这样的技术思想来设定工作阈值prx的结构,室外机强度代表值pb为工作阈值prx以上意味着便携终端2不存在于车室内而存在于车室外(特别是室外工作区域rx)。此外,工作阈值prx也可以设定为在与外侧车门把手相距2m的地点存在
便携终端2的情况下能够观测的室外机强度代表值pb的最大值加上规定的裕度而得的值。
[0181]
在步骤s205的判定处理中,在室外机强度代表值pb为工作阈值prx以上的情况下,在步骤s205中进行肯定判定而移至步骤s206。另一方面,在室外机强度代表值pb小于工作阈值prx的情况下在步骤s206中进行否定判定而执行步骤s207。在步骤s206中位置判定部f4判定为便携终端2存在于室外工作区域rx内而结束本流程。
[0182]
在步骤s207中,位置判定部f4判定室内机强度代表值pa是否为车室内相当值pin以上。如上所述,车室内相当值pin为用于判定为便携终端2存在于车室内的阈值。车室内相当值pin通过适当试验等来设计。关于车室内相当值pin,例如将在空车状态的车室内仅存在便携终端2的情况下能够观测的室内机强度代表值的最小值设计为基准。此外,这里的空车状态是指不存在由用户带入的货物、或乘员的状态。即,是指不存在预先安装于车室内的结构以外的物体的状态。关于车室内相当值pin,也可以将在具有平均体格的人物坐在驾驶席的状态下能够观测的室内机强度代表值的最小值设计为基准。根据通过这样的技术思想来设定车室内相当值pin的结构,室内机强度代表值pa为车室内相当值pin以上意味着便携终端2存在于车室内。
[0183]
在步骤s207的判定处理中,在室内机强度代表值pa为车室内相当值pin以上的情况下在步骤s207中进行肯定判定而移至步骤s208。另一方面,在室内机强度代表值pa小于车室内相当值pin的情况下在步骤s207中进行否定判定而执行步骤s209。在步骤s208中,位置判定部f4判定为便携终端2存在于车室内而结束本流程。在步骤s209中,位置判定部f4判定为便携终端2存在于区域外而结束本流程。
[0184]
步骤s206、s208、s209中的判定结果作为便携终端2的位置信息保存于ram113,由车辆控制部f5等进行参照。
[0185]
(车辆用电子钥匙系统的要件)
[0186]
作为用于说明实施方式的效果的序言,对作为车辆用电子钥匙系统所要求的要件进行说明。在车辆用电子钥匙系统中,从防盗的观点出发,如图21所示,在与车辆的外表面部(例如外侧车门把手)相距2m以上的情况下,有时要求禁止基于无线通信的自动的车门的开锁。该要件基于英国保险协会(association of british insurers)设立的团体即the motor insurance repair research centre(汽车保险维修研究中心)的规定。车载系统1有时优选构成为能够高精度地判别便携终端2是否存在于与车辆hv相距2m以内。根据该要件来设定上述的禁止区域。
[0187]
上述的与车辆的外表面部相距2m以内这样的范围为一个指标。从提高安全性的观点出发,车辆制造商设定的室外工作区域rx多数情况下限定在更窄的范围。例如室外工作区域rx多数情况下与车辆hv相距0.7m以内。即,作为车辆用电子钥匙系统,以至少能够高精度地判别便携终端2是否存在于与车辆hv相距2m以内为前提,进一步要求高精度地判别便携终端2是否存在于室外工作区域rx内。
[0188]
在车辆用电子钥匙系统中,车室外通信机12β有时优选构成为,在便携终端2存在于室外工作区域rx内的情况下和存在于禁止区域的情况下,来自便携终端2的信号的接收强度产生显著差。室外工作区域或禁止区域的概略的基准面为车辆侧面部。在评价位置判定精度方面的室外工作区域或禁止区域的基准面(换言之,视为侧面部的平面)例如只要是穿过外侧车门把手且与车宽方向正交的平面即可。室外工作区域rx和禁止区域的间的区域
相当于缓冲区域(换言之为灰色区段)。
[0189]
针对上述的要件,根据本实施方式的结构(特别是车室外通信机12β的构造和安装姿势),主光束不朝向室外方向。子光束朝向室外方向。根据上述的结构,室外左侧通信机12l和室外右侧通信机12m这样的侧方通信机提供将车辆前后方向设为长边方向的椭圆体状的辐射特性。这里的主光束是指车室外通信机12β的天线121在零阶谐振模式下辐射的电波(换言之主偏振波)。子光束是指在底板激振模式下辐射的电波(换言之副偏振波、交叉偏振波)。
[0190]
根据这样的辐射特性,如图22所示,能够将与b柱42b相距0.7m以内的三维空间无遗漏地作为强电场区域,并且能够抑制禁止区域成为强电场区域。即,能够根据便携终端2是存在于室外工作区域rx还是存在于禁止区域而使接收强度产生显著差。也可以从前部座椅用的车门附近到后部座椅用的车门附近,以沿着车辆前后方向的方式形成强电场区域(省略图示)。
[0191]
图22是对从左侧面部的室外左侧通信机12l无线发送的信号的电场强度分布进行模拟的结果。发送信号的电场强度与接收强度严格来说是不同的物理量,但根据收发的可逆性,它们处于比例关系,能够作为代替特性而采用。图22所示的电场强度表示2402mhz、2442mhz、2480mhz这3个沟道的电场强度的最大值。发送输出为30dbm。
[0192]
在图22中虚线所表示的等高线表示与室外工作区域rx内的电场强度的最小值相等的地点。上述的工作阈值prx被设定为该等高线的电场强度。根据这样的设定,能够降低尽管便携终端2存在于禁止区域,但错误判定为在室外工作区域rx内存在便携终端2的可能性。此外,在与路面相距0.1m以内的路面附近区域、与路面相距的高度为2m以上的区域中,存在便携终端2的可能性较低,因此能够从室外工作区域rx中排除。
[0193]
作为比较例(换言之为参考例),在图23中表示取代底板延伸型零阶谐振天线,而将偶极天线以以下的3个图案的姿势安装于b柱的情况下的电场强度分布的模拟结果。图23的(a)表示将偶极天线121x以与b柱垂直的姿势(=大致沿着车宽方向的姿势)安装的情况下的电场强度分布。图23的(b)表示将偶极天线121x以沿着车辆前后方向的姿势安装的情况下的电场强度分布。图23的(c)表示将偶极天线121x以沿着b柱的长边方向的姿势(=大致沿着车辆高度方向的姿势)安装的情况下的电场强度分布。
[0194]
偶极天线具有相对于辐射元件的轴而旋转对称的环状的辐射指向性(根据其他的观点为8字特性)。因此,如图23的(c)所示,在以沿着车辆高度方向的姿势安装偶极天线的情况下,室外工作区域rx的下半部分的电场强度成为低电平。其结果为,在室外工作区域rx内的电场强度的最小值与禁止区域中的电场强度之间产生显著差。如图23的(b)所示,在偶极天线以沿着车辆前后方向的姿势安装的情况下,室外工作区域rx的下半部分的电场强度成为低电平。其结果为,在室外工作区域rx内的电场强度的最小值与禁止区域中的电场强度之间没有产生显著差,无法设定适当的工作阈值prx。
[0195]
室外工作区域rx的下半部分对应于用户的躯干~腿部所在的区域。因此,在用户将便携终端2收纳于裤子的口袋、手提包的场景中,即使在室外工作区域rx内存在便携终端2的情况下,来自便携终端2的信号强度也相对地成为低电平。其结果为,错误判定为便携终端2不存在于室外工作区域rx。
[0196]
作为在以沿着车辆前后方向的姿势安装偶极天线的情况下,室外工作区域rx的下
方的电场强度恶化的理由,考虑如下的理由。在以沿着车辆前后方向的姿势安装偶极天线的情况下,辐射电波的电场振动方向与车辆侧面部平行。在电场振动方向与侧面部平行的情况下,由于电波在提供侧面部的金属板(例如内/外车门板)上的反射,该电波向室外方向射出。其结果为,室外工作区域rx的下半部分的电场强度成为低电平。
[0197]
与此相对,本实施方式的车室外通信机12β在零阶谐振模式下辐射的电波(换言之为主偏振波)成为电场振动方向与侧面部垂直的直线偏振波。因此,该直线偏振波不会因提供侧面部的金属面板的反射而从金属射出。于是,车室外通信机12β辐射的主偏振波以沿着金属面板的方式传播。因此,在室外工作区域的下方、上方都能够形成强电场区域。
[0198]
如图23的(a)所示,在以与b柱垂直的姿势安装偶极天线的情况下,与以其他的姿势安装的情况相比,室外工作区域rx的大致整体成为强电场区域。但是,偶极天线无法沿辐射元件的轴向(这里为室外方向)辐射电波。因此,如图23的(a)所示,从天线安装位置向室外方向离开0.5m的区域开始,电场强度急剧地恶化。其结果为,在室外工作区域rx内产生弱电场区域。因此,在以与b柱垂直的姿势安装偶极天线的情况下,柱型的辐射元件从侧面部向车室外侧突出,在现实中无法搭载。此外,这里的弱电场区域是指在电场强度中与禁止区域不产生显著差的区域。具体而言,是指电场强度相对于在禁止区域中观测的电场强度的最大值为同等以下的区域。
[0199]
在本实施方式的车室外通信机12β中,主光束向与车辆侧面部平行的方向辐射,另一方面,底板激振模式提供的子光束向与侧面部垂直的方向(即室外方向)辐射。根据这样的结构,无法由主光束覆盖的区域也被底板激振模式所提供的子光束补全,结果为,室外工作区域整体成为强电场区域。本实施方式的车室外通信机12β所具备的天线121构成为厚度为几毫米左右的板状。因此,能够降低天线121从侧面部突出的可能性。
[0200]
根据本实施方式的结构,与比较结构相比,能够使室外工作区域rx无遗漏地成为强电场区域。由于作为整体,具有将沿着底板51的方向设为长边方向的长椭圆形状的辐射特性,因此根据以与侧面部平行的姿势安装底板51的结构,能够形成将车辆前后方向设为长边方向的通信区域/强电场区域。其结果为,在便携终端2存在于室外工作区域rx内的情况下和存在于禁止区域的情况下,车室外通信机12β对来自便携终端2的信号的接收强度产生显著差。因此,智能ecu11能够使用车室外通信机12β对来自便携终端2的信号的接收强度而高精度地判定便携终端2的位置。
[0201]
根据本实施方式的结构,与偶极天线、单极天线等柱型天线相比,能够抑制天线121的高度(换言之为厚度)。具体而言,单极天线需要λ/4左右的高度,与此相对,本实施方式的天线121能够以λ/100~λ/40左右的高度(换言之为厚度)实现。与之相伴,能够将车室外通信机12β薄型化,因此具有容易搭载于车辆的侧面部的优点。
[0202]
以上,对本发明的车辆用通信装置的实施方式的一例进行了说明,但本发明不限于上述实施方式,以下描述的各种变形例也包含在本发明的技术范围中。并且,除了下述以外,在不脱离主旨的范围内能够各种变更地实施。例如,下述的各种变形例能够在不产生技术矛盾的范围中适当地组合实施。对于具有与上述的实施方式中描述的部件相同的功能的部件,标注相同的附图标记,省略其说明。在仅提及结构的一部分的情况下,对于其他的部分,能够应用之前说明的实施方式的结构。
[0203]
(变形例1)
[0204]
变形例1是天线构造的变形例。在上述的实施方式中,作为车室外通信机12β的天线121(即车室外天线121β)的构造,公开了对置导体板53配置于从底板51的中心偏移的位置的结构,但天线121的结构不限于此。如图24和图25所示,车室外通信机12β的天线121也可以具有如下的结构,对置导体板53配置于与底板51同心的位置,并且短路部54配置于从对置导体板53的中心偏移规定量的位置。图24所示的lx2、ly2表示对置导体板53的对称轴。图25所示的lx1、ly1表示底板51的对称轴。在图24等中,仅图示电路基板5中的、车室外天线121β的构造的部分。在图24等中,省略电路部55等的图示。
[0205]
以下,将对置导体板53配置于与底板51同心的位置、并且短路部54配置于从对置导体板53的中心偏移规定量的位置的天线称为短路部偏移型零阶谐振天线。此外,对置导体板53配置于与底板51同心的位置的结构相当于在从对置导体板53观察时底板51具有对称性的结构。
[0206]
短路部偏移型零阶谐振天线所具备的底板51和对置导体板53分别形成为2方向线对称。在短路部偏移型零阶谐振天线中,短路部54只要从对置导体板53的中心向沿着对称轴的方向错开地配置即可。根据该结构,像以下的说明那样,对置导体板53上的电流分布的对称性破坏,从对置导体板53辐射与y轴方向平行的直线偏振波。
[0207]
首先,在短路部54配置于对置导体板53的中心的结构中,如图26所示,流过对置导体板53的电流以短路部54为中心对称。因此,在对置导体板53中从短路部54与对置导体板53的连接点(以下,为短路部位)观察时沿某个方向流动的电流所产生的电波被沿相反方向流动的电流所产生的电波抵消。
[0208]
与此相对,在短路部54配置在从对置导体板53的中心向例如y轴方向偏移规定量的位置的结构中,如图27的(a)所示,流过对置导体板53的电流分布的对称性破坏。因此,如该图(b)所示,y轴方向的电流成分辐射的电波未被相抵而残留。即,在短路部54配置在从对置导体板53的中心向y轴方向偏移规定量的位置的结构中,从对置导体板53朝向上方辐射电场振动方向与y轴平行的直线偏振波(以下,为y轴平行偏振波)。此外,x轴方向的电流成分维持对称性,因此在x轴方向上电场振动的直线偏振波相抵。如图24和图25所示,在使短路部54在y轴方向上偏移的零阶谐振天线中,不会从对置导体板53辐射x轴平行偏振波/辐射量成为能够忽略的电平。此外,短路部54相对于对置导体板53的中心错开的方向(以下,为短路部偏移)也可以为x轴方向。在该情况下,从对置导体板53朝向上方辐射x轴平行偏振波。
[0209]
短路部54相对于对置导体板53的中心错开的量(以下,为短路部偏移量δsb)只要基于模拟而适当地设计即可。短路部54只要形成在对置导体板53的中央区域内即可。短路部偏移量δsb有时优选设定为0.04λ以下,以维持向底板平行方向的全指向性(换言之为无指向性)。短路部偏移量δsb有时优选设定为例如0.004λ(=0.5mm)、0.008λ(=1.0mm)、0.012λ(=1.5mm)等、0.02λ(=2.5mm)以下的值。通过变更短路部偏移量δsb,能够调整向底板垂直方向的y轴平行偏振波的辐射增益。即使变更短路部偏移量δsb,工作频率也不变化。此外,在使供电点531的位置恒定的情况下,根据短路部偏移量δsb,电压驻波比(vswr:voltage standing wave ratio)变动。但是,供电点531能够为任意的位置,因此,通过在与短路部偏移量δsb对应的位置设置供电点531,能够将对象频率下的vswr抑制为实用电平(例如3以下)。即,通过根据短路部54的位置来调整供电点531的位置,能够将回损抑制在所
希望的允许电平。
[0210]
根据上述的结构,通过在对置导体板53与底板51之间形成的静电电容与短路部54所提供的电感的并联谐振,向底板平行方向辐射作为主偏振波的底板垂直偏振波,另一方面,向底板垂直方向辐射作为副偏振波的底板平行偏振波。即,在车室外天线121β构成为上述短路部偏移型零阶谐振天线的情况下,通过以与上述的实施方式相同的安装姿势安装于侧面部,而起到与上述的实施方式相同的效果。关于底板平行偏振波向底板垂直方向的辐射,只要使用将短路部54从对置导体板53的中心向沿着对称轴的方向错开地配置的结构和在底板51附加了非对称部511的结构的至少任意一方来实现即可。
[0211]
(变形例2)
[0212]
变形例2是天线构造的变形例。车室外天线121β也可以构成为将在实施方式中公开的底板延伸型零阶谐振天线和在变形例1中公开的短路部偏移型零阶谐振天线组合而成的(换言之为复合型的)零阶谐振天线。如图28所示,该结构相当于在实施方式中公开的将底板51相对于对置导体板53非对称地配置的结构中,进一步将短路部54从对置导体板53的中心向y轴方向错开规定量而配置的结构。
[0213]
短路部54相对于对置导体板53的中心错开的方向(以下,短路部偏移)只要为与导体板偏移方向正交的方向即可。根据该结构,作为向底板垂直方向辐射的直线偏振波,能够辐射电场振动方向相互正交的两种直线偏振波。
[0214]
根据上述的结构,能够分别同时辐射向底板平行方向的底板垂直偏振波、向底板垂直方向的x轴平行偏振波以及向底板垂直方向的y轴平行偏振波。此外,x轴平行偏振波向底板垂直方向的辐射由底板51的非对称部511提供。向底板垂直方向的y轴平行偏振波的辐射由短路部54向y轴方向的偏移配置提供。
[0215]
(变形例3)
[0216]
变形例3是天线构造的变形例。车室外天线121β也可以是日本特开2016-15688号公报所公开的结构。即,也可以如图29所示,为如下的结构,通过将对置导体板53的x轴方向的长度设定为λ/2,并且将供电点531设置在与x轴平行的对称轴上,从而作为贴片天线工作(以下,为半波长型零阶谐振天线)。供电点531也作为零阶谐振模式的供电点发挥功能。此外,也可以在对置导体板53上,与贴片天线用的供电点531独立地设置有零阶谐振模式用的供电点。即,也可以在对置导体板形成两个供电点。也可以在本变形例的对置导体板53上,作为缩退分离元件,在1组的对角形成切口部。根据该结构,能够辐射圆偏振波,能够缓和便携终端2的姿势的影响。在上述的例子中x轴相当于第一对称轴。此外,在对置导体板53中将电气长度设定为λ/2的方向也可以是y轴方向。即,第一对称轴也可以是y轴。
[0217]
(变形例4)
[0218]
变形例4是天线构造的变形例。也可以如图30所示,车室外天线121β是将λ/4单极折弯成直角而成的倒l天线。在车室外天线121β构成为倒l天线的情况下也是,通过在辐射元件56中与底板51垂直的部分(以下,为直立部)561中流动的电流而向底板平行方向辐射底板垂直偏振波。通过在与底板51平行的部分(以下,为平行部)562流动的电流而向底板垂直方向辐射底板平行偏振波。
[0219]
在车室外天线121β为倒l天线的情况下,底板垂直方向与底板平行方向的增益比来源于l字型的元件的纵横比(即直立部561与平行部562之比)。使直立部561变长更容易在
底板平行方向形成主光束。因此,直立部561有时优选形成得比平行部562长。直立部561比平行部562长的倒l天线相当于形成为直立部561与平行部562相比电波的辐射量较大的倒l天线的一例。但是,由于直立部561比平行部562更接近供电点,因此直立部561流过比平行部562更强的电流。由于平行部562与底板51平行,因此,通过底板51所引起的逆电流,而降低来自平行部562的辐射量。因此,直立部561也可以形成为与平行部562同等或者比其短。但是,为了在底板平行方向形成主光束,直立部561的长度需要设定得比规定值(例如λ/16)大。当然,只要加长直立部561,则车室外天线121β的高度变高。反过来说,从在车辆上的搭载性的观点出发,若将高度设计得低则底板平行方向(进而沿着车辆侧面部的方向)的增益降低。
[0220]
在车室外天线121β由倒l天线实现的情况下,维持向车辆侧面部的搭载性并且在底板平行方向得到所希望的增益在现实中存在困难。针对这样的课题,根据实施方式和变形例1~3中公开的以零阶谐振天线为基础的天线构造,能够薄型并且在底板平行方向形成主光束。
[0221]
(变形例5)
[0222]
变形例5是天线构造的变形例。也可以如图31所示,车室外天线121β使用在柱型的辐射元件56的上端设置电容冠(电容帽)57而得的顶压型天线来实现。但是,在顶压型天线中也是,通过将辐射元件56与电容冠57的连接点从电容冠57的中心571错开,从而流过电容冠57的电流的对称性破坏,能够向底板垂直方向辐射底板平行偏振波。此外,车室外天线121β也可以是倒f天线等。
[0223]
(变形例6)
[0224]
变形例6是车室外通信机的结构的变形例。也可以如图32所示,车室外通信机12β在树脂制的外壳6的内侧底面部配置有比底板51大的金属板即母底板58。也可以如图32的(b)所示,母底板58配置在车室外通信机12β的外壳6的外侧底面部。外壳6与母底板58也可以一体地形成。外壳6的底部也可以由金属实现。在该情况下,金属制的外壳底部61相当于母底板58。此外,作为母底板58,也可以引用车体金属部。只要密封材料7在假定使用温度内维持固体,则能够省略外壳顶棚部63和外壳底部61中的任意一方。即,外壳6也可以形成为上表面或者底面形成为开口部的扁平的箱型。此外,外壳6的开口面只要与b柱42b、内车门板等安装对象的部件抵接即可。
[0225]
车载通信机12一体地具备天线121和发送接收电路122等电子部件(所谓的电路一体型天线),但不限于此。发送接收电路122、通信微型计算机123也可以收纳于与天线121不同的壳体。车室内通信机12α与车室外通信机12β也可以是相同的结构,也可以采用不同的结构。在车室外通信机12β中,关于室外后方通信机12n,也可以采用与室外左侧通信机12l等侧方通信机不同的结构。
[0226]
也可以省略外壳顶棚部63。在外壳6中也可以省略外壳底部61。在外壳6中省略外壳顶棚部63或者外壳底部61中的任意一方的情况下,密封材料7优选使用在假定为使用车室外通信机12β的环境的温度的范围(以下,使用温度范围)中维持固态的树脂来实现。使用温度范围例如能够为-30℃~100℃。
[0227]
(变形例7)
[0228]
变形例7是关于车室外通信机的安装位置的变形例。作为侧方通信机的车室外通
信机12β的安装位置和安装姿势不限于上述的例子。车室外通信机12β能够安装于a柱42a、c柱42c、车门板的上端部、外侧车门把手44的内部/附近等车辆外表面部的任意的位置。例如,车室外通信机12β也可以以x轴方向沿着把手的长边方向并且y轴沿着车辆高度方向的姿势收纳在外侧车门把手44的内部。此外,作为侧方通信机的车室外通信机12β也可以在车门模块45中,以底板51沿着车辆侧面的姿势安装在作为侧窗的窗框发挥作用的部分(以下,为窗框部)。但是,车室外通信机12β有时优选以车辆所具备的平坦的金属制车身部分(以下,为车体金属部)与底板51对置的姿势安装。根据在车体金属部的外侧面安装车室外通信机12β的方式,车体金属部作为底板51的母底板58发挥作用,车室外通信机12β的工作稳定。例如在将室外左侧通信机12l搭载于将内车门板与外车门板组合而成的车门模块45内的情况下,有时优选为外车门板为树脂制,内车门板为金属制。这是因为,金属制的内车门板作为车室外通信机12β的母底板58发挥功能。此外,在内车门板为树脂制的情况下,只要室外左侧通信机12l在车门模块45内,搭载于与b柱42b等金属框架重叠的部分即可。室外右侧通信机12m也同样。关于室外后方通信机12n,安装位置也能够适当地变更。另外,有时优选室外后方通信机12n也与平坦的车体金属部接近/抵接。
[0229]
(变形例8)
[0230]
变形例8是位置的判定算法的变形例。在上述的实施方式中,公开了在室内机强度代表值pa为车室内相当值pin以上的情况下,位置判定部f4判定为便携终端2存在于车室内的方式,但便携终端2是否存在于车室内的判定算法不限于此。作为判定便携终端2是否存在于车室内的算法,能够采用多种算法。例如位置判定部f4也可以构成为,基于室内机强度代表值pa为室外机强度代表值pb以上的情况,而判定为便携终端2存在于车室内。
[0231]
位置判定部f4也可以构成为,基于室内机强度代表值pa为车室内相当值pin以上并且室外机强度代表值pb小于规定的车室外相当值pout的情况,而判定为便携终端2存在于车室内。这里导入的车室外相当值pout为用于判定为便携终端2存在于车室外的阈值,为与工作阈值prx不同的参数。车室外相当值pout只要设定为对在车室内存在便携终端2的情况下能够观测的室外机强度代表值的最大值赋予规定的裕度(例如3dbm)的值即可。在车室内存在便携终端2的情况下能够观测的室外机强度代表值的最大值只要基于模拟/试验的结果而确定即可。车室外相当值pout被设定为在车室内存在便携终端2的情况下能够观测的室外机强度代表值的最大值以上,因此室外机强度代表值pb为车室外相当值pout以上意味着便携终端2存在于车室外。
[0232]
在以上的判定算法中,在室内机强度代表值pa为车室内相当值pin以上且室外机强度代表值pb小于车室外相当值pout的情况下,判定为便携终端2存在于车室内。在室内机强度代表值pa为车室内相当值pin以上且室外机强度代表值pb为车室外相当值pout以上的情况下、或在室内机强度代表值pa小于车室内相当值pin的情况下,判定为便携终端2存在于车室外。车室外相当值pout也可以设定为在车室内通信机12α在车室外形成的泄漏区域内存在便携终端2的情况下能够观测的室外机强度代表值的最小值。泄漏区域为在车室外,室内机强度代表值pa为车室内相当值pin以上的区域。成为泄漏区域的区域主要为窗部43附近。这里的窗部43附近是指与窗框相距几cm~几十cm以内的范围。
[0233]
位置判定部f4也可以构成为,使用室内机强度代表值pa、高电平阈值和低电平阈值来判定便携终端2是否存在于车室内。高电平阈值为用于判定为便携终端2存在于车室内
的阈值。高电平阈值被设定为比低电平阈值相对高的值。例如高电平阈值只要将通过试验等确定的、在便携终端2存在于车室内(特别是驾驶席周边)的情况下的室内机强度代表值pa设计为基准即可。高电平阈值只要基于上述的试验结果,而设定为比在便携终端2存在于禁止区域的情况下观测的室内机强度代表值pa充分大的值即可。低电平阈值为用于判定为便携终端2存在于车室外的阈值。低电平阈值优选设定为与高电平阈值相比低10dbm以上的值。在上述结构中,位置判定部f4在室内机强度代表值pa暂时成为高电平阈值以上的情况下,判定为便携终端2存在于车室内直到室内机强度代表值pa小于低电平阈值为止。也可以构成为,在室内机强度代表值pa暂时小于低电平阈值的情况下,判定为便携终端2存在于车室外直到室内机强度代表值pa为高电平阈值以上为止。关于便携终端2是否存在于室外工作区域rx,也与便携终端2是否存在于车室内的判定同样,能够应用多种判定算法。
[0234]
(变形例9)
[0235]
变形例9是关于便携终端2与车载通信机12的距离的指标的变形例。在上述的实施方式中,公开了如下的方式,作为从各车载通信机12到便携终端2为止的距离的指标,使用来自便携终端2的信号的接收强度,而判定便携终端2的所在,但不限于此。作为从各车载通信机12到便携终端2为止的距离的指标,也可以使用从车载通信机12到便携终端2为止的无线信号的单程/往返量的传播时间。即,位置判定部f4也可以构成为,使用从车载通信机12到便携终端2为止的无线信号的单程/往返量的传播时间来判定便携终端2的位置。无线信号的传播时间能够通过接收来自便携终端2的信号来测量。即,另外,使用从车载通信机12到便携终端2为止的无线信号的单程/往返量的传播时间来判定便携终端2的位置的结构也相当于基于来自便携终端2的信号的接收状况来判定便携终端2的位置的结构。
[0236]
(变形例10)
[0237]
变形例10是关于与便携终端2的通信方式的变形例。在上述的实施方式中,公开了便携终端2与车载通信机12以bluetooth标准双方向地实施无线通信的方式,但便携终端2与车载通信机12的通信方式不限于此。便携终端2与车载系统1也可以构成为使用在超宽带域(uwb:ultra wide band)通信中使用的脉冲信号来实施无线通信。换言之,车载通信机12也可以是进行uwb通信的通信模块。在uwb通信中使用的脉冲信号是指脉冲宽度为极短时间(例如2ns)并且具有500mhz以上的带域宽度(即超宽带域宽度)的信号。作为能够用于uwb通信的频带(以下,为uwb带),有3.1ghz~16ghz、3.4ghz~4.8ghz、7.25ghz~16ghz、22ghz~29ghz等。
[0238]
只要适当地选定用于便携终端2与车载系统1实施无线通信的标准、无线通信所使用的电波(以下,为系统使用电波)的频率即可。
[0239]
(变形例11)
[0240]
变形例11是关于车辆车身的材料的变形例。在上述的实施方式中,公开了将本发明的位置判定系统应用于具备金属制的车身的车辆hv的方式,但作为位置判定系统的应用对象而优选的车辆不限于具备金属制的车身的车辆。例如构成车辆hv的车身的各种车身板也可以使用填充了足够使电波的传播衰减5db以上的量的碳的碳系树脂而形成。另外,具备这样的车身的车辆也适合作为位置判定系统的应用对象。当然,车辆hv的车身也可以使用不包含碳的通用树脂而形成。车室外通信机12β优选在背面侧存在阻断电波的结构,并且在其侧方和上方安装在不阻断电波的位置。
[0241]
本发明所记载的控制部及其方法也可以通过专用计算机实现,该专用计算机构成被编程为执行由计算机程序具体化的一个至多个功能的处理器。本发明所记载的装置及其方法也可以由专用硬件逻辑电路实现。并且,本发明所记载的装置及其方法也可以由一个以上的专用计算机实现,该一个以上的专用计算机由执行计算机程序的处理器与一个以上的硬件逻辑电路的组合构成。计算机程序也可以作为由计算机执行的指令,而存储于计算机能够读取的非迁移有形记录介质。
[0242]
此外,这里的控制部例如是智能ecu11。智能ecu11所提供的单元和/或功能能够通过记录于实体的存储器装置的软件以及执行该软件计算机、仅软件、仅硬件、或者它们的组合来提供。智能ecu11所具备的功能的一部分或者全部也可以作为硬件实现。在将某个功能作为硬件实现的方式中包含使用一个或者多个ic等来实现的方式。在上述的实施方式中,智能ecu11使用cpu来实现,但智能ecu11的结构不限于此。智能ecu11也可以取代cpu111,使用mpu(micro processor unit:微处理器单元)、gpu(graphics processing unit:图形处理单元)、数据流处理器(dfp:data flow processor)来实现。智能ecu11也可以将cpu111、mpu、gpu、dfp等多种处理器组合实现。并且,智能ecu11应该提供的功能的一部分也可以使用fpga(field-programmable gate array:现场可编程门阵列)、asic(application specific integrated circuit:专用集成电路)等来实现。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献