一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

用于合成气生产的炉和方法与流程

2022-02-20 00:05:23 来源:中国专利 TAG:
用于合成气生产的炉和方法与流程

本发明涉及用于气田、精炼厂重整、气化制氢、和石化工业的炉。

背景技术

已知化石燃料源(原油、天然气、页岩油气、煤)和非化石燃料源(生物质、生物气、地热)的任何使用会导致共同产生不同比例的CO2和H2S。

以各自的量包含此类物质的气体定义为酸性气体或尾气,并且由于其在全球变暖和气候变化(其负主要责任)方面的巨大影响而是相关科学讨论的题目。

至今酸性气体没有被再利用,如果不是非常小量的话,将其释放到大气中的仅有的替代方案是将其捕获并贮存在深水中或偏远的地下位置。对于其可能的实施和效率讨论了在任何情况下的此类极端措施。

在申请人的WO2015015457A1中公开了使用前述酸性气体用于生产合成气(CO和H2,或合成气)。

根据以下吸热反应发生合成气生产:

CO2 2H2S=CO H2 S2 H2O

所需的能量供应由吸热反应提供:

H2S 1.5O2=SO2 H2O

然而,由于可以以对已经存在的工厂很少改造地与其他生产相关联而在任意情况下均明显通用的该工艺,需要相当大量的活性能量。事实上,相当高的操作温度高于800℃并且在一些情况下其超过1300℃。此外,待用于第二放热反应中的氧必须小心地给量以避免过多的SO2氧化,其代表了必须例如借助克劳斯厂或硫酸生产厂除去的有害排放。

由此认识到需要寻找替代方案以便减少此类气体的排放和可能的污染排放。

US 4336063公开了用于铁矿的气体还原的设备,其设置有用于此类目标的反应器和重整单元。后者包括包含管束的辐射室和两个对流室,其中更远离辐射区的第二者也设置有管束。相关的设备进一步包括用于重整单元和反应器的流体连通中的一系列管道。

特别地,两个对流室彼此间隔开并且特别是后者确定地布置成远离辐射区。

如此可以将更多进入和离开蒸汽重整器的流区别开,特别是:

–天然气流穿过第一对流室并且进入发生重整反应的辐射区的管束,同时,产生的气体离开辐射区;

–并且由离开辐射区的气体的混合物得到的第二流进入第二对流室并且由其离开以带往反应器;

进入和离开第二对流室的第二流在任意情况下都非常远离且由在辐射区附近布置的第一对流室分隔。



技术实现要素:

发明要解决的问题

为了克服背景技术并且特别是WO2015015457A1中的前述问题,已经构思了炉,除了用于获得欲合成高附加值产品的中间产物的工业过程以外,可以进行此类有害排放的处置反应,特别是酸性气体,例如CO2和H2S,特别是H2S。

本发明的一个目的是一种炉,其包括:

-辐射区,

-对流区,

–第一系列管和至少第二系列管,其中至少两种隔离的工艺气体流分别穿过,

其中:

●第一工艺流通过对流区进入所述炉,并且流过所述第一系列管,通过辐射区离开所述炉,或者可选地,所述第一工艺流通过辐射区进入所述炉,流过第一系列管,通过辐射区离开所述炉;

●用于处理酸性气体的第二工艺流,通过对流区进入所述炉,流过所述第二系列管并且通过对流区离开所述炉,

●所述第二系列管由耐酸性气体的材料制成。

该炉可以引入精炼厂、气田、重整厂或制氢厂,例如气化制氢厂,和用于石化工业的工厂中。

附图说明

图1:根据本发明的一个实施方案的炉的示意性代表图;

图2:根据本发明的可选实施方案的炉的示意性代表图;

图3:蒸汽重整常规工艺的框图形式的代表图;

图4:其中根据图1的实施方案的炉插入蒸汽重整工艺中的框图形式的代表图;

图5:其中根据图1的实施方案的炉插入蒸汽重整工艺中的框图形式的代表图;

图6:其中根据图1的实施方案的炉插入蒸汽重整工艺中的框图形式的代表图;

图7:进入和离开用于图3的常规蒸汽重整工艺中的常规炉的流的框图形式的代表图,

图8:用于图3的常规蒸汽重整工艺中的常规炉与图4的根据本发明的工艺之间比较的框图形式的代表图;

具体实施方式

在本发明的炉中第二气流穿过的第二系列管用于酸性气体,因此其必须由耐酸性气体的材料制成。耐酸性气体的材料意指通常使用且对于本领域中专业人员已知的用于此类目的的所有材料。

根据本发明的炉的一个优选实施方案,第二系列管容纳催化剂。

根据另一优选实施方案,第一系列管容纳催化剂。

根据本发明的炉的还一优选实施方案,第一系列管和第二系列管均容纳催化剂。

根据本发明的炉优选专用于通过蒸汽重整工艺的合成气生产,其根据以下反应方案发生:

R1:CH4 H2O=CO 3H2。

在图3的框图中,描述了该工艺的多个步骤和相关的操作单元。特别地,由首字母缩略词SMR(蒸汽甲烷重整器)表示了进行反应R1的常规炉或蒸汽甲烷重整器。

在该图3中,炉SMR的上游,原料天然气输送入脱硫单元(下文中表示为SWEETENING单元),由此分离酸性气体H2S和CO2。优选地,以胺/水的混合物使用胺脱硫技术,其中胺优选为MEA(甲胺)、DEA(二乙胺)、MDEA(甲基二乙醇胺),或其他类似的有效技术(例如吸附增强、水煤气变换或其他热分离)。

将由此纯化的气体输送至发生反应R1的SMR单元。

在该炉中,优选输送相对于化学计量比过量的蒸汽以允许反应R1。将离开SMR的、包括CO、H2、H2O和未反应的CH4的气体送至进行变换反应R2:CO H2O=CO2 H2的水煤气变换反应器或单元,下文中称为WGSR。

通常,采用此类反应R2以调节H2/CO之间的摩尔比,以优化后续化学合成(例如碱有机工业或化肥工业)的形态和效率,或者最大化制氢(例如精炼厂或气化)。已知反应方向取决于WGSR的操作温度。

当离开WGSR时,工艺流在用于除去蒸汽的单元中或在脱水单元(下文中称为De-W(脱水))中处理。特别地,此类用于除去蒸汽的单元包括其中包含于在其中处理的工艺流内的水通过冷凝除去的设备。

随后,将离开De-W的工艺流送至变压单元,下文中称为PSA。特别地,PSA是指能够分离至少H2和CO2以便使待用于后续步骤中的H2生产最大化的单元。分离的氢例如送至加氢脱硫单元(下文中称为HDS),例如克劳斯型的催化剂系列,用于在其处理之前从油负载除去硫。

根据本发明的在其中发生反应R1的炉包括上部对流区,其中通过对流发生热交换。定义为辐射区的下部包括具有一个或更多个竖直和/或横向的燃烧器的燃烧室,构造为照射容纳通常用于进行反应R1的催化剂的一系列管。工艺流穿过其进入常规炉中的对流区由废气通过对流加热,该废气产生于用于在氧的存在下燃烧可燃气体的辐射区中。由此,进入的气体工艺流经历预热步骤。

如上所述,该炉区别于常规炉在于,其包括第一系列管和第二系列管。在第一系列中,进行反应R1,而在第二系列中,仅输送H2S气体。特别地,根据本发明的炉可以根据更多变型来设计,其中第一者当然是优选者。

第一变型:对流-对流(图1)

在第一变型中,进入炉1的、包括天然气、优选甲烷和蒸汽的混合物的第一工艺流A以与上述常规SMR型炉中相同的方式来处理。换言之,甲烷和蒸汽(后者优选相对于化学计量比过量)首先穿过对流区3,然后通过辐射区2。在通过辐射区2时,第一工艺流再分为第一系列管4,在其中发生反应R1。从辐射区2的一侧离开炉1的第一工艺流包括CO和H2以及任选的甲烷和未反应蒸汽的混合物。反应R1在550℃和1050℃之间的温度下进行,优选在750℃和900℃之间,更优选反应R1在800℃的温度下进行。出于本发明的目的,炉内部第一工艺流的压力至少介于1巴和50巴之间,优选在10巴和40巴之间并且更优选压力第一工艺流的压力为20巴。

第二工艺流由包括H2S的酸性气体的混合物组成。由此,可以处理酸性气体,以增加用于随后例如HDS等处理和用于减少CO2和其他废产物的引入的制氢。

根据第一变型,进入炉1穿过对流区3的第二工艺流离开炉1。换言之,第二工艺流在对流区3处再分为第二系列管5,并且一旦穿过此类对流区3就离开炉1。必须注意的是,第二系列管5设置有能够优化一个或多个反应的催化剂。根据本发明,催化剂选自γ氧化铝,以其任选负载形式的镍、钴、钼、铁、铜和催化中的其它已知元素。

第二变型:对流-辐射(图2)

在第二变型中,进入炉1的、包括天然气、优选甲烷和蒸汽的混合物的第一工艺流A以与常规SMR型炉中相同的方式来处理。

在第二变型中,包含H2S的第二工艺流B进入炉1的对流区3并且穿过辐射区2离开炉1。特别地,第二工艺流B再分为第二系列管5并且首先穿过对流区3并且然后通过辐射区2。

第三变型辐射-辐射(未示出)

在第三变型中,将进入炉1的、包括天然气、优选甲烷和蒸汽的第一工艺流A直接送至辐射区2并且穿过系列管4,离开辐射区。此外,将进入炉的、包括H2S的第二工艺流体B直接送至辐射区2穿过第二系列管5。

当将常规SMR炉转变为根据本发明的炉时,变型中的选择可以通过在设计新厂的建设或者在改造的情况下再设计炉1的步骤中设想的条件来确定。

在图4~图6中描述其中插入炉1的厂的优选实施方案。特别地,第二进入工艺流包括H2S的混合物。详细地,第二进入工艺流在进行裂解反应R3的第二系列管5中输送:

R3:H2S=H2 0.5S2

出于本发明的目的,将炉的发生反应R1的部分标识为SMR,而将炉中发生反应R3的部分称为硫酸催化裂解,下文中称为SACS,如附图中所示。

因此,炉1包括SMR段和发生前述在下文中由首字母缩略词SACS标识的反应的段。

R3反应优选在控制温度炉1的对流区3中发生,并且通过第二系列管5中存在的催化剂来确保。

有利地,R3反应使H2S容易基本上完全转化(约97%)为氢和元素硫。

详细地,R3反应在300℃和1050℃之间的温度范围内进行,优选在400℃和900℃之间,更优选在500℃和750℃之间,最优选R3反应在介于600和650℃之间的温度下进行。

炉内第二工艺流的压力至少包括在0.01巴和50巴之间的范围内,优选在0.5巴和25巴之间,更优选在1巴和5巴之间。

根据本发明,第二工艺流在SACS内的停留时间至少介于0.01和5秒之间,优选在0.1和2秒之间。

在该情况下,将离开所述第二系列管、SACS的、包含未反应的H2、S2、H2S的混合物的第二工艺流送至De-S,其中S2通过凝结从混合物中部分地分离。

可以在对流段内布置能量回收,以提高适合于催化转化R3的温度,例如离开SACS的转化管的低于回收交换器的预先设定温度的温度,以便具有贡献于转化的最高热供应。

在H2S流量很大的情况下,可以设想逐一地由其自己的燃烧室组成的完全独立的单元。

有利地,由于没有其它反应产物和/或副产物,整个过程的选择性等于100%的氢,并且由于下文中描述的再循环,收率同样完全。

离开De-S单元的包含H2S混合物和小百分比的H2S的工艺流根据以下实施方式之一来处理:

-第一实施方式,将混合物送至SWEETENING-3单元,其中H2S与H2分离。随后,将H2S再循环并且输送至进入所述炉的第二工艺流中,在此发生反应R3。而离开SWEETENING-3单元的氢与离开脱水单元De-W的工艺流输送至变压吸附PSA的上游,在此H2与CO2分离;

-第二实施方式,将混合物送至变压吸附PSA单元;

-第三实施方式,将混合物送至加氢脱硫单元HDS。

优选地,将离开De-S的、包含S2、H2和未反应的H2S的工艺流在反应器中进行残留硫蒸汽的氢化反应R4:

R4:H2 0.5S2=H2S。

然后,离开其中发生包含H2和H2S的硫蒸汽的氢化反应的反应器的混合物根据以上列出的不同实施方式来后处理。

有利地,SMR SACS使得激活工厂内氢的再循环。此类再循环反过来降低SACS单元的入口处的甲烷负荷,具有一系列次要优势效果:

-减少供给至单元的蒸汽;

-减少供给至燃烧室的甲烷的量;

-减少燃烧室的化学计量燃烧;

除了已经提及的减少进入的甲烷以外,此类效果有助于减少离开SACS头的废气流量和通过PSA单元释放的CO2流量。由于在传统硫回收单元(SRU)中缺乏H2S燃烧,例如,克劳斯工艺,进一步排放的减少加到这些中。

必须注意的是,在图4~图6中的不同实施方案中,进入所述炉的可能的第一工艺流和确定的第二工艺流来自至少脱硫单元,其接收包括甲烷、CO2和H2S的混合物的原料天然气。

具体地,用于进行重整反应的、包含甲烷与添加的蒸汽的第一工艺流的气体混合物用配置为从甲烷分离H2S、CO2的SWEETENING单元来处理。

优选地,原料天然气通过配置为从包含天然气和CO2的混合物分离H2S的第一SWEETENING-1单元来处理。由此,将H2S作为第二工艺流送至SACS单元,而将包含天然气和CO2的混合物送至配置为从天然气分离CO2的第二SWEETENING-2单元。由此,将分离的天然气作为第一工艺流送至SMR单元,而将分离的CO2回收或处理。

常规SMR工艺(图3)和根据本发明的SMR SACS工艺(图4)之间的比较例

SMR SACS设备的模拟通过DSmoke的方式来进行,DSmoke是在米兰理工大学的可持续工艺工程中心(SuPER)开发的用于分析和验证转化热系统(热解和燃烧)的计算软件。Dsmoke是基于动力学(30k反应)和热力学(NIST)数据库的软件,其通过实验数据验证并且在工业上存在于超过40个应用中。Dsmoke结果集成在模拟套件PRO/II(由Schneider-Electric)中。

SMR基本情况

表1中报告了评价和比较SMR与新SACS设备(在以下实施例中处理)的性能的选择基本情况。对于基本情况,考虑图3的流程图,其中没有第二系列管而由此没有SACS的SMR常规炉,和用Commercial Suite PRO/(由Schneider-Electric)获得的相关结果总结在图7中。特别地,可以注意到,通过SMR的制氢等于228.4kg/h。

表1.来自气田(里海)的流量和组成。

气田中SACS SMR的工艺方案如图4中所示。本发明的SACS不仅接收来自脱硫的天然气(NG),而且与常规SMR不同,还在位于对流的催化管的区域中接收H2S流,并且用于R3转化。将离开SACS的流出物送至用于分离硫的已知系统,并且在分离未反应的产物并且使其在SACS上游再循环时,将获得的氢送至WGSR段的下游,作为氢过剩进入PSA或者直接进入HDS。

由此获得的氢表示由常规重整转换R1导致的流量贡献和源自R3反应的额外部分。如果需要,例如在化学合成的情况下,由R3生产的氢可以有助于调节通过R1反应获得的合成气的H2/CO。

用Commercial Suite PRO/(由Schneider-Electric)获得的优势总结在图8中。用SACS在600℃和1.8巴下进行分析,其中各单管的单程转化率等于97%并且随后回收未反应产物。总体上,推导出,在条件和供给等于常规SMR的情况下,本发明的SACS SMR使得:

5.氢产量从228.4kg/h提高至261.05kg/h( 14.3%)

6.减少蒸汽重整单元的蒸汽需求(-28.6%)

7.相对于SMR,减少释放入大气中的废气(-23.6%)

8.减少从PSA单元的CO2排放(-14.3%)

由于单程转化率高于96%,因此对于本发明的SACS也可以设想其它实施方式(图5和图6)。事实上,在除去元素硫时,可以移除分离单元Sweetening-3并且将流直接送至PSA。在该情况下,PSA本身将除去H2S的残余部分。

作为进一步的可选方案,通过除去Sweetening-3过程,可以将具有残余H2S的氢气流直接送至HDS。此类解决方案是优选的,因为由于精炼厂/气田中已经存在的工艺循环,而H2S的氢潜力完全收回。

再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献