一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

处理塑料废热解气的方法与流程

2022-02-19 09:02:09 来源:中国专利 TAG:


1.本发明涉及用于处理塑料废热解气(pyrolysis gas)的方法,特别是其中避免在该方法中使用的系统的堵塞的方法。


背景技术:

2.世界各地都在生产大量的废塑料。例如,城市固体塑料废弃物通常包括高密度聚乙烯(hdpe)、低密度聚乙烯(ldpe)、聚丙烯(pp)、聚苯乙烯(ps)、聚(氯乙烯)(pvc)和聚(对苯二甲酸乙二醇酯)(pet)。这是一种丰富的原料,其可用作替代炼油厂原料和新塑料和化学品的平台。然而,固体塑料本身不是合适的原料,但它需要首先被液化。产品的产量和成分主要受塑料类型和工艺条件的影响(williams et al.energy&fuels,1999,13,188

196)。
3.废塑料的处理是在化学回收系统中进行的,并且它依靠热、热解反应将长链塑料聚合物裂解成较短产品,其中大部分是液体。已知来自塑料热解的气态产物混合物会堵塞和污染表面、管道和设备。部分原因是因为一些反应产物是沉积在表面上的重蜡质组分,而且焦油、烧焦物和更多的固体焦炭型沉积物也很常见。蜡质组分和焦油在用于冷凝反应混合物的换热器的冷却表面上尤其成问题,但焦炭可以沉积在设备中的任何地方。这些会导致两个主要问题。首先,沉积物起到隔绝体的作用,减少换热器中的热传递。其次,沉积物最终会堵塞换热器,阻止任何物质流通过它。因此,如果使用常规换热器来冷凝热解气,则设备需求成倍增加:当一个在运行时,另一个在维护和清洁中。这是昂贵的和劳动密集型的。
4.这个问题在使用直接接触式冷凝器之前已被解决。然而,例如,喷雾冷凝器遭受相对较低的分离效率,并且它们无法防止焦炭沉积。此外,这些冷凝器中使用的液体循环需要持液量,这具有两个主要缺点。首先,这显著增加设备的火灾荷载,因为在循环回路中存在高温热解产物混合物的储液器。其次,该储液器相对较长的停留时间(residence time)使液体暴露于额外的热反应中,可能会降低产品质量并导致设备结垢。
5.因此,仍然需要用于处理塑料废弃物热解气的进一步方法,其中降低在该方法中使用的系统的堵塞风险。


技术实现要素:

6.为了提供对本发明的各个实施方式的一些方面的基本理解,以下呈现简化的概述。该概述不是对本发明的广泛综述。既不旨在确定本发明的主要或关键要素,也不旨在描绘本发明的范围。以下概述仅以简化形式呈现本发明的一些构思,作为对本发明示例性实施方式的更详细描述的前序。
7.据观察,当来自塑料废弃物热解的气态反应混合物与冷却的冷凝热解产物混合时,热解气体的最高沸点部分从混合物中顺利冷凝而不会堵塞。
8.还观察到,当从冷凝装置的内壁擦拭和/或刮下任何固化材料时,通过将气态热解产物递送到在低于热解温度的温度下操作的冷凝装置,可以避免塑料废热解产物的堵塞。
9.根据本发明,提供了一种用于处理塑料废热解气的新方法,该方法包括
10.a)提供塑料废热解气流,其中塑料废热解气流的温度为300

650℃,优选为450

500℃,
11.b)将塑料废热解气流转移至冷凝装置,其中冷凝装置中的温度低于步骤a)的塑料废热解气流的温度,从而产生塑料废热解气的冷凝馏分和气态馏分,
12.c)连续擦拭和/或刮擦冷凝装置的内表面,和
13.d)分离气态馏分和冷凝馏分以产生第一液体产物流和气态产物流。
14.在所附从属权利要求中描述了本发明的多个示例性和非限制性实施方式。
15.当结合附图阅读时,本发明的各种示例性和非限制性实施方式、操作方法连同其附加目的和优点将从以下特定示例性实施方式的描述中得到最好的理解。
16.动词“包括”和“包含”在本文件中用作公开限制,既不排除也不要求存在未列举的特征。除非另有明确说明,否则从属权利要求中叙述的特征可以相互自由组合。此外,应当理解,本文件通篇使用“一”或“一种”,即单数形式并不排除复数形式。
附图说明
17.本发明的示例性和非限制性实施方式及其优点在下文参考附图更详细地解释,其中
18.图1示出了根据本发明的一个实施方式的适用于处理塑料废热解气的示例性非限制性系统。
具体实施方式
19.本发明涉及处理塑料废热解气从而避免或至少减轻在该方法中使用的系统的堵塞。
20.图1示出了适用于根据本发明的实施方式的方法的示例性系统100。根据图中所示的实施方式,塑料废热解气流(a)被转移到冷凝装置101。塑料废热解气流的温度通常为300

650℃,优选450

500℃。冷凝装置的温度低于塑料废热解气流的温度。冷凝装置的示例性温度为100

300℃,优选175

225℃。
21.根据该实施方式,冷凝装置包括适于擦拭和/或机械刮擦冷凝装置101的内表面的擦拭装置和/或刮擦装置102。示例性合适的冷凝装置是刮膜式冷凝器和刮面式换热器。这些冷凝装置基本上是带夹套的罐,内部有一个转子,转子连续擦拭和刮擦冷凝装置壁上的任何固化材料。这可以防止在冷凝器壁上形成厚沉积物,从而防止设备堵塞。
22.冷凝装置101在低于塑料废热解气流温度的温度下运行。因此,热解气中最重的部分被冷凝,并且产生了重组分贫化的气态馏分。冷凝馏分和气态馏分的分离产生第一液体产物流(d1)和气态产物流(e1)。
23.第一液体产物流(d1),即重馏分可以作为重产物经由管线103转移到收集装置104。为了避免堵塞,管线203优选地保持在高于100℃的温度,更优选地在150℃至250℃。期望的温度范围可以通过隔绝管线和/或使用一种或多种加热装置来获得。
24.根据优选的实施方式,气态产物流经由管线105被引导至第二冷凝装置106。这种冷凝装置通常是常规换热器。根据示例性实施方式,在冷凝装置106中气态部分的温度降低
至10

50℃,优选20

40℃。冷却产生冷凝液体和不可冷凝气体。预计在管线105内和冷凝装置106中不会结垢或堵塞,因为大部分重组分已被去除。在冷却后,冷凝的液体与不可冷凝的气体(e2)分离以产生第二液体产物流(d2)。它可以在收集装置例如罐107中作为轻质产品转移。不可冷凝的气体可被引导用于燃烧或引导至一个或多个另外的收集装置。轻质产品的产量和组成主要取决于废塑料的性质、热解条件和冷凝温度。不可冷凝的气体可被引导用于燃烧或引导至一个或多个另外的收集装置。
25.实施例1
26.这个过程是用aspen plus软件模拟的。热解气的主要部分使用拟组分建模,且轻馏分(light ends)使用真实组分建模。使用实验测量的蒸馏曲线和来自粗塑料热解油的密度估计拟组分。所用密度为809.8kg/m3,且真实沸点(tbp)蒸馏曲线示于表1中。
27.表1
28.回收质量(%)温度(℃)236.0568.61097.430171.950236.070316.090430.495474.3100582.4
29.轻馏分的量和组成从文献中估计(williams et al.energy&fuels,1999,13,188

196;williams et al.,recources,concervation and recycling,2007,51,754

769)。轻馏分与拟组分的质量比为0.27,且轻馏分的组成示于表2中。
30.表2
[0031][0032][0033]
模拟中使用的热力学模型是braun k

10,并假设冷凝装置中有一个理想的分离阶段。
[0034]
具有95kpa(a)的压力、500℃的温度以及69.2g/mol的平均摩尔重量和20kg/h的质量流量的塑料废弃物热解气体流离开反应器。使其进入刮膜式冷凝器,其通过冷却油冷却。
刮板保持热交换表面清洁,且气体发生部分冷凝。从容器底部收集产物。通过调节冷却油温度,将来自该换热器的产品温度调节为200℃。金属换热器壁的传热系数为176kw/m2℃。
[0035]
模拟结果示于表3中。
[0036]
表3
[0037][0038]
实施例2
[0039]
这个过程是用aspen plus软件模拟的。热解气的主要部分使用拟组分建模,且轻馏分使用真实组分建模。使用实验测量的蒸馏曲线和来自粗塑料热解油的密度估计拟组分。所用密度为809.8kg/m3,且真实沸点(tbp)蒸馏曲线示于表4中。
[0040]
表4
[0041]
回收质量(%)温度(c
°
)236.0568.61097.430171.950236.070316.090430.495474.3100582.4
[0042]
轻馏分的量和组成从文献中估计(williams et al.energy&fuels,1999,13,188

196;williams et al.,recources,concervation and recycling,2007,51,754

769)。轻馏分与拟组分的质量比为0.27,且轻馏分的组成示于表5中。
[0043]
表5
[0044]
组分wt

%甲烷36.3乙烯2.2乙烷28.9丙烯4.7丙烷19.9丁烯1.5丁烷6.7
[0045]
模拟中使用的热力学模型是braun k

10,并假设冷凝装置中有一个理想的分离阶段。
[0046]
具有95kpa(a)的压力、500℃的温度以及69.2g/mol的平均摩尔重量和20kg/h的质量流量的塑料废弃物热解气体流离开反应器。使其进入冷却油冷却的刮膜冷凝器,刮擦关闭。这导致部分冷凝并且从容器底部收集液体产物。由于附着在热交换表面上的冷凝产物没有被连续刮掉,结果在壁上堆积了沉积物。
[0047]
来自该换热器的产品的温度通过冷却油温度调节至最初200℃。然而,随着沉积物的积累,传热降低并且发生较少的冷凝。这减少了冷凝产物的量。假设结垢率为1mm/h,且金属换热器壁和结垢层的传热系数分别为176kw/m2℃和0.083kw/m℃。
[0048]
模拟结果示于表6中。
[0049]
表6
[0050][0051]
从表3中可以看出,当使用刮擦保持换热表面清洁时,换热器的性能随时间保持不变。另一方面,从表6中可以观察到,如果不对污垢层进行处理,结垢对换热器的性能具有显著影响。
[0052]
上面给出的描述中提供的具体实施例不应被解释为限制所附权利要求的范围和/或适用性。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献