一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种电能传输转接机构、充电插座和机动车辆的制作方法

2021-11-29 13:27:00 来源:中国专利 TAG:


1.本发明涉及电气连接技术领域,尤其涉及一种电能传输转接机构、充电插座和机动车辆。


背景技术:

2.目前在电能传输领域,有很多需要导通大电流的场合,需要使用到截面积较大的线缆和连接端子,从而导致用电装置机构体积增大。例如目前应用越来越广泛的电动汽车上的充电系统,为了减少充电时间,增大了充电电流,从而也使充电线缆和充电端子的有效导电截面积达到了95mm2到160mm2,从而使充电插座或充电枪的体积也变得庞大而沉重,使用不方便。
3.由于部分用电装置机构的体积限制,用电装置机构中用来进行插拔连接的端子,与用来传输电能的线缆不同轴,不能直接连接,或者线缆引出的方向与端子轴向的方向存在一定的角度偏差,因此需要有相应的转接机构进行连接。
4.另外,由于导通大电流的端子都是铜材料作为基材,铜的导电性好,电阻率低,并且延展性好,易于加工成型,因此一般端子都采用铜材料进行车削、锻造、冲压等方法加工成型。当用电装置机构中,线缆的连接位置与端子的位置较远时,端子全部采用铜材料进行加工,铜材料耗费用量大,浪费严重,端子的成本无法降低。
5.因此,电能传输领域急需一种连接端子与线缆之间的电能传输转接机构,能够实现端子与线缆不同轴或成角度连接,并且,能够节省端子使用的铜材料,降低端子的成本。


技术实现要素:

6.本发明提供的一种电能传输转接机构、充电插座和机动车辆,实现端子与线缆不同轴或成角度连接,并且,能够节省端子使用的铜材料,降低端子的成本。可解决用电装置机构体积庞大;以及端子与线缆无法形成不同轴连接或成角度连接;还有端子铜材料耗费用量大,端子的成本无法降低等问题。
7.本发明提供的技术方案为:
8.一种电能传输转接机构,包括电能传输部、转接部和线缆,所述电能传输部包括依次连接的插拔端和连接端,所述线缆包括内部的导芯和包裹所述导芯的绝缘层,所述转接部包括依次连接的第一端、弯折部和第二端,所述第一端与所述连接端电性连接,所述第二端与所述线缆一端的所述导芯电性连接,所述弯折部包含至少一个弯折区。
9.在优选的实施方式中,所述第一端的至少部分与所述连接端的至少部分接触连接。
10.在优选的实施方式中,所述第一端至少部分与所述连接端至少部分通过电阻焊接、摩擦焊接、超声波焊接、弧焊、激光焊接、电子束焊接、压力扩散焊接、磁感应焊接、螺接、卡接、拼接、压接的一种或几种方式进行连接。
11.在优选的实施方式中,所述连接端上包含连接面,所述连接面与所述第一端的接
触区域面积占所述连接面面积的5%以上。
12.在优选的实施方式中,所述连接端的形状为片状,所述连接端包括第一上表面、第一下表面和第一侧面,所述连接面设置在所述第一上表面或所述第一下表面,所述第一端的形状为片状,所述第一端包括第二上表面、第二下表面和第二侧面,所述第一上表面或所述第一下表面与所述第二上表面或所述第二下表面重叠后接触连接。
13.在优选的实施方式中,所述连接端的形状为柱状,所述连接端包括侧面和端面,所述连接面设置在所述端面上,所述第一端的形状为片状,所述第一端包括第二上表面、第二下表面和第二侧面,所述端面与所述第二上表面或所述第二下表面接触连接。
14.在优选的实施方式中,所述电能传输转接机构还包括螺栓,所述第二上表面设置贯穿到所述第二下表面的通孔,所述端面上设置螺纹孔,所述螺栓穿过所述通孔与所述螺纹孔螺接。
15.在优选的实施方式中,所述螺栓与所述螺纹孔螺接的扭矩范围为0.1n
·
m

30n
·
m。
16.在优选的实施方式中,所述连接端的形状为筒状,所述连接端包括第一内表面和第一外表面,所述连接面设置在所述第一内表面或所述第一外表面,所述第一端的形状为筒状,所述第一端包括第二内表面和第二外表面,所述第一内表面或所述第一外表面与所述第二外表面或所述第二内表面重叠后接触连接。
17.在优选的实施方式中,所述连接端或所述第一端的横截面形状为圆形、椭圆形、矩形或多边形。
18.在优选的实施方式中,所述第二端的形状为平板形、碗形、u形、v形或筒形。
19.在优选的实施方式中,所述导芯的至少部分与所述第二端的至少部分接触连接。
20.在优选的实施方式中,所述导芯至少部分与所述第二端至少部分通过电阻焊接、摩擦焊接、超声波焊接、弧焊、激光焊接、电子束焊接、压力扩散焊接、磁感应焊接、螺接、卡接、拼接、压接的一种或几种方式进行连接。
21.在优选的实施方式中,所述连接端上包含连接面,所述第一端的至少部分与所述连接面至少部分接触连接;所述第二端上包含接线面,所述接线面与所述导芯的接触区域面积占所述接线面面积的5%以上。
22.在优选的实施方式中,所述转接部利用板材冲压或切割折弯或机加工而成。
23.在优选的实施方式中,所述第一端、弯折部和第二端的厚度,相差不超过35%。
24.在优选的实施方式中,所述弯折区相邻两个平面的夹角为0
°‑
180
°

25.在优选的实施方式中,所述弯折区的弯折处为圆弧状,所述弯折处的内部半径,不小于所述转接部厚度的三分之一。
26.在优选的实施方式中,在所述弯折区切线方向上设置至少一个加强筋,所述加强筋为所述折弯区外部材料向内部凹陷形成。
27.在优选的实施方式中,所述弯折区为扭曲状,所述第一端的平面或纵向中心对称面,与所述第二端的平面或纵向中心对称面的夹角为0
°‑
90
°

28.在优选的实施方式中,所述转接部的材质含有镍、镉、锆、铬、钴、锰、铝、锡、钛、锌、铜、银、金、磷、碲、铍、铅中的一种或多种。
29.在优选的实施方式中,所述转接部材质中含有碲铜合金,所述碲铜合金中碲的含
量为0.1%~5%。
30.在优选的实施方式中,所述转接部材质中含有铍铜合金,所述铍铜合金中铍的含量为0.05%~5%。
31.在优选的实施方式中,所述转接部材质中含有磷青铜合金,所述磷青铜合金中磷的含量为0.01%~1.5%。
32.在优选的实施方式中,所述转接部材质中含有铅黄铜合金,所述铅黄铜合金加中铅的含量为0.1%~5%。
33.在优选的实施方式中,所述电能传输部、所述导芯和所述转接部上至少部分设置镀层。
34.在优选的实施方式中,至少部分所述连接面上不设置所述镀层。
35.在优选的实施方式中,至少部分所述连接面上设置所述镀层,所述连接面上的所述镀层为第一镀层。
36.在优选的实施方式中,所述第一端上至少与所述连接面接触的平面上不设置所述镀层。
37.在优选的实施方式中,所述第一端上至少与所述连接面接触的平面上设置所述镀层,所述第一端上至少与所述连接面接触的平面上的所述镀层为第二镀层。
38.在优选的实施方式中,至少部分所述接线面不设置所述镀层。
39.在优选的实施方式中,至少部分所述接线面上设置所述镀层,所述接线面上的所述镀层为第三镀层。
40.在优选的实施方式中,所述导芯上不设置所述镀层。
41.在优选的实施方式中,至少部分所述导芯上设置所述镀层,所述导芯上的所述镀层为第四镀层。
42.在优选的实施方式中,所述第一镀层材质、所述第二镀层材质、所述第三镀层材质与所述第四镀层材质不相同。
43.在优选的实施方式中,所述第一镀层厚度、所述第二镀层厚度、所述第三镀层厚度与所述第四镀层厚度不相同。
44.在优选的实施方式中,所述镀层材质含有金、银、镍、锡、锌、锡铅合金、银锑合金、钯、钯镍合金、石墨银、石墨烯银和银金锆合金中的一种或多种。
45.在优选的实施方式中,所述镀层采用电镀、化学镀、磁控溅射或者真空镀的方式设置。
46.在优选的实施方式中,所述镀层包括底层和表层。
47.在优选的实施方式中,所述底层材质含有金、银、镍、锡、锡铅合金和锌中的一种或多种;所述表层材质含有金、银、镍、锡、锌、锡铅合金、银锑合金、钯、钯镍合金、石墨银、石墨烯银和银金锆合金中的一种或多种。
48.在优选的实施方式中,所述导芯的材质中含有铝。
49.在优选的实施方式中,所述电能传输部与所述转接部之间的接触电阻小于9mω。
50.在优选的实施方式中,所述导芯与所述转接部之间的接触电阻小于9mω。
51.本发明还提供一种充电插座,所述充电插座包括以上所述的电能传输转接机构。
52.本发明还提供一种机动车辆,所述机动车辆包括上述的电能传输转接机构或包括
上述的充电插座。
53.本发明可以带来有益效果:
54.1、本发明提供的一种电能传输转接机构,采用转接部分别连接电能传输部和线缆的导芯,并且在转接部上设置了弯折部,能够使电能传输部和线缆可以不同轴向进行连接,以及能够使电能传输部和线缆成角度进行连接,从而减小用电装置机构体积,使用电装置机构能够适应更多的使用环境中。
55.2、本发明提供的电能传输部和转接部有多种连接方式,可以根据使用情况,采用不同的压接或拼接或焊接的方式连接电能传输部和转接部,从而实现电能传输转接机构良好的电学性能和力学性能。
56.3、本发明提供的电能传输部和转接部连接位置,具有多种形状,可以根据安装环境,选择不同的形状进行连接,为设计人员提供了多种设计方向。
57.4、本发明提供的转接部的材质可以是多种铜材料,不同材质的铜材料具有对应不同的性能,在不同的使用环境中,可以达到相应的设计目的。
58.5、本发明提供的电能传输部和转接部上设置镀层,可以提高电能传输部和转接部的耐刮擦性能和耐腐蚀性能,从而延长电能传输转接机构的使用寿命。
59.6、本发明提供的电能传输部和转接部的镀层具有底层和表层,在电能传输部和转接部表面上先镀一层底层,填补表面的缝隙和孔洞,然后再镀表层镀层,就会使镀层和基材结合更加牢固,也会更加平整,镀层表面无缝隙和孔洞,使电能传输转接机构的耐磨性能、抗腐蚀性能、电学性能更优,极大的延长电能传输转接机构的使用寿命。
60.7、本发明提供的线缆导芯中含有铝,可以使用铝线缆替代铜线缆,降低线缆的重量,同时降低了线缆的成本。
61.8、本发明还提供一种充电插座,使用本发明中的电能传输转接机构,从而使充电插座的体积更小,线缆出线方向可以任意设置。
附图说明
62.图1为本发明中一种电能传输转接机构一种实施方式的结构示意图。
63.图2为本发明中电能传输部一种实施方式的结构示意图。
64.图3为本发明中电能传输部另一种实施方式的结构示意图。
65.图4为本发明中转接部一种实施方式的结构示意图。
66.图5为本发明中图4,y向的结构示意图。
67.图6为本发明中图4,x向的结构示意图。
68.图7为本发明中电能传输部又一种实施方式的结构示意图。
69.图8为本发明中电能传输部和转接部结合一种实施方式的结构示意图。
70.图9为本发明中电能传输部和转接部结合另一种实施方式的结构示意图。
71.图10为本发明中第二端的形状为碗形的结构示意图。
72.图11为本发明中第二端的形状为u形的结构示意图。
73.图12为本发明中第二端的形状为筒形的结构示意图。
74.图13为本发明中转接部设置加强筋的结构示意图。
75.图14为本发明中一种充电插座的剖面结构示意图。
76.其中,
[0077]1‑
电能传输部、11

插拔端、12

连接端、13

连接面、14

第一上表面、15

第一侧面、16

第一下表面、17

侧面、18

端面、19

螺纹孔;2

转接部、21

第一端、22

弯折部、23

第二端、24

第二上表面、25

第二侧面、26

第二下表面、27

通孔、28

加强筋;
[0078]3‑
线缆、31

导芯、32

绝缘层;
[0079]4‑
螺栓;
[0080]5‑
充电插座;
具体实施方式
[0081]
下面对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式。其中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。在本发明的描述中,除非另有说明,术语“连接”应做广义理解,例如,可以是固定连接,可以是可拆卸连接,可以是直接连接,可以是通过中间媒介间接连接,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本专利中的具体含义。
[0082]
实施例一
[0083]
本发明提供了一种电能传输转接机构,如图1所示,包括电能传输部1、转接部2和线缆3,其中,电能传输部1包括依次连接的插拔端11和连接端12,线缆3包括内部的导芯31和包裹导芯31的绝缘层32,转接部2包括依次连接的第一端21、弯折部22和第二端23,第一端21与连接端12电性连接,第二端23与线缆3一端的导芯31电性连接,弯折部22包含至少一个弯折区。
[0084]
本发明中采用转接部2分别连接电能传输部1和线缆3的导芯31,并且在转接部2上设置了弯折部22,能够使电能传输部1和线缆3可以不同轴向进行连接,以及能够使电能传输部1和线缆3成角度进行连接,从而减小用电装置机构体积,使用电装置机构能够适应更多的使用环境。
[0085]
另外,本发明设置了转接部2,可以不用在电能传输部1上设置为了连接线缆3而延伸出来的结构,在节省电能传输部1使用材料的同时,也降低了形状复杂的电能传输部1的加工难度,可以使用简单的工艺将电能传输部1进行批量生产,减少加工工时,提高电能传输部1的生产效率。
[0086]
在一实施方式中,第一端21的至少部分与连接端12的至少部分接触连接。为了实现电能传输部1与转接部2的电性连接,需要将电能传输部1的连接端12与转接部2的第一端21电性连接,因此将第一端21的至少部分结构与连接端12的至少部分结构接触连接,达到电能传输部1与转接部2的电性连接的目的。
[0087]
在一实施方式中,第一端21至少部分与连接端12至少部分通过电阻焊接、摩擦焊接、超声波焊接、弧焊、激光焊接、电子束焊接、压力焊接、扩散焊接、磁感应焊接、螺接、卡接、拼接、压接的一种或几种方式进行连接。
[0088]
电阻焊接方式,是指一种利用强大电流通过电极和工件间的接触点,由接触电阻产生热量而实现焊接的一种方法。
[0089]
摩擦焊接方式,是指利用工件接触面摩擦产生的热量为热源,使工件在压力作用下产生塑性变形而进行焊接的方法。
[0090]
超声波焊接方式,是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。
[0091]
弧焊方式,是指以电弧作为热源,利用空气放电的物理现象,将电能转换为焊接所需的热能和机械能,从而达到连接金属的目的,主要方法有焊条电弧焊、埋弧焊、气体保护焊等。
[0092]
激光焊接方式,是利用高能量密度的激光束作为热源的一种高效精密焊接方法。
[0093]
电子束焊接方式,是指利用加速和聚焦的电子束轰击置于真空或非真空中的焊接面,使被焊工件熔化实现焊接。
[0094]
压力焊接方式,是对焊件施加压力,使接合面紧密地接触产生一定的塑性变形而完成焊接的方法。
[0095]
扩散焊方式,指将工件在高温下加压,但不产生可见变形和相对移动的固态焊方法。
[0096]
磁感应焊接方式,是两个被焊工件在强脉冲磁场作用下,产生瞬间高速碰撞,材料表层在很高的压力波作用下,使两种材料的原子在原子间距离内相遇,从而在界面上形成稳定的冶金结合。是固态冷焊的一种,可以将属性相似或不相似的传导金属焊接在一起。
[0097]
螺接方式,是指螺纹连接,用螺纹件(或被连接件的螺纹部分)将被连接件连成一体的可拆卸连接。常用的螺纹联接件有螺栓4、螺柱、螺钉和紧定螺钉等,多为标准件。
[0098]
卡接方式,是指在连接端12或连接面13上分别设置对应的卡爪或卡槽,通过卡槽和卡爪进行装配,使其连接在一起。卡接的方式优点是连接快速,可拆卸。
[0099]
拼接方式,是指在连接端12或连接面13上分别设置对应的凹槽和凸起,通过凹槽和凸起相互榫接或拼接进行装配,使其连接在一起。拼接的方式优点是连接稳定,可拆卸。
[0100]
压接方式,压接是将连接端12与连接面13装配后,使用压接机,将两者冲压为一体的生产工艺。压接的优点是量产性,通过采用自动压接机能够迅速大量的制造稳定品质的产品。
[0101]
通过上述连接方式,可以根据实际的使用环境,以及连接端12与第一端21的实际状态,选择合适的连接方式或者连接方式组合,将连接端12与第一端21稳定的连接在一起,实现有效的电性连接。
[0102]
在一实施方式中,连接端12上包含连接面13,连接面13和第一端21的接触区域面积占连接面13面积的5%以上。为了保证电能传输部1与转接部2有良好的电性连接,连接面13和第一端21的接触面积是关键的特性,接触面积越大,连接面13和第一端21之间的电压降就会越小,拉拔力就会越大,为了验证连接面13和第一端21的接触区域面积占连接面13面积的比例与连接面13和第一端21之间的电压降和拉拔力的关系,发明人选用了10组相同的电能传输部1与转接部2,并且在电能传输部1上都设置了相同的连接面13,然后采用相同的超声波焊接方式,但是选用了连接面13和第一端21不同的接触区域面积占连接面13面积的比例,然后通电流测试连接面13和第一端21之间的电压降,以及测试连接面13和第一端
21之间的拉拔力,将结果记录在表1之中。
[0103]
电压降的测试方法:将连接端12和第一端21放置在电压降检测台上,分别测试连接面13和第一端21自身的电压值a和b,然后测试连接面13到第一端21的电压值c,然后计算c

(a b)的值,作为连接面13和第一端21连接点的电压降值。在本实施例中,电压降值大于4mv为不合格。
[0104]
拉拔力的测试方法,使用拉拔力试验机,分别将焊接后的连接端12和第一端21固定在拉拔力试验机的两端夹具上,然后启动拉拔力试验机,使两端夹具以均匀的速度向相对的两个方向运动,并记录将第一端21从连接端12上脱离时的拉拔力。在本实施例中,拉拔力小于1600n为不合格。
[0105]
表1:连接面13和第一端21的接触区域面积占连接面13面积的比例对电压降和拉拔力的影响
[0106][0107]
从上表1中可以看出,当连接面13和第一端21的接触区域面积占连接面13面积的比例小于5%时,连接面13和第一端21之间的电压降大于4mv,并且连接面13和第一端21之间的拉拔力小于1600n,都属于不合格;而当连接面13和第一端21的接触区域面积占连接面13面积的比例大于5%时,连接面13和第一端21之间的电压降和拉拔力都优于合格值,并且比例越大,连接面13和第一端21的电学性能和力学性能越好,因此,发明人设定连接面13和第一端21的接触区域面积占连接面13面积的5%以上。
[0108]
在一实施方式中,如图2

图6所示,连接端12的形状为片状,连接端12包括第一上表面14、第一下表面16和第一侧面15,连接面13设置在第一上表面14或第一下表面16上,第一端21的形状为片状,第一端21包括第二上表面24、第二下表面26和第二侧面25,第一上表面14或第一下表面16与第二上表面24或第二下表面26重叠后接触连接。连接端12和第一端21都为片状,加工简单,重叠连接也比较方便,有利于设备夹具和焊接模具的制作,并且方便实现自动化生产,提高生产效率,降低生产成本。
[0109]
在一实施方式中,如图7

图9所示,连接端12的形状为柱状,连接端12包括侧面17和端面18,连接面13设置在端面18上,第一端21的形状为片状,第一端21包括第二上表面24、第二下表面26和第二侧面25,端面18与第二上表面24或第二下表面26接触连接。电能传输部1的端部不加工成片状结构,直接加工为端面18,可以减少加工工序,降低加工工时,并且可以减短电能传输部1的长度,精简电能传输转接机构的体积,另外可以节省电能传输部1的加工材料,降低电能传输部1的成本。连接端12的端面18与第一端21可以使用焊接或螺接或卡接或拼接的方式连接到一起。
[0110]
在一实施方式中,如图7

图9所示,电能传输转接机构还包括螺栓4,第二上表面24设置贯穿到第二下表面26的通孔27,端面18上设置螺纹孔19,螺栓4穿过通孔27与螺纹孔19螺接。采用螺纹连接的方式,可以快速的将电能传输部1和转接部2连接到一起,并且可以实现可拆卸,在后续的维护维修中可以很方便的进行拆卸和更换作业。
[0111]
在一实施方式中,螺栓4与螺纹孔19螺接的扭矩范围为0.1n
·
m

30n
·
m。
[0112]
为了验证螺栓4与螺纹孔19螺接的扭矩范围,对电能传输部1与转接部2电性连接和机械连接性能的影响,发明人选用相同的电能传输部1、转接部2、螺栓4与螺纹孔19,采用不同的扭矩将其拧紧到一起,分别测试螺栓4与螺纹孔19的接触电阻和经过振动试验的螺栓4与螺纹孔19的连接情况。试验结果如表2所示。
[0113]
螺栓4与螺纹孔19的接触电阻的测试方法是使用微电阻测量仪,将微电阻测量仪的测量端一端放置在电能传输部1上,另一端放置在转接部2上,每次测量放置的位置相同,然后读取微电阻测量仪上的接触电阻读数。在本实施例中,接触电阻大于1mω为不合格。
[0114]
振动试验是将连接后的样件放置在振动试验台上,经过300个振动循环,每个循环都需要6个方向的振动,频率为100hz,单方向加速度为40m/s2,然后观察螺栓4与螺纹孔19是否有松脱现象。在本实施例中,螺栓4与螺纹孔19松动为不合格。
[0115]
表2:不同的螺栓4与螺纹孔19扭矩对电能传输部1与转接部2电性连接和机械连接性能的影响
[0116][0117]
从上表2中可以看出,当螺栓4与螺纹孔19螺接的扭矩值小于0.1n
·
m时,电能传输部1与转接部2的接触电阻值为不合格,并且,电能传输部1与转接部2经过振动试验后松脱,因此,发明人将螺栓4与螺纹孔19螺接的扭矩范围最小值定为0.1n
·
m。当螺栓4与螺纹孔19螺接的扭矩值大于30n
·
m时,电能传输部1与转接部2的接触电阻已不能进一步降低,因此,发明人将螺栓4与螺纹孔19螺接的扭矩范围确定为0.1n
·
m

30n
·
m。
[0118]
在一实施方式中,连接端12的形状为筒状,连接端12包括第一内表面和第一外表面,连接面13设置在第一内表面或第一外表面上,第一端21的形状为筒状,第一端21包括第二内表面和第二外表面,第一内表面或第一外表面与第二外表面或第二内表面重叠后接触连接。连接端12和第一端21均为筒状,可以采用套接的方式重叠在一起,然后采用上述的连接方式进行连接。这种重叠套接的连接方式,连接端12和第一端21接触面积很大,可以有效的降低连接端12和第一端21之间的接触电阻,提高电能传输转接机构的电学性能。
[0119]
在一实施方式中,连接端12或第一端21的横截面形状为圆形、椭圆形、矩形或多边形。连接端12或第一端21的筒状结构,横截面可以设置为很多形状,可以根据连接端12或第
一端21的具体使用环境,以及自身的加工工艺,选择不同的横截面形状,从而达到有效电连接连接端12和第一端21的目的。
[0120]
在一实施方式中,如图10

图12所示,第二端23的形状为平板形、碗形、u形、v形或筒形。第二端23是转接部2与线缆3的导芯31连接的位置,第二端23的形状,可以根据线缆3的导芯31形状,以及具体使用环境进行选择。平板形和碗形一般用来与导芯31进行焊接,u形和v形一般用来与导芯31进行压接,筒形可以用来与导芯31压接或焊接。
[0121]
在一实施方式中,导芯31的至少部分与第二端23的至少部分接触连接。为了实现转接部2与线缆3导芯31的电性连接,需要将线缆3的导芯31与转接部2的第二端23电性连接,将线缆3导芯31的至少部分结构与第二端23的至少部分结构接触连接,达到转接部2与线缆3导芯31电性连接的目的。
[0122]
在一实施方式中,导芯31的至少部分与第二端23的至少部分通过电阻焊接、摩擦焊接、超声波焊接、弧焊、激光焊接、电子束焊接、压力扩散焊接、磁感应焊接、螺接、卡接、拼接、压接的一种或几种方式进行连接。
[0123]
具体的连接方式,在上述说明中已经详细说明,此处不再赘述。通过上述连接方式,可以根据实际的使用环境,以及线缆3的导芯31与第二端23的实际状态,选择合适的连接方式或者连接方式组合,将线缆3的导芯31的至少部分与第二端23的至少部分稳定的连接在一起,实现有效的电性连接。
[0124]
在一实施方式中,连接端12上包含连接面13,第一端21的至少部分与连接面13至少部分接触连接;第二端23上包含接线面,接线面与导芯31的接触区域面积占接线面面积的5%以上。为了保证转接部2与线缆3导芯31有良好的电性连接,接线面与导芯31的接触面积是关键的特性,接触面积越大,接线面与导芯31之间的电压降就会越小,拉拔力就会越大,为了验证接线面与导芯31的接触区域面积占接线面面积的比例,与接线面与导芯31之间的电压降和拉拔力的关系,发明人选用了10组相同的转接部2与线缆3,并且在第二端23上都设置了相同的接线面,然后采用相同的超声波焊接方式,但是选用了接线面与导芯31不同的接触区域面积占接线面面积的比例,然后通电流测试接线面与导芯31之间的电压降,以及测试接线面与导芯31之间的拉拔力,将结果记录在表3之中。
[0125]
电压降的测试方法:将转接部2与线缆3放置在电压降检测台上,分别测试接线面与导芯31自身的电压值a和b,然后测试接线面到导芯31的电压值c,然后计算c

(a b)的值,作为接线面与导芯31连接点的电压降值。在本实施例中,电压降值大于4mv为不合格。
[0126]
拉拔力的测试方法,使用拉拔力试验机,分别将焊接后的接线面与导芯31固定在拉拔力试验机的两端夹具上,然后启动拉拔力试验机,使两端夹具以均匀的速度向相对的两个方向运动,并记录将导芯31从接线面上脱离时的拉拔力。在本实施例中,拉拔力小于1600n为不合格。
[0127]
表3:接线面与导芯31的接触区域面积占接线面面积的比例对接线面与导芯31之间的电压降和拉拔力的影响
[0128][0129]
从上表3中可以看出,当接线面与导芯31的接触区域面积占接线面面积的比例小于5%时,接线面与导芯31之间的电压降大于4mv,并且接线面与导芯31之间的拉拔力小于1600n,都属于不合格;而当接线面与导芯31的接触区域面积占接线面面积的比例大于5%时,接线面与导芯31之间的电压降和拉拔力都优于合格值,并且比例越大,接线面与导芯31的电学性能和力学性能越好,因此,发明人设定接线面与导芯31的接触面积占接线面面积的5%以上。
[0130]
在一实施方式中,转接部2利用板材冲压或切割折弯或机加工而成。利用板材加工成型,是目前金属加工工艺中比较简单而且成熟的工艺,而且板材也是容易获得的材料之一,如果转接部2形状不算复杂,利用板材加工工艺产生的废料,相对于车削、铣削等加工工艺产生的废料要少很多,是材料利用率较高的生产工艺之一。利用成熟的板材冲压工艺以及冲压模具,能够快速大批量的生产出成型的转接部2,另外也可以采用激光切割、水切割等先进加工工艺对板材先进行下料,然后采用折弯工艺进行成型,或者采用机加工的形式对板材进行加工,也能够降低生产成本,提高转接部2的生产效率。
[0131]
在一实施方式中,第一端21、弯折部22和第二端23的厚度,相差不超过35%。对于转接部2利用板材成型,板材的厚度一致为最佳,材料常见,并且使用冲压或切割折弯加工时,加工参数也能很稳定,但是由于连接端12或导芯31的形状多样,电能传输转接机构的空间和使用环境也是多种的,在某些情况下,需要使用不同宽度的第一端21、弯折部22和第二端23,为了保证转接部2的导通电流一致,转接部2各个位置的截面积相差不能过大,因此就需要采用不同厚度的第一端21、弯折部22和第二端23。
[0132]
为了验证第一端21、弯折部22和第二端23的厚度差异的百分比,与转接部2本身的电压降的影响,发明人选用了多个长度、宽度相同,弯折部22形状相同,不同第一端21、弯折部22和第二端23厚度的转接部2样件,并对转接部2两端的电压降进行测试,将测试结果记录在表4中。在本实施例中,电压降值大于4mv为不合格。
[0133]
需要说明的是,第一端21、弯折部22和第二端23的厚度差异的百分比,是指第一端21、弯折部22和第二端23中,最大厚度的值/最小厚度的值
×
100%。
[0134]
电压降的测试方法:采用厚度与样件最小厚度相同,其他尺寸和形状都相同的转接部2样件,在电压降检测台上测试两端的电压值为d,再采用本实施例中的厚度不相同的转接部2样件,在同样位置上测试两端的电压值为e,然后计算e

d的值,作为转接部2的电压降值。
[0135]
表4:厚度差异的百分比对转接部2的电压降的影响
[0136][0137]
从上表4可以看出,当第一端21、弯折部22和第二端23的厚度差异的百分比大于35%时,由于各部分截面积差异较大,转接部2的电压降值不符合合格值要求,当第一端21、弯折部22和第二端23的厚度相差不超过35%时,转接部2的电压降值为合格,因此,发明人将第一端21、弯折部22和第二端23的厚度设定为相差不超过35%。
[0138]
在一实施方式中,弯折区相邻两个平面的夹角为0
°‑
180
°
。折弯角度在0
°‑
180
°
之内,以方便适应转接部2不同的接线方向要求。如图5所示,转接部2有两个弯折区,弯折角度为相对的a
°
,从而将转接部2的第一端21和第二端23形成大致平行的两个平面。如图8所示,转接部2有一个弯折区,弯折角度为90
°
,可以将线缆3出线的方向,与电能传输部1轴向方向呈90
°
,满足不同方向出线的要求。在其他实施例中,由于电能传输转接机构的空间限制,或者有其他出线方向的要求,都可以改变弯折区相邻两个平面的夹角。
[0139]
在一实施方式中,弯折区的弯折处为圆弧状,弯折处的内部半径,不小于转接部2厚度的三分之一。需要说明的是,弯折区的弯折处一般采用冲压折弯,或者使用折弯机进行折弯,如果弯折区的内部半径过小甚至为零,则弯折处外部的半径也会很小,导致弯折处外部拉伸过大,弯折处应力集中,在后续的使用过程中,线缆3会由于将外部的晃动传递到转接部2的弯折区,如果弯折处应力集中,会导致弯折处因为晃动而断裂,从而使电能传输转接机构的功能失效,严重时会发生短路或发生燃烧事故。因此,为了使弯折处的应力分散,弯折区的弯折处内部半径都会大于等于转接部2厚度的三分之一。
[0140]
在一实施方式中,在弯折区切线方向上设置至少一个加强筋28,加强筋28为折弯区外部材料向内部凹陷形成。如图13所示,在弯折区采用冲压的方式,加工至少一个加强筋28,可以加强弯折区的强度,增加转接部2在弯折区承受的最大力,能够使板状的转接部2有更长的使用寿命。
[0141]
在一实施方式中,弯折区为扭曲状,第一端21的平面或纵向中心对称面,与第二端23的平面或纵向中心对称面的夹角为0
°‑
90
°
。当线缆3出线的方向,是针对转接部2比较特殊的角度时,只依靠弯折区简单的折弯形成的角度不满足时,需要将弯折区进行扭曲操作,使其能够实现第一端21的平面和第二端23的平面不再平行,而是呈一定的角度,当第一端21和第二端23不是平面时,可以将第一端21或第二端23纵向中心对称面作为参考面。此时线缆3的出线角度与电能传输部1轴向和径向都呈一定的角度。如图6所示,第一端21的平面与第二端23的平面的夹角为b
°

[0142]
在一实施方式中,转接部2的材质含有镍、镉、锆、铬、钴、锰、铝、锡、钛、锌、铜、银、金、磷、碲、铍、铅中的一种或多种。
[0143]
为了论证不同转接部2的材质对转接部2导电率的影响,发明人使用相同规格尺寸、不同材质的材料制作转接部2的样件,分别测试转接部2的导电率,实验结果如表5所示,在本实施例中,转接部2的导电率大于99%为理想值。
[0144]
表5:不同材质的转接部2对转接部2的导电率的影响
[0145][0146]
从表5可以看出,选用的金属材质制作的转接部2,导电率都在理想值范围内,另外,磷是非金属材料,不能直接作为转接部2的材质,但是可以添加到其他金属中形成合金,提高金属本身的导电和机械性能。因此,发明人设定转接部2的材质含有镍、镉、锆、铬、钴、锰、铝、锡、钛、锌、铜、银、金、磷、碲、铍、铅中的一种或多种。
[0147]
在一实施方式中,转接部2材质中含有碲铜合金,碲铜合金中碲的含量为0.1%~5%。使转接部2具有良好的导电性和易切削性能,保证电学性能,也能提高加工性。
[0148]
为了验证转接部2材质中,碲铜合金中碲的含量对转接部2的导电率的影响,发明人选用了10个相同形状的转接部2进行测试,每个转接部2的尺寸相同,转接部2的材质均为碲铜合金,其中碲的含量占比分别为0.05%、0.1%、0.2%、0.5%、0.8%、1.2%、2%、3%、5%、6%、7%。将转接部2通电流,检测相应的转接部2的导电率,测试结果如表6所示。在本实施例中,导电率大于99%为理想值。
[0149]
表6:不同碲含量的碲铜合金对转接部2导电率的影响
[0150][0151]
由表6可知,当碲的含量占比小于0.1%时或者大于5%时,导电率明显下降,不能满足导电率理想值要求。当碲的含量占比大于等于0.2%且小于等于1.2%时,导电性能最好,当碲的含量占比大于0.1%且小于0.2%时,或者大于1.2%且小于等于5%时,虽然导电率满足理想值要求,但是趋势是逐渐下降,导电性能也会下降。因此发明人选用碲的含量为0.1%

5%的碲铜合金。在最理想的情况下选用含量为0.2%

1.2%的碲铜合金。
[0152]
在一实施方式中,转接部2材质中含有铍铜合金,铍铜合金中铍的含量为0.05%~5%。优选地,转接部2材质中铍的含量为0.1%~3.5%。
[0153]
转接部2含有铍能够使转接部2具有很高的硬度、弹性极限、疲劳极限和耐磨性,还具有良好的耐蚀性、导热性和导电性,且受冲击时不产生火花。
[0154]
为了试验铍含量对转接部2的导电率的影响,发明人选用了10个相同形状、相同宽度的转接部2进行测试,每个转接部2均含有铍,其中铍的含量占比分别为0.03%、0.05%、0.1%、0.2%、1%、1.8%、3%、3.5%、5%、6%。测试结果如表7所示。在本实施例中,导电率大于99%为理想值。
[0155]
表7:不同铍含量对导电率的影响
[0156][0157]
由表7可知,当铍的含量占比小于0.05%时或者大于5%时,导电率明显下降,不能满足实际需求。当铍的含量占比大于等于0.1%且小于等于3.5%时,导电性能最好,因此发明人选用铍的含量为0.05%

5%的转接部2。在最理想的情况下选用铍含量为0.1%~3.5%的转接部2。
[0158]
在一实施方式中,转接部2材质中含有磷青铜合金,磷青铜合金中磷的含量为0.01%~1.5%。磷青铜优势是具备更好的耐蚀性、耐磨损,可保证转接部2接触良好,弹力好,并具有优良机械加工性能,可迅速缩短零件加工时间。
[0159]
为了试验磷含量对转接部2的导电率的影响,发明人选用了10个相同形状、相同宽度的转接部2进行测试,每个转接部2均含有磷,其中磷的含量占比分别为0.001%、0.005%、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%。测试结果如表8所示。在本实施例中,导电率大于99%为理想值。
[0160]
表8:不同磷含量对导电率的影响
[0161][0162]
由表8可知,当磷的含量占比小于0.01%时或者大于1.5%时,导电率明显下降,不能满足实际需求。当磷的含量占比大于等于0.05%且小于等于0.5%时,导电性能最好,因此发明人选用磷的含量为0.01%

1.5%的转接部2。在最理想的情况下选用磷含量为0.05%~0.5%的转接部2。
[0163]
在一实施方式中,转接部2材质中含有铅黄铜合金,铅黄铜合金中铅的含量为0.1%~5%。铅黄铜合金优势是强度高,组织致密均匀,耐蚀性好,切削、钻孔等机加工性能极佳。
[0164]
为了试验铅含量对转接部2的导电率的影响,发明人选用了10个相同形状、相同宽度的转接部2进行测试,每个转接部2均含有铅,其中铅的含量占比分别为0.05%、0.1%、0.5%、1%、2%、3%、4%、5%、6%、7%。测试结果如表:9所示。在本实施例中,导电率大于99%为理想值。
[0165]
表9:不同铅含量对导电率的影响
[0166][0167]
由表9可知,当铅的含量占比小于0.1%时或者大于5%时,导电率明显下降,不能满足实际需求。当铅的含量占比大于等于1%且小于等于3%时,导电性能最好,因此发明人选用铅的含量为0.1%

5%的转接部2。在最理想的情况下选用铅含量为1%~3%的转接部2。
[0168]
在一实施方式中,电能传输部1、导芯31和转接部2上至少部分设置镀层,以提高电能传输部1、导芯31和转接部2的耐腐蚀性,提高导电性能,能够更好的延长电能传输转接机构的使用寿命。
[0169]
在一实施方式中,至少部分连接面13不设置镀层。当电能传输部1与转接部2连接时,连接面采用焊接或压紧方式连接时,可以采用不设置镀层的方式,使两个连接面直接接触,能够减少接触电阻,降低电能传输部1与转接部2之间的电压降,提高电能传输转接机构的电学性能。
[0170]
在一实施方式中,至少部分连接面13上设置镀层,连接面13上的镀层为第一镀层。当电能传输转接机构所处的环境较为恶劣,需要有镀层进行提高耐腐蚀性;或者电能传输部1与转接部2的材质不同,需要有镀层金属进行过渡。此时需要在连接面13上设置镀层,为了与其他镀层区分,连接面13上的镀层为第一镀层。
[0171]
在一实施方式中,第一端21至少与连接面13接触的平面上不设置镀层。同样的,当电能传输部1与转接部2连接时,连接面采用焊接或压紧方式连接时,可以采用不设置镀层的方式,使两个连接面直接接触,能够减少接触电阻,降低电能传输部1与转接部2之间的电压降,提高电能传输转接机构的电学性能。
[0172]
在一实施方式中,第一端21至少与连接面13接触的平面上设置镀层,第一端21至少与连接面13接触的平面上的镀层为第二镀层。当电能传输转接机构所处的环境较为恶劣,需要有镀层进行提高耐腐蚀性;或者电能传输部1与转接部2的材质不同,需要有镀层金属进行过渡。此时需要在第一端21上设置镀层,为了与其他镀层区分,第一端21上的镀层为第二镀层。
[0173]
在一实施方式中,至少部分接线面不设置镀层,同样的,当导芯31与转接部2连接时,接线面采用焊接或压紧方式连接时,可以采用不设置镀层的方式,使两个面直接接触,能够减少接触电阻,降低导芯31与转接部2之间的电压降,提高电能传输转接机构的电学性能。
[0174]
在一实施方式中,至少部分接线面上设置镀层,接线面上的镀层为第三镀层。当电能传输转接机构所处的环境较为恶劣时,需要有镀层进行提高耐腐蚀性,此时需要在转接部2上设置镀层,为了与其他镀层区分,接线面上的镀层为第三镀层。
[0175]
在一实施方式中,导芯31上不设置镀层,同样的,当导芯31与转接部2连接时,连接面采用焊接或压紧方式连接时,可以采用不设置镀层的方式,使两个连接面直接接触,能够
减少接触电阻,降低导芯31与转接部2之间的电压降,提高电能传输转接机构的电学性能。
[0176]
在一实施方式中,至少部分导芯31上设置所述镀层,导芯31上的镀层为第四镀层。当电能传输转接机构所处的环境较为恶劣时,需要利用镀层提高导芯31的耐腐蚀性,此时需要在导芯31上设置镀层,为了与其他镀层区分,导芯31上的镀层为第四镀层。
[0177]
在一实施方式中,第一镀层材质、第二镀层材质、第三镀层材质与第四镀层材质不相同。即:第一镀层、第二镀层、第三镀层与第四镀层中,其中至少一个的材质与其它的不相同,可以是
[0178]
第一镀层的材质与第二镀层的材质、第三镀层的材质和第四镀层的材质不相同;或者
[0179]
第二镀层的材质与第一镀层的材质、第三镀层的材质和第四镀层的材质不相同;或者
[0180]
第三镀层的材质与第一镀层的材质、第二镀层的材质和第四镀层的材质不相同;或者
[0181]
第四镀层的材质与第一镀层的材质、第二镀层的材质和第三镀层的材质不相同。
[0182]
又或者,第一镀层、第二镀层、第三镀层与第四镀层中,两两材质相同,但与其他两个材质不相同,可以是
[0183]
第一镀层的材质与第二镀层的材质相同,第三镀层的材质和第四镀层的材质相同,但第一镀层的材质与第三镀层的材质不相同;或者
[0184]
第一镀层的材质与第三镀层的材质相同,第二镀层的材质与第四镀层的材质相同,但第一镀层的材质与第二镀层的材质不相同;或者
[0185]
第一镀层的材质与第四镀层的材质相同,第二镀层的材质与第三镀层的材质相同,但是第一镀层的材质与第二镀层的材质不相同,
[0186]
又或者,第一镀层、第二镀层、第三镀层与第四镀层中,有三个镀层的材质为不相同,可以是
[0187]
第一镀层的材质与第二镀层的材质相同,与第三镀层的材质和第四镀层的材质不相同;
[0188]
第一镀层的材质与第三镀层的材质相同,与第二镀层的材质和第四镀层的材质;
[0189]
第一镀层的材质与第四镀层的材质相同,与第二镀层的材质和第三镀层的材质不相同;
[0190]
第二镀层的材质与第三镀层的材质相同,与第一镀层的材质和第四镀层的材质不相同;
[0191]
第二镀层的材质与第四镀层的材质相同,与第一镀层的材质和第三镀层的材质不相同;
[0192]
第三镀层的材质与第四镀层的材质相同,与第一镀层的材质和第二镀层的材质不相同;
[0193]
在一实施方式中,第一镀层厚度、第二镀层厚度、第三镀层厚度与第四镀层厚度不相同。即:第一镀层、第二镀层、第三镀层与第四镀层中,其中至少一个的厚度与其它的不相同,可以是
[0194]
第一镀层的厚度与第二镀层的厚度、第三镀层的厚度和第四镀层的厚度不相同;
或者
[0195]
第二镀层的厚度与第一镀层的厚度、第三镀层的厚度和第四镀层的厚度不相同;或者
[0196]
第三镀层的厚度与第一镀层的厚度、第二镀层的厚度和第四镀层的厚度不相同;或者
[0197]
第四镀层的厚度与第一镀层的厚度、第二镀层的厚度和第三镀层的厚度不相同。
[0198]
又或者,第一镀层、第二镀层、第三镀层与第四镀层中,两两厚度相同,但与其他两个厚度不相同,可以是
[0199]
第一镀层的厚度与第二镀层的厚度相同,第三镀层的厚度和第四镀层的厚度相同,但第一镀层的厚度与第三镀层的厚度不相同;或者
[0200]
第一镀层的厚度与第三镀层的厚度相同,第二镀层的厚度与第四镀层的厚度相同,但第一镀层的厚度与第二镀层的厚度不相同;或者
[0201]
第一镀层的厚度与第四镀层的厚度相同,第二镀层的厚度与第三镀层的厚度相同,但是第一镀层的厚度与第二镀层的厚度不相同,
[0202]
又或者,第一镀层、第二镀层、第三镀层与第四镀层中,有三个镀层的厚度为不相同,可以是
[0203]
第一镀层的厚度与第二镀层的厚度相同,与第三镀层的厚度和第四镀层的厚度不相同;
[0204]
第一镀层的厚度与第三镀层的厚度相同,与第二镀层的厚度和第四镀层的厚度不相同;
[0205]
第一镀层的厚度与第四镀层的厚度相同,与第二镀层的厚度和第三镀层的厚度不相同;
[0206]
第二镀层的厚度与第三镀层的厚度相同,与第一镀层的厚度和第四镀层的厚度不相同;
[0207]
第二镀层的厚度与第四镀层的厚度相同,与第一镀层的厚度和第三镀层的厚度不相同;
[0208]
第三镀层的厚度与第四镀层的厚度相同,与第一镀层的厚度和第二镀层的厚度不相同;
[0209]
在一实施方式中,镀层材质含有金、银、镍、锡、锌、锡铅合金、银锑合金、钯、钯镍合金、石墨银、石墨烯银和银金锆合金中的一种或多种。大多数情况下,电能传输部1与转接部2都会使用铜材料,铜作为一种活泼金属,在使用过程中会与氧气和水发生氧化反应,因此需要一种或几种不活泼金属作为镀层,延长电能传输部1与转接部2的使用寿命。上述金属的导电性和稳定性,都要优于铜或铜合金,能够使电能传输部1与转接部2获得更好的电学性能和更长的使用寿命。
[0210]
为了论证不同镀层材质对电能传输部1与转接部2整体性能的影响,发明人使用相同规格、材质,采用不同镀层材料的电能传输部1与转接部2样件,做一系列耐腐蚀性时间测试,实验结果如表10所示。
[0211]
表10中的耐腐蚀性时间测试,是将电能传输部1与转接部2样件放入到盐雾喷淋试验箱内,对电能传输部1与转接部2样件的各个位置喷淋盐雾,每隔20小时取出清洗观察表
面腐蚀情况,即为一个周期,直到电能传输部1与转接部2样件表面腐蚀面积大于总面积的10%的时候,停止测试,并记录当时的周期数。在本实施例中,周期数小于80次认为不合格。
[0212]
表10:不同镀层材质对电能传输部1与转接部2样件耐腐蚀性的影响
[0213][0214]
从表10可以看出,当镀层材质含有常用的金属锡、镍、锌时,实验的结果不如其他选用的金属,选用其他金属的实验结果,超过标准值较多,性能比较稳定。因此,发明人选择镀层材质含有金、银、镍、锡、锌、锡铅合金、银锑合金、钯、钯镍合金、石墨银、石墨烯银和银金锆合金中的一种或多种。
[0215]
在一实施方式中,镀层采用电镀、化学镀、磁控溅射或者真空镀的方式设置。
[0216]
电镀方法,就是利用电解原理在金属表面上镀上一薄层其它金属或合金的过程。
[0217]
化学镀方法,是在金属的催化作用下,通过可控制的氧化还原反应产生金属的沉积过程。
[0218]
磁控溅射方法,是利用磁场与电场交互作用,使电子在靶表面附近成螺旋状运行,从而增大电子撞击氩气产生离子的概率,所产生的离子在电场作用下撞向靶面从而溅射出靶材。
[0219]
真空镀方法,是采用在真空条件下,通过蒸馏或溅射等方式在零件表面沉积各种金属和非金属薄膜。
[0220]
在一实施方式中,镀层包括底层和表层。镀层采用多层镀的方法,电能传输部1与转接部2在加工后,其表面微观界面下还是存在很多缝隙和孔洞,这些缝隙和孔洞是电能传输部1与转接部2在使用过程中磨损和腐蚀的最大原因。本实施方式中,在电能传输部1与转接部2的表面,先镀一层底层,填补表面的缝隙和孔洞,使电能传输部1与转接部2的表面平整无孔洞,然后再镀表层,就会结合更加牢固,也会更加平整,镀层表面无缝隙和孔洞,使电能传输部1与转接部2的耐磨性能、抗腐蚀性能、电学性能更优,极大的延长电能传输部1与转接部2的使用寿命。
[0221]
在一实施方式中,底层材质含有金、银、镍、锡、锡铅合金和锌中的一种或多种;表层材质含有金、银、镍、锡、锌、锡铅合金、银锑合金、钯、钯镍合金、石墨银、石墨烯银和银金锆合金中的一种或多种。
[0222]
在另一实施方式中,所述底层厚度为0.01μm~15μm,优选地,所述底层厚度为0.1μm~9μm。
[0223]
在另一实施方式中,所述表层厚度为0.5μm~55μm,优选地,所述表层厚度为1μm~35μm。
[0224]
为了论证底层镀层厚度变化对电能传输部1与转接部2整体性能的影响,发明人使用相同规格、材质,采用不同镀镍底层厚度,相同的镀银表层厚度的电能传输部1与转接部2
样件,做一系列温升测试和耐腐蚀性时间测试,实验结果如表11所示。
[0225]
温升测试是将连接后的电能传输部1与转接部2样件通相同的电流,在封闭的环境下检测通电前和温度稳定后的电能传输部1与转接部2样件相同位置的温度,并做差取绝对值。在本实施例中,温升大于50k认为不合格。
[0226]
耐腐蚀性时间测试,是将电能传输部1与转接部2样件放入到盐雾喷淋试验箱内,对电能传输部1与转接部2样件的各个位置喷淋盐雾,每隔20小时取出清洗观察表面腐蚀情况,即为一个周期,直到电能传输部1与转接部2样件表面腐蚀面积大于总面积的10%的时候,停止测试,并记录当时的周期数。在本实施例中,周期数小于80次认为不合格。
[0227]
表11:不同底层镀层厚度对电能传输部1与转接部2温升和耐腐蚀性的影响
[0228][0229]
从表11可以看出,当底层镀镍层厚度小于0.01μm时,该电能传输部1与转接部2样件的温升虽然合格,但是由于镀层太薄,电能传输部1与转接部2样件的耐腐蚀性周期数小于80,不符合电能传输部1与转接部2样件的性能要求,对该电能传输转接机构的整体性能和寿命都有很大的影响,严重时造成产品寿命骤减甚至导致燃烧事故。当底层镀镍层厚度大于12μm时,由于底层镀层较厚,该电能传输部1与转接部2样件产生的热量散发不出来,使该电能传输部1与转接部2样件的温升不合格,而且镀层较厚反而容易从电能传输部1与转接部2样件表面脱落,造成耐腐蚀性周期数下降。因此,发明人选择底层镀层厚度为0.01μm~12μm。
[0230]
优选地,发明人发现底层镀层厚度为0.1μm~9μm时,该电能传输部1与转接部2样件的温升及耐腐蚀性的综合效果更好,因此,为了进一步提高产品本身的安全性、可靠性及实用性,优选底层镀层厚度为0.1μm~9μm。
[0231]
为了论证表层镀层厚度变化对电能传输部1与转接部2整体性能的影响,发明人使用相同规格、材质,采用相同镀镍底层厚度,不同的镀银表层厚度的电能传输部1与转接部2样件,做一系列温升和耐腐蚀性时间测试,实验方法与上述实验方法相同,实验结果如表12所示。
[0232]
表12:不同表层镀层厚度对电能传输部1与转接部2温升和耐腐蚀性的影响
[0233][0234]
从表12可以看出,当表层镀银层厚度小于0.5μm时,该电能传输部1与转接部2样件的温升虽然合格,但是由于镀层太薄,电能传输部1与转接部2样件的耐腐蚀性周期数小于80,不符合电能传输部1与转接部2样件的性能要求,对该电能传输转接机构的整体性能和寿命都有很大的影响,严重时造成产品寿命骤减甚至导致燃烧事故。当表层镀银层厚度大于50μm时,由于表层镀层较厚,端子产生的热量散发不出来,使温升不合格,而且镀层较厚反而容易从电能传输部1与转接部2样件表面脱落,造成耐腐蚀性周期数下降。并且,由于表层镀层金属较贵,因此使用较厚的镀层,性能没有上升,不存在使用价值。因此,发明人选择表层镀银层厚度为0.1μm~50μm。
[0235]
优选的,发明人发现表层镀层厚度为1μm~35μm时,电能传输部1与转接部2样件的温升及耐腐蚀性的综合效果更好,因此,为了进一步提高产品本身的安全性可靠性及实用性,优选表层镀层厚度为1μm~35μm。
[0236]
在一实施方式中,导芯31的材质中含有铝。在电气连接领域,都在使用铜导线进行电流的传导,铜的导电率高,延展性好。但是,随着铜价日益上涨,使用铜材作为导线的材料成本会越来越高。为此,人们开始寻找金属铜的替代品来降低成本。金属铝在地壳中的含量约为7.73%,提炼技术优化后,价格相对较低,并且相对于铜,铝的重量较轻,导电率仅次于铜,铝在电气连接领域可以替代部分铜。因此,在汽车电气连接领域中以铝代铜是发展趋势。
[0237]
但是由于铜铝之间的电极电位差较大,铜材料的转接部2和铝导芯31直接连接后,铜铝之间会产生电化学腐蚀,铝易受腐蚀而导致连接面13电阻增大,易在电气连接中产生严重的后果,例如功能失效、火灾等。因此,需要在铜铝之间增加镀层,能够降低铜铝之间的电极电位差,提高铜铝之间的电学性能,同时极大的延长了电能传输转接机构的使用寿命。
[0238]
在另一实施方式中,当导芯31的材质中含有铝时,转接部2的材质也含有铝,此时导芯31和转接部2的连接可以不使用间隔金属进行过渡,可以直接使用压接或焊接或卡接或拼接或螺接的方式进行连接,但是需要在转接部2与电能传输部1之间,设置间隔金属进行过渡,防止铜铝之间的电化学腐蚀。
[0239]
在一实施方式中,电能传输部1与转接部2之间的接触电阻小于9mω。一般情况下,电能传输部1与转接部2之间需要导通较大电流,如果电能传输部1与转接部2之间的接触电阻大于9mω,则在接触位置会产生较大的温升,并且随着时间的增加,温度会越来越高,电能传输部1与转接部2之间的温度过高,一是会造成电能传输部1与转接部2之间由于材质不同,热膨胀率不同,导致的机械变形不同步,造成电能传输部1与转接部2之间产生内部应力,严重时会造成镀层的脱落,无法实现保护的作用。二是电能传输部1与转接部2过高的温度,会传导至转接部2连接的线缆3的绝缘层32,导致对应的绝缘层32熔化,无法起到绝缘保护的作用,严重时会导致线路短路造成连接结构损坏,甚至燃烧等安全事故。因此,发明人设定电能传输部1与转接部2之间的接触电阻小于9mω。
[0240]
为了验证电能传输部1与转接部2间的接触电阻对电能传输转接机构的温升和导电率的影响,发明人选用相同形状的电能传输部1与转接部2样件,设置为不同接触电阻,并进行导电率和温升的测试,
[0241]
导电率测试是将电能传输部1与转接部2连接后,将电能传输转接机构通电,检测相应的连接处的导电率,在本实施例中,导电率大于99%为理想值。
[0242]
温升测试是将该电能传输转接机构通相同的电流,在封闭的环境下检测通电前和温度稳定后的电能传输部1与转接部2样件相同位置的温度,并做差取绝对值。在本实施例中,温升大于50k认为不合格。
[0243]
表13:不同电能传输部1与转接部2之间的接触电阻对导电率和温升的影响
[0244][0245]
从上表13可以看出,当电能传输部1与转接部2样件的接触电阻大于9mω时,电能传输部1与转接部2样件的温升超过50k,同时,电能传输转接机构的导电率也小于99%,不符合标准要求。因此,发明人设定电能传输部1与转接部2之间的接触电阻小于9mω。
[0246]
在一实施方式中,导芯31与转接部2之间的接触电阻小于9mω。一般情况下,导芯
31与转接部2之间需要导通较大电流,如果导芯31与转接部2之间的接触电阻大于9mω,则在接触位置会产生较大的温升,并且随着时间的增加,温度会越来越高,导芯31与转接部2之间的温度过高,一是会造成导芯31与转接部2之间由于材质不同,热膨胀率不同,导致的机械变形不同步,造成导芯31与转接部2之间产生内部应力,严重时会造成转接部2镀层的脱落,无法实现保护的作用。二是导芯31与转接部2过高的温度,会传导至线缆3的绝缘层32,导致对应的绝缘层32熔化,无法起到绝缘保护的作用,严重时会导致线路短路造成连接结构损坏,甚至燃烧等安全事故。因此,发明人设定导芯31与转接部2之间的接触电阻小于9mω。
[0247]
为了验证导芯31与转接部2之间的接触电阻对电能传输转接机构的温升和导电率的影响,发明人选用相同形状的导芯31与转接部2样件,设置为不同接触电阻,并进行导电率和温升的测试,
[0248]
导电率测试是将导芯31与转接部2连接后,将电能传输转接机构通电,检测相应的连接处的导电率,在本实施例中,导电率大于99%为理想值。
[0249]
温升测试是将该电能传输转接机构通相同的电流,在封闭的环境下检测通电前和温度稳定后的导芯31与转接部2样件相同位置的温度,并做差取绝对值。在本实施例中,温升大于50k认为不合格。
[0250]
表14:不同导芯31与转接部2之间的接触电阻对导电率和温升的影响
[0251][0252]
从上表14可以看出,当导芯31与转接部2样件的接触电阻大于9mω时,导芯31与转接部2样件的温升超过50k,同时,电能传输转接机构的导电率也小于99%,不符合标准要求。因此,发明人设定导芯31与转接部2之间的接触电阻小于9mω。
[0253]
实施例二
[0254]
本发明还提供一种充电插座5,如图14所示,充电插座5包含上述的电能传输转接机构。使用此充电插座5,可以将线缆3的出线方向设定为充电插座5后端的任意方向,同时,也可以实现充电插座5的充电端子与线缆3不同轴的情况,能够为设计人员提供更多的设计选择,可以根据充电座安装环境,设计不同的出线方向,以及尽可能的减小充电插座5的体积,能够节省安装空间。
[0255]
实施例三
[0256]
本发明还提供一种机动车辆,机动车辆包括上述的电能传输转接机构或上述的充电插座5。可以减少充电插座5的安装空间,为其他电器的安装布置提供了方便。能够设置任意的出线方向,可以用最短的线缆3长度,与电池系统连接,节省线缆3材料,降低机动车辆
的成本。
[0257]
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献