一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种应用于空间站的锶原子光钟物理系统的制作方法

2021-11-24 23:43:00 来源:中国专利 TAG:


1.本发明属于原子光钟技术领域,具体涉及一种应用于空间站的锶原子光钟物理系统。


背景技术:

2.近二十年来光钟已经得到了飞速的发展,地面光钟频率稳定性和不确定性已经达到了10

18
量级,这已经较目前作为频率标准的铯原子钟提高了两个数量级。光钟的结构远比铯原子钟要复杂,因此在地面实验室中的光钟系统往往会占用几个平米的实验室面积。对于光钟系统中的关键部件,即光钟物理系统,其最主要的功能就是获得可以作为量子频率参考的超冷原子样品。而为了实现高质量的超冷原子团,光钟物理系统往往具有相对庞大的体积和重量,以便于对原子实现高效率的减速和囚禁。同时,由于光钟一般需要多个波长的激光协同工作且对多路激光的时序控制进行控制,因此,在光钟物理系统的周围必须布置复杂的光路,这也提高了光钟物理系统的体积和重量。
3.实际上,国内外众多研究小组已经开展了小型化可搬运光钟的研制,旨在研制一套体积小,重量轻,集成度高的光钟。2014年意大利实验小组实现了可搬运的
88
sr光钟,频率不确定度为7.0
×
10

15
。2017年德国ptb实现了车载
87
sr光钟,频率不确定度为7.4
×
10

17
,这是目前世界上已经报道可搬运光钟的最高精度。2020年日本h.katori研究小组研制了两台可搬运锶原子光晶格钟,其稳定度和不确定度达到了10

18
量级,并且利用这两台钟成功地验证了爱因斯坦广义相对论。国内中国科学院武汉物理与数学研究所实现了可搬运钙离子光钟,系统不确定度为7.8
×
10

17
。中国科学院国家授时中心开展了可搬运锶原子光钟的研制,已经实现了物理系统小型化和钟跃迁谱线探测。
4.由于太空中特殊的微重力环境非常有利于提高光钟的性能指标,使得空间冷原子光钟具有巨大潜力和广阔的应用前景。在可搬运光钟的基础上继续进行光钟的小型化是必然需求。目前国内外多个研究小组都积极开展了空间光钟的研制,最早开展的是欧空局的空间原子钟计划,目前仍处于地面原理样机的测试阶段。2018年欧盟空间光钟工程的合作单位德国杜赛尔多夫大学、德国物理技术研究院与英国伯明翰大学联合报道一台面向空间应用的
88
sr光晶格钟,器、其物理系统的体积约为99cm*60cm*45cm,不确定度达到了2.0
×
10

17
。美国也开展了相关研制工作,但是还没有实质的关于空间光钟的报道。
5.光钟物理系统可以分为物理真空腔体和外围光路两大部分。物理真空腔体是一套具有超高真空的金属腔体,在其上安装带有玻璃窗口的法兰用来实现激光对原子的操控以及对原子信号的探测。在物理真空腔体上还需要安装由铜导线缠绕的磁场线圈用来基于原子的磁光效应实现对原子的减速和俘获。物理真空腔体上还需要安装原子加热炉,产生气体原子。外围光路是有多种光机组件和光学元件构成,主要目的是构建俘获原子与探测光钟信号的光路。目前,在研的光钟物理系统为了实现最完美的运行状态,一般会使用多种体积庞大的装置,其中主要包括体积庞大的减速线圈、反亥姆霍兹线圈、剩磁补偿线圈、大窗口mot腔体、外置原子加热炉、大横截面积的原子束准直窗口、原子频率参考系统以及自由
度高但复杂的光路装置。体积庞大的线圈不仅产生了巨大的重量,而且由于线圈散热问题必须为通过水冷制冷,这大大提高了系统的复杂程度并且提高了系统长期运行的风险。大窗口的mot腔体虽然容易俘获更多的原子并在特殊条件下降低原子的碰撞,但是,这将导致mot腔体的体积与重量增加,并且为了维持如此大体积腔体内真空,就需要更大抽速且更庞大的离子泵。外置原子加热炉可以有效降低腔内的黑体辐射,但是也大大增加了系统的体积和长度。为了提高mot中俘获的原子,一般采用面积很大的准直窗口,这也是导致物理真空系统体积庞大的原因之一。另一方面,为了实现激光的频率失谐的稳定,一般会将461nm激光的中心频率锁定在一套外置的锶原子束上。这样就为必须在物理系统之外安装一套小心的真空系统和加热炉。锶原子光钟物理系统中要将16路激光耦合到物理系统中,而这些激光中由分为6种波长。使用传统商用光机装置与光学元件则需要搭建极为复杂的光路,而且大量的光学元件与镜架也提高了系统的不稳定度。
6.综上所述,传统的光钟物理系统具有结构复杂、体积大、重量大等缺点。因此,本技术提出一种应用于空间站的锶原子光钟物理系统。


技术实现要素:

7.为了克服上述现有技术存在的不足,本发明提供了一种应用于空间站的锶原子光钟物理系统。
8.为了实现上述目的,本发明提供如下技术方案:
9.一种应用于空间站的锶原子光钟物理系统,包括:
10.异形腔体,其内设置有用于加热锶样品产生锶原子气体的内加热原子炉;
11.mot腔体,其外壁上设置有用于俘获锶原子的反亥姆霍兹线圈和用于消除杂散磁场的剩磁补偿线圈;
12.塞曼减速器,设置在所述异形腔体和mot腔体之间;所述塞曼减速器包括两端分别与所述异形腔体和mot腔体密封连通的空心管道,所述空心管道的外壁上缠绕有多组减速器线圈;
13.所述内加热原子炉包括设置在所述异形腔体内的锶原子腔,所述锶原子腔内设置有用于固定锶样品的热电偶固定套,锶原子腔外壁上设置有加热丝,锶原子腔顶部设置有用于将锶原子气体按直线传输方式经过空心管道送入mot腔体内的准直器;
14.所述异形腔体和mot腔体上均设置有多个与各自内部连通的接口,二者均通过其中一个所述接口连通有用于形成真空的真空装置;其余所述接口上密封连接有观察窗,对准所述观察窗安装有用于原子俘获和光信号探测的光机组件。
15.优选地,所述空心管道的长度为18cm、外径为14mm、内径为6mm,其外壁上套设有5块呈圆弧结构的线圈挡板,两块相邻的所述线圈挡板之间设置有一组所述减速器线圈。
16.优选地,多组所述减速器线圈从所述mot腔体由近及远分别为第一减速器线圈、第二减速器线圈、第三减速器线圈和第四减速器线圈,所述第一减速器线圈和第四减速器线圈为15圈23层绕制结构,所述第二减速器线圈和第三减速器线圈为15圈10层绕制结构,所述减速器线圈由直径为1.5mm的铜漆包线绕制而成。
17.优选地,所述锶原子腔的外部套设有多个直径依次增加的热屏蔽筒,多个所述热屏蔽筒的端部设置有顶板,所述准直器包括贯穿所述顶板的固定座,所述固定座中部设置
有准直器芯,所述准直器芯的端面上贯穿设置有多个间隔均匀的透气孔,每个所述透气孔的长度方位与水平方向同向,所述陶瓷锶原子腔底部安装有用于测量炉内温度的pt100热偶电阻。
18.优选地,所述异形腔体与所述空心管道的连接端处设置有多个所述观察窗,多个所述观察窗分别位于所述异形腔体的上表面、下表面、正面和背面。
19.优选地,所述mot腔体呈中空柱状结构,mot腔体环向设置有12个与其内部连通的所述接口,mot腔体的上表面和下表面分别设置有一个接口;环向上的其中一个与其内部连通的接口与所述空心管道密封连接,一个接口处设置有真空装置安装腔,其余接口上均密封设置有一个所述观察窗。
20.优选地,所述反亥姆霍兹线圈为一对分别设置于所述mot腔体上部和下部的空心线圈,两个反亥姆霍兹线圈的直径均为33mm,两个反亥姆霍兹线圈之间的中心间距为33mm,两个反亥姆霍兹线圈均为16圈20层绕制结构;所述剩磁补偿线圈为6个矩形线圈,每个矩形线圈均为5圈5层绕制结构,6个矩形线圈形成立方体空心线圈组环绕在mot腔体外侧的上部和下部,反亥姆霍兹线圈位于立方体空心线圈组内部,所述反亥姆霍兹线圈和剩磁补偿线圈均由直径为1mm的铜漆包线绕制而成。
21.优选地,所述真空装置包括连接法兰,所述异形腔体和mot腔体通过所述连接法兰与真空装置连通;所述连接法兰内固定设置有陶瓷杆,所述陶瓷杆上沿周向套设有多片间隔均匀排布的吸气剂环,两片相邻的所述吸气剂环之间设置有环形钛片,多片吸气剂环外部设置有安装筒,所述安装筒外壁上镂空设置有多个缺口;连接法兰的一端设置有与其连通的集气腔,所述集气腔上设置有密封接头;所述连接法兰的外壁上贯穿密封设置有加热电极。
22.优选地,所述连接法兰的自由端通过钛泵接管与所述异形腔体上的接口密封连接,所述真空装置通过真空装置安装腔与所述mot腔体上的接口密封连接。
23.优选地,所述光机组件包括安装在所述观察窗上的反射镜套筒,所述反射镜套筒上设置有与水平面的夹角为45
°
的反射镜,反射镜顶部设置有用于输入激光的光纤扩束器。
24.本发明提供的应用于空间站的锶原子光钟物理系统具有以下有益效果:
25.(1)本发明相比传统的锶原子光钟物理系统,通过对物理真空腔体的合理性小型化,在仅损失少量原子与光钟指标的情况下,获得最小的光钟物理真空腔体设计,系统体积小、重量轻、能耗低、结构简单紧凑。体积为60cm*42cm*28cm,是目前国内外报道的可以运转的最小的光钟物理系统。由于使用了更小尺寸的腔体,磁场线圈的体积和重量大大减小。
26.(2)在本发明中,由于使用了内径为11mm的mot管道和直径为16mm的观察窗,可以使用更小的激光光斑,也可以使用小型化的光路设计。从空心管道、观察窗、光斑、以及光学元件的小型化可以达到系统小型化、轻量化以及低功耗的目的。由于将内加热原子炉设置在异形腔内,热电效率相比外加热炉大大提高,目前内加热炉的功耗仅为14w,并且通电工作时产生的热量很小,表面最高温度最高仅40℃。
27.(3)高度集成的光路设计不仅提高系统的稳定性,而且使得拆解与安装物理系统的光路部分变得十分简单快捷,大大简化了光路部分的维修时间与难度。
28.(4)集成化的锶原子频率参考装置:。将外置的锶原子参考炉集成到物理系统内部,实现将461nm激光频率直接锁定在物理系统内部。
29.(5)高度集成的光路装置:计小型化且高度集成的外围辅助光路装置,可完全实现基于单边极化谱的光钟闭环需求。
附图说明
30.为了更清楚地说明本发明实施例及其设计方案,下面将对本实施例所需的附图作简单地介绍。下面描述中的附图仅仅是本发明的部分实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
31.图1为本发明实施例1的应用于空间站的锶原子光钟物理系统的结构示意图;
32.图2为锶原子光钟物理系统去掉光机组件后的结构示意图;
33.图3为锶原子光钟物理系统的内部结构示意图;
34.图4为内加热原子炉的内部结构示意图;
35.图5为真空装置与异形腔体连接的内部结构示意图;
36.图6为光机组件的结构示意图;
37.图7为减速器线圈的结构示意图。
38.附图标记说明:
39.1、异形腔体;2、mot腔体;3、塞曼减速器;4、空心管道;5、减速器线圈;601、第一减速器线圈;602、第二减速器线圈;603、第三减速器线圈;604、第四减速器线圈;7、内加热原子炉;701、锶原子腔;702、热电偶固定套;703、加热丝;704、热屏蔽筒;705、顶板;8、准直器;801、固定座;802、准直器芯;9、反亥姆霍兹线圈;10、剩磁补偿线圈;11、真空装置;1101、连接法兰;1102、陶瓷杆;1103、吸气剂环;1104、环形钛片;1105、集气腔;1106、密封接头;1107、加热电极;12、观察窗;13、光机组件;1301、反射镜套筒;1302、反射镜;1303、光纤扩束器;14、线圈挡板;15、真空装置安装腔。
具体实施方式
40.为了使本领域技术人员更好的理解本发明的技术方案并能予以实施,下面结合附图和具体实施例对本发明进行详细说明。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
41.在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明的技术方案和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
42.此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。在本发明的描述中,需要说明的是,除非另有明确的规定或限定,术语“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体式连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以是通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上,在此不再详述。
43.实施例1
44.本发明提供了一种应用于空间站的锶原子光钟物理系统,具体如图1至7所示,包括异形腔体1和mot腔体2。异形腔1的功能是安装内加热原子炉7、及真空复合泵11、实现461nm激光锁频、实现原子束的激光准直与真空制备。异形腔体1和mot腔体2之间设置有塞曼减速器3,塞曼减速器3包括两端分别与异形腔体1和mot腔体2密封连接的空心管道4,空心管道4的外壁上缠绕有减速器线圈5。本实施例中的异形腔体1和mot腔体2为真空腔体,进行原子操控的区域,内部要求超高真空。作为塞曼减速器3的一种具体设置,空心管道4的长度为18cm,外径为14mm,内径为6mm,空心管道4的外壁上套设有5块呈圆弧结构的线圈挡板14,线圈挡板14为无磁不锈钢挡板。如图7所示,减速器线圈5有四组,分别设置在空心管道4上两块相邻的线圈挡板14之间,从mot腔体2由近及远分别设置有第一减速器线圈601、第二减速器线圈602、第三减速器线圈603和第四减速器线圈604,其中第一减速器线圈601和第四减速器线圈604为15圈23层绕制结构,第二减速器线圈602和第三减速器线圈603为15圈10层绕制结构,减速器线圈5由直径为1.5mm的铜漆包线绕制而成。使用恒流源为线圈供电可以产生足以使原子减速的磁场,其中电流最大值为2.3a。
45.传统的光钟物理系统为了使得原子炉中喷出的最可几原子速度降到理想值往往需要设计大于8组线圈的减速器;本发明因为空心管道4选型的设置,使得本发明可以使用4组减速器线圈5也可以实现将足量的原子速度降到理想值;制作时首先将5块线圈挡板14焊接到空心管道4上,然后开始缠绕线圈,并用胶固定。
46.异形腔1和mot腔体2上均设置有多个与其内部连通的接口;异形腔内设置有用于加热锶样品产生锶原子气体的内加热原子炉7,内加热原子炉7通过接口连接实现与异形腔1密封连接。如图4所示,内加热原子炉7包括设置在异形腔体1内的锶原子腔701,锶原子腔701内设置有用于固定锶样品的热电偶固定套702,锶原子腔701外壁上设置有与外部电源电性连接的加热丝703,锶原子腔701端部设置有用于将锶原子气体直线经过空心管道4送入mot腔体2的准直器8。
47.具体地,锶原子腔701的外部套设有多个直径依次增加的热屏蔽筒704,多个热屏蔽筒704的端部设置有顶板705,准直器8包括贯穿顶板705的固定座801,固定座801中部设置有准直器芯802,准直器芯802的端面上贯穿设置有多个间隔均匀的透气孔,每个透气孔的长度方位与水平方向同向。
48.将内加热原子炉7集成设置在异形腔1内,以减小加热原子炉占用空间,内加热原子炉7为集成化设计的产品,通过四根引脚线与外部电源电性连接,实现原子炉的加热与测温,可以通过在陶瓷锶原子腔701底部安装pt100热偶电阻用于炉内温度的测量。盛在陶瓷锶原子腔701的金属锶样品被加热丝703加热产生锶原子气体,随后锶气体通过准直器芯802喷入物理真空腔内。
49.多个直径依次增加的热屏蔽筒704的设置实现最高效率的热传导,从而降低功耗,同时因为异形腔内部为真空环境,内加热原子炉7热耗散相比于外加热方式大大降低,因此加热效率与保温效果得到了显著提高,这也将降低整个系统的功耗。
50.mot腔体2外壁上设置有用于俘获锶原子的反亥姆霍兹线圈9和用于消除杂散磁场的剩磁补偿线圈10。
51.反亥姆霍兹线圈9为一对分别设置于mot腔体2上部和下部的空心线圈,两个反亥姆霍兹线圈9的直径均为33mm,两个反亥姆霍兹线圈9之间的中心间距为33mm,两个反亥姆
霍兹线圈9均为16圈20层绕制结构;反亥姆霍兹线圈9在外部工装上缠绕完成后,通过压板和硅橡胶安装在mot腔体2上,保证反亥姆霍兹线圈9的效果最佳;反亥姆霍兹线圈9和剩磁补偿线圈10均由直径为1mm的铜漆包线绕制而成。
52.剩磁补偿线圈10为6个矩形线圈,每个矩形线圈均为5圈5层绕制结构,每个矩形线圈使用1mm直径铜漆包线按照5匝5层绕制,6个矩形线圈形成立方体空心线圈组环绕在mot腔体2外侧的上部和下部,上下两个矩形线圈与mot腔体2焊接固定连接,反亥姆霍兹线圈9位于立方体空心线圈组内部。为了提高mot腔的机械稳定性,剩磁补偿线圈10通过一体加工的方式与mot腔体2进行了集成设计,以减小整个系统的占用体积。
53.异形腔体1和mot腔体2均通过接口连通有用于形成真空的真空装置11。图5为真空装置11与异形腔体1连接的内部结构示意图,真空装置11包括连接法兰1101,连接法兰1101将异形腔体1与真空装置11连通。连接法兰1101内固定设置有陶瓷杆1102,陶瓷杆1102上沿周向套设有多片间隔均匀排布的吸气剂环1103,两片相邻的吸气剂环1103之间设置有环形钛片1104,多片吸气剂环1103外部设置有安装筒,安装筒外壁上镂空设置有多个缺口;连接法兰1101的一端设置有与其连通的集气腔1105,集气腔1105上设置有密封接头1106;连接法兰1101的外壁上贯穿密封设置有加热电极1107。吸气剂环1103的设置,满足空间应用中对运输、储存、安装的需求,真空装置11抽速为100l/s,以满足空间光钟物理系统的超高真空维持需求。
54.当物理系统处于运输储存状态时,整个系统没有供电情况下,可以由吸气剂环1103吸附真空腔内部放出的气体,从而保持腔内高真空状态;当制备真空时,真空装置11连接到异形腔体1上对物理真空腔体进行抽气。抽气结束后,使用高强度液压钳夹紧铜管实现真空保持。
55.具体的,针对于真空装置11与异形腔体1的连接,连接法兰1101的自由端通过钛泵接管与异形腔体1上的接口密封连接,异形腔体1上与连接法兰1101相对的接口上连通有铜管法兰。针对于真空装置11与mot腔体2的连接,真空装置11通过真空装置安装腔15与mot腔体2上的接口密封连接。
56.异形腔体1和mot腔体2上均设置有多个带有透明窗片的观察窗12,每个观察窗12均与其对应的一个接口密封连接;具体地,异形腔体1与空心管道4的连接端处设置有多个观察窗12,多个观察窗12分别位于异形腔体1的上表面、下表面、正面和背面,便于实现异形腔体1连接端处锶原子气体的准直和锶原子荧光的探测过程。观察窗12附近设计了凸台,用于安装外围光路。
57.mot腔体2呈中空柱状结构,mot腔体2环向设置有12个与其内部连通的接口,mot腔体2的上表面和下表面分别设置有一个接口;环向上的其中一个接口与空心管道4密封连接,一个接口与真空装置安装腔15连通,其余接口上均密封设置有一个观察窗12,异形腔体1和mot腔体2上均设置有多个对准观察窗12安装的用于俘获原子与探测光钟信号的光机组件13。mot腔体2上多个接口和观察窗12的设置,便于集成布置光机组件13,形成的光路结构简单,分布合理紧凑,实现了整个锶原子光钟物理系统的小型化。
58.本实施例中,光机组件13共有14套。如图6所示,光机组件13包括安装在观察窗12上的反射镜套筒1301,反射镜套筒1301上设置有与水平面的夹角为45
°
的反射镜1302,反射镜1302顶部设置有用于输入激光的光纤扩束器1303。相比于传统的分立镜架搭建的光路,
集成化设计的光路结构更加紧凑,更方便系统的维护。
59.实施例2
60.如图1~7所示,本实施例在实施例1的基础上做出进一步限定,本实施例主要是对异形腔体1和mot腔体2的具体结构做出进一步的限定:异形腔体1上设置有2个cf35法兰接口、9个cf16法兰接口和1个直接为12mm的输出口;2个cf35法兰接口的中心线均与异形腔体1一端之间的夹角为90度,其中一个cf35法兰接口用于安装真空装置11,安装有真空装置11的cf35法兰接口的轴线与原子束喷射方向垂直,且cf35法兰接口侧设置有一个用于安装真空阀门的cf16法兰接口,而另外一个cf35法兰接口用于安装内加热原子炉7,安装有内加热原子炉7cf35法兰接口的轴线与原子束喷射方向平行;本实施例中,异形腔体1靠近塞曼减速器3的一侧设置有双排上下左右互通的8个cf16法兰窗口,并安装玻璃窗口法兰。剩余的8个cf16法兰接口的中心线均与输出口的中心线垂直,8个cf16法兰接口平均分为两组,每组cf16法兰接口的中心轴线的夹角为90度,靠近内加热原子炉7的一组cf16法兰接口用于安装荧光探测光路实现激光锁频,靠近输出口的一组cf16法兰接口用于安装原子束准直光路;空心管道4的一端安装在输出口。异形腔体1功能是集成安装内加热原子炉7和真空装置11,同时可以满足锶原子荧光谱探测和原子束激光准直的使用要求,最后,锶原子蒸汽从异形腔体1传导给塞曼减速器3。
61.mot腔体2的中心处为冷原子团所在位置,原子团所在水平面设计14个接口,其中13个cf16法兰接口,1个为直径14mm的光滑孔,光滑孔用来焊接塞曼减速器3的空心管道4;原子团的垂直平面上设计两个对称的观察窗12,上下各一个。
62.多个cf16法兰接口的端面与mot腔体2的中心的直线距离为75mm,多个cf16法兰接口上安装11路光机组件,最终用来实现激光减速、激光俘获、光晶格装载、钟跃迁探测、荧光探测、再泵浦的功能,其中为了保持整个系统的力学特性,mot腔体2外侧壁上设置有真空装置安装腔15,真空装置安装腔15的轴线与空心管道4的轴线垂直,真空装置11依次通过cf35法兰接口、真空装置安装腔15与mot腔体2上的cf16法兰接口连通。
63.本实施例提供的锶原子光钟物理系统的总体积约为60cm*42cm*28cm。
64.综上,本发明相比传统的锶原子光钟物理系统,体积小、重量轻、能耗低、结构简单紧凑。由于使用了更小尺寸的腔体,磁场线圈的体积和重量大大减小,并且通电工作时产生的热量很小,表面最高温度最高仅40℃。在本发明中,由于使用了内径为11mm的mot管道和直径为16mm的观察窗12,可以使用更小的激光光斑,也可以使用小型化的光路设计。从空心管道4、观察窗12、光斑、以及光学元件的小型化可以达到系统小型化、轻量化以及低功耗的目的。由于将内加热原子炉7设置在异形腔内,热电效率相比外加热炉大大提高,目前内加热炉的功耗仅为14w。高度集成的光路设计不仅提高系统的稳定性,而且使得拆解与安装物理系统的光路部分变得十分简单快捷,大大简化了光路部分的维修时间与难度。
65.以上所述实施例仅为本发明较佳的具体实施方式,本发明的保护范围不限于此,任何熟悉本领域的技术人员在本发明披露的技术范围内,可显而易见地得到的技术方案的简单变化或等效替换,均属于本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献