一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

执行器受限航天器交会系统的动态触发有限时间控制方法

2023-02-04 17:30:34 来源:中国专利 TAG:


1.本发明涉及一种航天器轨道交会空间操作控制方法,具体涉及一种网络环境下执行器受限航天器交会控制系统的动态事件触发有限时间控制方法。


背景技术:

2.自从人类发射第一颗人造卫星以来,航天技术得到了极速发展,已经对人类的生活产生了极大的影响。航天器交会技术是实现如空间站的在轨装配、维修等一系列高级操作的先决条件,是执行深空任务的重要核心科技之一。另一方面,随着网络技术的完善,网络化控制系统已经在航空航天、设备制造和过程控制等领域得到了广泛的应用。尽管网络化控制系统具有灵活性强、易于安装、节约成本等优势,但是由于网络化控制系统是集控制、资源、通信、计算为一体的智能控制系统,其往往包含多个同时进行的控制任务与大量的数据传输,因此势必要考虑系统中计算和通信资源受限的问题。
3.由于受到功率限制航天器的推进器只能产生有限的加速度,如果在进行控制器的设计中只考虑被控对象的控制性能而忽视执行器的饱和非线性进行控制器设计,通常会造成系统的控制性能降低,甚至有时会导致系统的不稳定和控制元件的损坏,造成严重的事故和灾难。因此执行器受限问题也是航天器轨道交会中需要考虑的重要问题之一。
4.响应时间和收敛速度是判断系统控制器优劣的重要指标。传统的控制方法大多只能够实现闭环系统渐近稳定,即系统状态随时间趋于无穷而收敛到平衡点。而有限时间控制器实现了闭环系统在有限时间内收敛到期望状态的需求,在提高响应速度的同时又能够获得更高稳态精度和更强的干扰抑制能力。已有研究成果的大量仿真表明有限时间控制对干扰和不确定性的抑制能力大于传统的渐近控制。因此针对航天器交会系统设计有限时间控制器具有重要的工程意义。


技术实现要素:

5.本发明的目的是提供一种执行器受限航天器交会系统的动态触发有限时间控制方法,以解决在网络环境下实现执行器受限情形下的航天器有限时间交会任务的同时,节省通信资源。
6.本发明的目的是通过以下技术方案实现的:
7.一种执行器受限航天器交会系统的动态触发有限时间控制方法,包括如下步骤:
8.步骤一:建立执行器受限航天器交会控制系统的轨道动力学模型,并得到相应的状态空间方程;
9.步骤二:建立参量lyapunov方程和动态事件触发机制,通过利用参量lyapunov方程的独有性质,设计执行器受限情形下的基于动态事件触发机制的线性反馈控制律,即设计执行器受限航天器交会控制系统的基于动态事件触发机制的状态反馈控制器,保证在节省通信资源的情况下追踪航天器和目标航天器在有限时间t0内完成交会任务。
10.相比于现有技术,本发明具有如下优点:
11.1、本发明提出了一种不同与以往的控制器设计方法,该方法最显著的优点是:针对执行器受限的航天器交会控制系统,通过参量lyapunov方程,设计基于动态事件触发机制的控制律,并保证在追踪航天器和目标航天器在有限时间t0内完成交会任务的同时,证明最小触发时间间隔的存在,也就是避免zeno现象的发生。
12.2、本发明通过求解参量lyapunov方程,得到控制受限情形下的显式动态事件触发有限时间反馈控制律,并且仿真结果说明:(1)基于动态事件触发的反馈控制律的闭环系统在有限时间内t0收敛到平衡点;(2)本发明所设计的动态事件触发有限时间控制器比一般的静态事件触发有限时间控制器在更短的时间内收敛到平衡点;(3)无论是最小触发时间间隔还是平均触发时间,本发明所设计的动态事件触发有限时间控制算法都远大于一般的静态事件触发有限时间控制算法,也就是本发明所设计的动态事件触发有限时间控制算法的触发次数都远低于一般的静态事件触发有限时间控制算法。
附图说明
13.图1是本发明实施例中表示航天器的相对距离,即
14.图2是不同控制器下控制信号的模,即变化曲线;
15.图3是不同算法下,每个触发时间间隔的具体值。
具体实施方式
16.下面结合附图对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
17.本发明提供了一种执行器受限航天器交会系统的动态触发有限时间控制方法,所述方法包括如下步骤:
18.步骤一:建立执行器受限航天器交会控制系统的轨道动力学模型,并得到相应的状态空间方程。具体步骤如下:
19.步骤一一、建立航天器交会控制系统的数学模型:
20.目标航天器和追赶航天器的非线性相对运动方程为:
[0021][0022]
其中,r=r0 x1,r0是目标航天器的轨道半径。引入目标航天器轨道坐标系o-x1x2x3,其原点o位于目标航天器的质心,x1轴沿着轨道半径方向,x2轴沿着目标航天器的飞行方向,x3轴指向轨道平面外且与x1轴和x2轴一起构成右手坐标系,是在追赶航天器推力器上的归一化了的加速度矢量,a1,a2,a3为推力器在x1轴、x2轴和x3轴方向上产生的加速度,u为归一化输入向量,其中u1,u2,u3分别是推
力器在x1轴、x2轴和x3轴方向上产生的归一化加速度,表示推力器在三个方向上提供的最大加速度,x1,x2,x3是定义坐标原点在目标航天器质心上右手坐标系下,追赶航天器相对目标航天器的位置,η=gm是引力参数,m是星体的质量,g是引力常数,目标航天器的轨道速率为ω=η
1/2r3/2

[0023]
步骤一二、当推力器在三个方向上提供的最大加速度相同时,定义是状态向量,线性化后的方程为:
[0024][0025]
公式(2)即为航天器交会控制系统的状态空间方程,其中:a是航天器交会控制系统的状态矩阵,b为航天器交会控制系统的输入矩阵;其中sign是数学中的符号函数,min{1,||u||}表示取1和||u||的最小值,
[0026]
本发明中,所述航天器交会控制系统的状态矩阵a和输入矩阵b为:
[0027][0028]
其中,i3表示3阶单位矩阵。与此同时,从矩阵a的结构可知的特征值a都在虚轴上。
[0029]
步骤二:建立参量lyapunov方程和动态事件触发机制,通过利用参量lyapunov方程的独有性质,设计执行器受限情形下的基于动态事件触发机制的线性反馈控制律,即设计执行器受限航天器交会控制系统的基于动态事件触发机制的状态反馈控制器。具体步骤如下:
[0030]
步骤二一、构建参量lyapunov方程:
[0031]at
p(γ) p(γ)a-p(γ)bb
t
p(γ) γp(γ)=0
ꢀꢀ
(3);
[0032]
其中,γ是方程(3)中的时变参数,由它的导数
[0033][0034]
所决定,这里θ为接下来设计的一个动态变量;γ的初值γ0>0为待设计的常数;α为待设计的参数;为矩阵p=p(γ)对γ的导数;δc=δc(γ0)≥1是有关于γ0的常数,等于:
[0035][0036]
其中,sup代表满足特定条件的值的上界,n为系统方程(2)的阶数;λ
max
(u(γ)w-1
(γ))表示矩阵u(γ)w-1
(γ)的最大特征值;w-1
(γ)=p(γ),u(γ)是以下公式(6)的唯一
正定解;
[0037][0038]
其中,i6表示6阶单位矩阵;标量δc(γ0)可通过离散γ得到;
[0039][0040]
其中,γb=γ0 bδγ,δγ是一个充分小的正数,称作步长,q是一个充分大的数。
[0041]
公式(3)所示的参量lyapunov方程存在唯一正定解p(γ)且p(γ)具有以下性质;
[0042]
性质1:
[0043]
pbb
t
p≤nγp
ꢀꢀꢀ
(8);
[0044]
性质2:
[0045][0046]
其中,π
γ
=2n2γ
2-nγ
2-2tr(a2)随着γ的增大而增大,其中tr(a2)表示矩阵a2的迹;
[0047]
性质3:当γ趋于正无穷时,p(γ)也趋于正无穷;
[0048]
性质4:满足且与p(γ)的关系为:
[0049][0050]
性质5:让则对于任意时间t大于等于时间ti有:
[0051]
pebb
t
pe≤n(γ(t)-γ(ti))pe≤nγ(t)pe≤nγ(t)p(γ(t))
ꢀꢀ
(11);
[0052]
其中,pe=p(γ(t))-p(γ(ti)),这里的γ(t)和γ(ti)代表参数γ在时间t和ti的值,p(γ(t))和p(γ(ti)分别代表方程(3)在时间t和ti处的解。由于需要频繁地利用跟时间t和时间ti有关的变量,因此定义如下命名规则:γ=γ(t),p=p(γ(t)),γi=γ(ti),其中i∈n的初始值为0,t0=0,n代表非负整数。
[0053]
步骤二二、构建物理可实现动态事件触发有限时间反馈控制器:
[0054]
步骤二二一、构建一个动态变量:
[0055][0056]
其中这里e为测量误差,定义如下:
[0057][0058]
这里的xi=x(ti)代表系统状态在时间ti处的值。与此同时,定义:
[0059][0060]
步骤二二二、定义基于式(3)的动态事件触发控制器:
[0061]
[0062]
这里时间ti由以下动态事件触发机制决定:
[0063][0064]
其中,inf代表满足特定条件的值的下界。
[0065]
步骤二二三、观察γ的定义(也就是公式(4))可知,γ会在某一时刻t0趋于正无穷,其中由性质3可得γ趋于正无穷,则p(γ)趋于正无穷;因此基于式(15)的动态事件触发机制的反馈控制器是物理不可实现的。此外,γ在时间区域t∈[t0, ∞)内没有被定义,导致控制器(15)在时间区域t∈[t0, ∞)内也没有被定义。为了设计物理可实现的控制器,给出一种γ的设计方法:
[0066][0067]
其中,γ
*
是一个足够大的常数,是在足够接近于t0的时间t
*
(t
*
<t0)时刻γ的值。另外,当t>t
*
时,由于因此且动态事件触发机制变为:
[0068][0069]
这里的p
γ*
是方程(3)中当γ=γ
*
时的唯一正定解。
[0070]
由此而来完成了可以物理实现的执行器受限的航天器交会控制系统的动态事件触发有限时间反馈控制器的设计。
[0071]
步骤三:通过构造显式的lyapunov函数,利用参量lyapunov方程解的设计控制器,保证在节省通信资源的情况下追踪航天器和目标航天器在有限时间t0内完成交会任务,并证明最小触发时间间隔的存在,也就是避免zeno现象的发生。具体步骤如下:
[0072]
步骤三一、闭环系统的lyapunov稳定性检验:
[0073]
由系统(2)和控制器(15)组成的闭环系统为:
[0074][0075]
定义以下凸包:
[0076]
εd(γ)={nγ(x
t
px θ)≤1}
ꢀꢀ
(20);
[0077]
定义lyapunov函数:
[0078]
w(x,θ)=nγ(x
t
px θ);
[0079]
定义b=[b1,b2,b3],则当(x,θ)∈εd(γ)时,利用性质1可得:
[0080]
[0081]
其中,bk表示为矩阵b的第k列。由式(21)可知对于任意的k=1,2,3可知:
[0082][0083]
由此,公式(19)可以继续写成:
[0084][0085]
由此可知lyapunov函数w(x,θ)沿着由闭环系统(19)和(12)的时间导数为:
[0086][0087]
由式(23)可得:
[0088][0089]
式(23)表示:对于任意的w(x(0),θ(0))∈εd(γ0),可得w(x,θ)≤4,其中x(0),θ(0)是公式(19)闭环控制系统和虚拟变量(12)在t=0时刻的状态。
[0090]
步骤三二、动态事件触发控制器(15)下的最小触发时间间隔的计算:
[0091]
由性质1和性质2可得:
[0092][0093]
由此可得:
[0094][0095]
这表明触发时间间隔不小于函数从0到的时间。
[0096]
由式(4)和(10)得:
[0097][0098]
由此可知:
[0099][0100]
结合式(13)、(22)和pe=p(γ(t))-p(γ(ti))可得:
[0101][0102]
其中,由此和三角不等式可得:
[0103][0104]
这里同样也利用了性质1和性质2,其中再次利用三角不等式可得:
[0105][0106]
由此并利用公式(3)和(22)可知:
[0107][0108]
其中,再次利用到了性质1和性质5。由公式(28)和(29)可知:
[0109][0110]
这里也利用了γi≤γ≤γ
*
,其中利用(12)和(23)有:
[0111][0112]
由此和可得:
[0113][0114]
由(26)、(30)和(32)可知公式(27)可以继续写成:
[0115][0116]
定义变量q1=q1(t),其满足接下来的微分方程:
[0117][0118]
其中q1(ti)=δ1(ti)=0。由比较引理可得δ1≤q1。接下来,定义ti τ1为方程
[0119]
的解。由(33)可知q1是一个增函数且δ1≤q1。这表明:
[0120][0121]
由此并结合(33)和(34)可知动态事件触发有限时间控制器的触发间隔(t
i 1-ti)不小于
[0122][0123]
对于t>t
*
,有γ(t)=γ
*
,pe=0且因此通过利用(22)有其中再次利用三角不等式和性质1可知:
[0124][0125]
由此可知当t>t
*
时,触发时间间隔不小于函数从0到的时间。由公式(28)可知:
[0126][0127]
类似于(31)可知,对于t>t
*
有:
[0128][0129]
由此和(36)可知:
[0130][0131]
由此可知对于t>t
*
,触发时间间隔不小于:
[0132][0133]
因此由τ1和τ2可知无论是t≤t
*
还是t>t
*
,最小触发时间间隔永远大于0,也就是避免了zeno现象的发生。
[0134]
实施例:
[0135]
直接针对原始非线性方程(1)进行仿真。假设目标航天器轨道42241km,轨道周期24h,轨道速率相关技术参数如表1所示:
[0136]
表1
[0137][0138]
在仿真中,选择初始状态为x(0)=x0=[-1000 1000 1000 2
ꢀ‑
2 2]
t
和采样时间为0.01s。通过求解方程可得到γ0=0.0069099。在仿真中,根据式(1)中的非线性方程和公式(3)~(6)的计算,选择δc=20.5。
[0139]
选取考虑两种不同的案例,案例1:构建一般的静态事件触发有限时间控制器,即没有引入动态变量θ并选取γ
*
=1;案例2:通过步骤二选取γ并且选择参数α=0.1,γ
*
=1构建动态事件触发有限时间控制器。通过求解步骤二的参量lyapunov方程,得到执行器受限情形下的反馈控制律,并且仿真结果说明:从图1可以看出基于动态事件触发的反馈控制律的闭环系统在有限时间内t0收敛到平衡点,其中表示航天器的相对距离;图1和图2表明本发明所设计的动态事件触发有限时间控制器比一般的静态事件触发有限时间控制器在更短的时间内收敛到平衡点;此外图2还表明本发明所设计的控制律始终没有发生饱和现象,即图3中的一些关键指标如表2所示。
[0140]
表2
[0141][0142]
由图3和表2可知,无论是最小触发时间间隔还是平均触发时间,本发明所设计的动态事件触发有限时间控制算法都远大于一般的静态事件触发有限时间控制算法,也就是本发明所设计的动态事件触发有限时间控制算法的触发次数都远低于一般的静态事件触
发有限时间控制算法。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献