一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

用于测量光刻过程的参数的目标的制作方法

2023-02-04 09:44:48 来源:中国专利 TAG:

用于测量光刻过程的参数的目标
1.背景
2.相关申请的交叉引用
3.本技术要求于2020年6月9日提交的美国申请63/036,671的优先权,该美国申请的全部内容通过引用的方式并入本文中。
技术领域
4.本发明涉及用于光刻过程的量测的目标布置。


背景技术:

5.光刻设备是将期望的图案施加到衬底上(通常施加到衬底的目标部分上)的机器。光刻设备可以用于例如制造集成电路(ic)。在这种情况下,可以使用可选地称为掩模或掩模版的图案形成装置来生成将在ic的单独的层上形成的电路图案。该图案可以被转移到衬底(例如,硅晶片)上的目标部分上(例如,包括管芯的一部分、一个或更多个管芯)。图案通常经由成像而转移到设置在衬底上的辐射敏感材料(抗蚀剂)层上。通常,单个衬底将包括被连续图案化的相邻目标部分的网格。在光刻过程中,期望频繁地进行例如用于过程控制和验证的所创建的结构的测量。用于进行这样的测量的各种工具是已知的,包括经常用于测量临界尺寸(cd)的扫描电子显微镜,以及用于测量重叠(即,器件中的两个层的对准精度的度量)的专用工具。可以根据两个层之间的未对准程度来描述重叠,例如参考1nm的被测量的重叠可以描述其中两个层未对准达1nm的情形。
6.近来,已经开发了用于光刻领域中的各种形式的散射仪。这些设备将辐射束引导到目标上并且测量散射辐射的一个或更多个特性——例如,作为波长的函数的单个反射角处的强度;作为反射角的函数的一个或更多个波长处的强度;或作为反射角的函数的偏振——以获得可以从其确定目标的感兴趣的特性的“光谱”。可以如下通过多种技术来执行感兴趣的特性的确定:例如,通过诸如严格耦合波分析或有限元法的迭代方法来重构目标;库搜索;以及主成分分析
7.常规散射仪所使用的目标相对较大,例如40μm
×
40μm,光栅和测量束生成小于光栅的光斑(即,光栅填充不足)。因为目标的数学重构可以被认为是无限的,所以这简化了目标的数学重构。然而,为了减小目标的尺寸(例如,减小到10μm
×
10μm或更小),例如,使得目标可以定位在产品特征之中,而不是在划线中,已经提出了使光栅小于测量点(即,光栅被过度填充)的量测。通常,使用暗场散射测量法来测量此类目标,其中,零阶衍射(对应于镜面反射)被阻挡,而且仅更高阶被处理。可以在国际专利申请wo 2009/078708和wo 2009/106279中找到暗场量测的示例,这些文献的全部内容以引用的方式并入本文中。已经在专利公开案us20110027704a、us20110043791a和us20120242970a中描述了该技术的进一步发展。us2010201963a1和us2011102753a1中描述了该设备的提高产量的变型例。所有这些申请的内容也以引用的方式并入本文中。使用衍射阶的暗场检测的基于衍射的重叠能够对较小目标进行重叠测量。这些目标可能小于照射点,并且可以被晶片上的产品结构围绕。目标
可以包括多个光栅,这些光栅可以在一个图像中被测量。
8.在已知的量测技术中,通过在某些条件下测量重叠目标两次来获得重叠测量结果,同时旋转重叠目标或者改变照射模式或成像模式,以分别获得-1和 1衍射阶强度。给定重叠目标的强度不对称性,即,这些衍射阶强度的比较,提供目标中的不对称性的度量。重叠目标中的这种不对称性可以用作重叠的指示符(两个层的不期望的未对准)
9.在另一种已知的量测技术中,通过测量散射辐射的同时扫描对准目标而获得对准测量结果,如例如us56545553中披露的那样,该文献的全部内容以引用的方式并入本文中。在us6876946中公开了对准目标,该文献的全部内容以引用的方式并入本文中。
10.变得显然的是,鉴于对晶片上的不动产的严格要求,需要仔细地考虑量测目标的尺寸和/或放置、重叠和/或对准。由于光刻过程可能遭受未预期的变化,所以也已知用于对准和/或重叠的量测目标的晶片上的位置也可能具有变化,这可能不利地影响所测量的感兴趣的参数。


技术实现要素:

11.因此,期望具有适合于提供来自对准和/或重叠量测的感兴趣的参数的目标布置。
12.本发明在第一方面提供了一种目标布置,所述目标布置包括第一目标区域和第二目标区域,所述第一目标区域至少具有第一节距且至少具有第二节距,所述第二目标区域至少具有第三节距,其中,所述第一目标区域的具有第二节距的部分与所述第二目标区域的一部分重叠。
13.下面参考附图详细描述本发明的其他特征和优点,以及本发明的各种实施例的结构和操作。应该注意到,本发明不限于本文中描述的特定实施例。本文中仅出于说明性目的而呈现此类实施例。基于本为中包括的教导,其他实施例对于相关领域的技术人员而言将是显而易见的。
附图说明
14.现在将参考附图并仅通过示例的方式来描述本发明的实施例,在附图中:
15.图1示出了根据本发明实施例的光刻设备;
16.图2示出了根据本发明实施例的光刻单元或集群;
17.图3(a)至图3(d)包括:图3(a)是用于使用第一对照射孔测量目标的暗场散射仪的示意图,图3(b)示出用于给定的照射方向的目标光栅的衍射光谱的细节,图3(c)示出第二对照射孔在使用散射仪进行基于衍射的重叠测量时提供另外的照射模式,以及图3(d)示出组合第一对孔和第二对孔的第三对照射孔;
18.图4描绘了衬底上的多个光栅目标和测量点的轮廓的已知形式;
19.图5描绘了在图3的散射仪中获得的图4的目标的图像;
20.图6描绘了根据本发明的实施例的目标布置的示例;
21.图7(a)描绘了目标布置,并且图7(b)描绘了从图7(a)中描绘的目标布置的一部分获得的图像。
具体实施方式
22.在详细描述本发明的实施例之前,呈现可以在其中实现本发明的实施例的示例环境是有益的图1示意性地描绘了光刻设备la。该设备包括:照射光学系统(照射器)il,所述照射光学系统il被配置为调节辐射束b(例如,uv辐射或duv辐射);图案形成装置支撑件或支撑结构(例如,掩模台)mt,所述图案形成装置支撑件或支撑结构mt被构造成支撑图案形成装置(例如,掩模)ma并且连接到被配置为根据某些参数精确地定位图案形成装置的第一定位器pm;衬底台(例如,晶片台)wt,所述衬底台wt被构造成保持衬底(例如,涂覆有抗蚀剂的晶片)w并且连接到被配置为根据某些参数精确地定位衬底的第二定位器pw;以及投影光学系统(例如,折射型投影透镜系统)ps,所述投影光学系统ps被配置为将由图案形成装置ma赋予辐射束b的图案投影到衬底w的目标部分c(例如,包括一个或更多个管芯)上。
23.照射光学系统可以包括用于引导、成形或控制辐射的各种类型的光学或非光学部件,例如折射型、反射型、磁性型、电磁型、静电型或其他类型的部件,或者它们任何组合。
24.图案形成装置支撑件以如下方式保持图案形成装置:该方式依赖于图案形成装置的取向、光刻设备的设计以及诸如图案形成装置是否保持在真空环境中的其他条件。图案形成装置支撑件可以使用机械、真空、静电或其他夹持技术来保持图案形成装置。图案形成装置支撑件可以是框架或台,例如,所述框架或台可以根据需要而是固定的或可移动的。图案形成装置支撑件可以确保图案形成装置例如相对于投影系统处于期望的位置。本文中对术语“中间掩模版”或”掩模”的任何使用可以认为与更上位的术语“图案形成装置”是同义的。
25.本文中使用的术语“图案形成装置”应该广义地解释为指可以用于将图案在辐射束的横截面上赋予辐射束以在衬底的目标部分中形成图案的任何装置。应该注意到,例如,如果图案包括相移特征或所谓的辅助特征,则赋予辐射束的图案可能不精确地对应于衬底的目标部分中的期望的图案。通常,赋予辐射束的图案将对应于在目标部分(诸如集成电路)中形成的器件中的特定功能层。
26.图案形成装置可以是透射型的或反射型的。图案形成装置的示例包括掩模、可编程反射镜阵列和可编程lcd面板。掩模在光刻中是公知的,并且包括诸如二元型、交替相移型和衰减相移型以及各种混合类型的掩模类型。可编程反射镜阵列的示例采用小反射镜的矩阵布置,每个小反射镜都可以单独地倾斜,以便沿不同方向反射入射的辐射束。倾斜的反射镜将图案赋予由反射镜矩阵反射的辐射束。
27.如这里所描绘的,该设备是透射型的(例如,采用透射型掩模)。可替代地,该设备可以是反射型的(例如,采用如上所述的类型的可编程反射镜阵列,或采用反射型掩模)。
28.光刻设备也可以是这样的类型:其中,衬底的至少一部分可以被具有相对高折射率的液体(例如,水)覆盖,以便填充投影系统和衬底之间的空间。浸没液体也可以应用于光刻设备中的其他空间,例如,在掩模和投影系统之间。浸没技术在本领域中是公知的,以用于增加投影系统的数值孔径。本文中使用的术语“浸没”并不意味着诸如衬底的结构必须浸没在液体中,而是仅意味着在曝光期间液体位于投影系统和衬底之间。
29.参考图1,照射器il接收来自辐射源so的辐射束。例如当源是受激准分子激光器时,源和光刻设备可以是分立的实体。在这种情况下,不认为源形成光刻设备的一部分,并且借助于包括例如合适的引导反射镜和/或扩束器的束传递系统bd将辐射束从源so传到照
射器il。在其他情况下,例如当源是汞灯时,辐射源可以是光刻设备的组成部分。可以将源so和照射器il以及如果需要时的束传递系统bd一起称作辐射系统。
30.照射器il可以包括用于调节辐射束的角强度分布的调节器ad。通常,可以调节照射器的光瞳平面中的强度分布的至少外部和/或内部径向范围(通常分别称为σ外部和σ内部)。此外,照射器il可以包括各种其他部件,例如积分器in和聚光器co。照射器可以用于调节辐射束,以在它的横截面中具有期望的均匀性和强度分布。
31.辐射束b入射到保持在图案形成装置支撑件(例如,掩模台mt)上的图案形成装置(例如,掩模)ma上,并且由图案形成装置图案化。在已经穿过图案形成装置(例如,掩模)ma之后,辐射束b穿过投影光学系统ps,该投影光学系统ps将束聚焦到衬底w的目标部分c上,从而将图案的图像投影到目标部分c上。借助于第二定位器pw和位置传感器if(例如,干涉装置、线性编码器、2-d编码器或电容传感器),可以精确地移动衬底台wt,例如,以便将不同的目标部分c定位在辐射束b的路径中。类似地,例如,在从掩模库中进行机械获取之后,或者在扫描期间,可以使用第一定位器pm和另一个位置传感器(图1中未明确地示出另一个位置传感器)相对于辐射束b的路径精确地定位图案形成装置(例如,掩模)ma。
32.可以使用掩模对准标记m1、m2和衬底对准标记p1、p2将图案形成装置(例如,掩模)ma和衬底w对准。尽管所示的衬底对准标记占据了专用目标部分,但是衬底对准标记可以位于目标部分之间的空间中(这些衬底对准标记被称为划线对准标记)。类似地,在图案形成装置(例如,掩模)ma上提供多于一个管芯的情况下,掩模对准标记可以位于管芯之间。在器件特征中,较小的对准标记也可以被包括在管芯内,在这种情况下,期望标记尽可能小,并且不需要任何不同于相邻特征的成像或过程条件。在下文中进一步描述检测对准标记的对准系统。
33.在本示例中,光刻设备la是所谓的双平台类型,所述双平台类型具有两个衬底台wta、wtb和两个站——曝光站和测量站——可以在曝光站和测量站之间交换衬底台。当一个衬底台上的一个衬底在曝光站处被曝光时,另一个衬底可以被装载到测量站处的另一个衬底台上,并且执行各种预备步骤。预备步骤可以包括:使用水平传感器ls映射衬底的表面控制;以及使用对准传感器as测量衬底上的对准标记的位置。这实现了设备的生产量的显著增加。
34.可以以多种模式使用所描绘的设备,这些模式包括例如步进模式或扫描模式。光刻设备的构造和操作对于本领域技术人员而言是公知的,并且无需进一步描述以用于理解本发明。
35.如图2所示,光刻设备la形成光刻系统的称为光刻单元lc或光刻元或簇的一部分。光刻单元lc还可以包括在衬底上执行曝光前和曝光后处理的设备。通常,这些设备包括:旋涂器sc,该旋涂器sc用于沉积抗蚀剂层;显影器de,该显影器用于显影曝光的抗蚀剂;激冷板ch和烘烤板bk。衬底操纵装置或机器人ro从输入/输出端口i/o1、i/o2拾取衬底,在不同的处理设备之间移动该衬底,然后将该衬底传送到光刻设备的进料台lb。通常被统称为轨道的这些装置由轨道控制单元tcu控制,该轨道控制单元tcu本身由管理控制系统scs控制,该管理控制系统scs还经由光刻控制单元lacu控制光刻设备。因此,可以操作不同的设备以使生产量和处理效率最大化。
36.为了正确且一致地曝光由光刻设备曝光的衬底,期望检查曝光的衬底以测量诸如
后续层之间的重叠误差、线厚度、临界尺寸(cd)等的特性。因此,光刻单元lc所位于的制造设施还包括量测系统met,该量测系统met接收已经在光刻单元中处理的一些或所有衬底w。量测结果直接或间接地提供给管理控制系统scs。如果检测到误差,尤其是如果可以很迅速并且足够快地进行检查,使得同一批次的其他衬底仍然要被曝光,则可以对后续衬底的曝光进行调整。而且,已经曝光的衬底可以被剥离和返工以提高产量或被丢弃,从而避免对已知有故障的衬底执行进一步的处理。在衬底的仅一些目标部分有故障的情况下,可以仅对那些良好的目标部分执行进一步的曝光。
37.在量测系统met内,使用检验设备来确定衬底的特性,并且具体地,确定不同衬底或同一衬底的不同层的特性如何从层到层而变化。检查设备可以集成到光刻设备la或光刻单元lc中,或者可以是独立的设备。为了实现最快速的测量,期望检查设备在曝光之后立即测量曝光的抗蚀剂层中的特性。然而,抗蚀剂中的潜像具有非常低的对比度——在抗蚀剂的已经曝光于辐射的部分和未曝光于辐射的部分之间的折射率仅有非常小的差异——并且不是所有检查设备都具有足够的灵敏度以对潜像进行有用的测量。因此,可以在曝光后烘烤步骤(peb)之后进行测量,该曝光后烘烤步骤(peb)通常是在曝光的衬底上执行的第一步骤,并且增加了抗蚀剂的曝光部分和未曝光部分之间的对比度。在此阶段,抗蚀剂中的图像可以被称为半潜像。还可以进行显影的抗蚀剂图像的测量——此时,抗蚀剂的曝光部分或未曝光部分均已经被移除——或在诸如蚀刻的图案转移步骤之后。虽然后一种可能性限制了修复有故障的衬底的可能性,但是仍然可以提供有用的信息
38.在图3(a)中示出量测设备。在图3(b)中更详细地示出用于照射目标的测量辐射的目标t和衍射射线。所示的量测设备是被称为暗场量测设备的类型。这里描绘的量测设备纯粹是示例性的,以提供暗场量测的解释。量测设备可以是独立的设备或结合在光刻设备la中,例如,结合在测量站或光刻单元lc中。在该设备中,具有若干分支的光学轴线由虚线o表示。在该设备中,由光源11(例如,氙灯)发射的光通过包括透镜12、14和物镜16的光学系统经由分束器15被引导到衬底w上。这些透镜以4f布置的双序列布置。只要不同的透镜布置仍然将衬底图像提供到检测器上,并且同时允许对中间光瞳平面进行访问以进行空间频率滤波,就可以使用不同的透镜布置。因此,辐射入射到衬底上的角度范围可以通过在呈现衬底平面的空间频谱的平面中定义空间强度分布来选择,所述平面在这里称为(共轭)光瞳平面。特别地,这可以通过在是物镜光瞳平面的背投影图像的平面中在透镜12和14之间插入合适形式的孔板13来实现。在所示的示例中,孔板13具有标记为13n和13s的不同形式,从而允许选择不同的照射模式。本示例中的照射系统形成离轴照射模式。在第一照射模式中,孔板13n从仅为了描述起见被指定为“北”的方向提供离轴。在第二照射模式中,孔板13s用于提供类似的照射,但从标记为“南”的相反方向提供类似的照射。通过使用不同的孔径,其他照射模式是可能的。因为在期望照射模式之外的任何不必要的光将干扰期望的测量信号,光瞳平面的其余部分理想地是暗的。
39.如图3(b)所示,将目标t与垂直于物镜16的光学轴线o的衬底w放置在一起。衬底w可以由支撑件(未示出)支撑。以偏离轴线o的角度照射到目标t上的测量辐射i的射线产生零阶射线(实线0)和两个一阶射线(点链线 1和双点链线-1)。应该记住的是,对于过度填充的小目标,这些射线仅是覆盖衬底的包括量测目标t和其他特征的区域的许多平行光线中的一批射线。由于板13中的孔具有有限的宽度(需要允许有用量的光),所以入射射线i实际
上将占据一定范围的角度,并且衍射射线0和 1/-1将稍微扩展。根据较小目标的点扩散函数,每个阶 1和-1将在一定角度范围内进一步扩展,而不是如图所示的单个理想射线。应该注意到,可以设计或调整目标的光栅节距和照射角度,使得进入物镜的一阶射线与中心光学轴线紧密对准。图3(a)和图3(b)中所示的射线被示出为稍微离轴的,这仅是为了使得所述射线在图中更容易被区分。
40.由目标t在衬底w上衍射的至少0阶和 1阶被物镜16收集并通过分束器15引导返回。返回到图3(a),通过指定被标记为北(n)和南(s)的径向上相对的孔来示出第一照射模式和第二照射模式。当测量辐射的入射射线i来自光学轴线的北侧时,即当使用孔板13n施加第一照射模式时,被标记为 1(n)的 1阶衍射射线进入物镜16。相反,当使用孔板13s施加第二照射模式时,-1阶衍射射线(标记为-1(s))是进入透镜16的射线。
41.第二分束器17将衍射束分成两个测量分支。在第一测量分支中,光学系统18使用零阶衍射束和一阶衍射束在第一传感器19(例如,ccd或cmos传感器)上形成目标的衍射光谱(光瞳平面图像)。每个衍射阶照射传感器上的不同点,使得图像处理可以比较和对比阶次。由传感器19捕获的光瞳平面图像可以用于聚焦量测设备和/或归一化一阶束的强度测量值。光瞳平面图像也可以用于许多测量目的,例如重构。
42.在第二测量分支中,光学系统20、22在传感器23(例如,ccd或cmos传感器)上形成目标t的图像。在第二测量分支中,在与光瞳平面共轭的平面中提供孔径光阑21。孔径光阑21用于阻挡零阶衍射束,使得目标的在传感器23上形成的图像仅由-1阶或 1阶束形成。由传感器19和23捕获的图像被输出到处理图像的处理器pu,该处理器pu的功能将依赖于正在执行的测量的特定类型。注意,术语“图像”在这里被广义地使用。如果仅存在-1阶和 1阶中的一个,则将不会形成这样的光栅线的图像。
43.图3中所示的孔板13和场光阑21的特定形式仅仅是示例。在本发明的另一个实施例中,使用目标的轴上照射,并且使用具有离轴孔径的孔径光阑来将基本上仅一个一阶衍射光传递到传感器。在其他示例中,可以使用两个象限孔。这可以实现加号阶和减号阶的同时检测,如上文提及的us2010201963a1中描述的那样。检测分支中具有光学楔状物(分段棱镜或其他合适的元件)的实施例可以用于分离用于在单个图像中在空间上成像的多个阶,如上文提及的us2011102753a1中描述的那样。在又一些实施例中,代替或除了一阶束之外,可以在测量中使用二阶、三阶和更高阶束(图3中未示出)。在其他实施例中,可以使用分段棱镜代替孔径光阑21,使得 1和-1阶能够在图像传感器23上的在空间上分离的位置处同时被捕获。
44.为了使测量辐射能够适应于这些不同类型的测量,孔板13可以包括围绕盘形成的多个孔图案,该盘旋转以将期望的图案带到适当位置。注意,孔板13n或13s可以仅用于测量在一个方向(依赖于设置,x或y)上定向的光栅。对于正交光栅的测量,可以实现目标通过90
°
和270
°
的旋转。图3(c)和图3(d)中示出了不同的孔板。以上提到的先前公开的应用中描述了这些设备的使用以及该设备的许多其他变型和应用。
45.图4描绘了根据已知实践在衬底上形成的重叠目标或复合重叠目标。在本示例中,重叠目标包括紧密定位在一起的四个子目标(例如,光栅)32至35,使得四个子目标32至35将全部处于由量测设备的量测辐射照射束形成的测量点31内。因此,四个子重叠目标全部被同时照射并同时成像于传感器23上。在专用于测量重叠的示例中,子目标32至35本身是
通过重叠光栅而形成的复合结构,这些光栅在形成于衬底w上的半导体器件的不同层中被图案化。子目标32至35可以具有不同地偏移的重叠偏移量,以便于进行形成复合子目标的不同部分的层之间的重叠的测量。如图所示,子目标32至35也可以在它们的取向上不同,以便在x和y方向衍射入射辐射。在一个示例中,子目标32和34是分别具有 d、d的偏移量的x方向子目标。子目标33和35分别是具有偏移量 d和d的y方向子目标。可以在由传感器23捕获的图像中识别这些子目标的单独图像。这仅是重叠目标的一个示例。重叠目标可以包括多于或少于4个的子目标。
46.图5示出了可以使用来自图3(d)的孔板13nw或13se在图3的设备中使用图4的重叠目标在传感器23上形成并由传感器23检测的图像的示例。尽管光瞳平面图像传感器19不能分辨不同的单个子目标32至35,但是图像传感器23可以这样做。阴影区域40表示传感器上的图像的场,在该区域内,衬底上的照射光点31被成像到对应的圆形区域41内。在此,矩形区域42至45表示较小重叠目标(子目标32至35)的图像。如果重叠目标位于产品区域中,则产品特征也可以在该图像场的外围中是可见的。图像处理器和控制器pu使用图案识别来处理这些图像,以识别子目标32至35的单独图像42至45。这样,图像不必在传感器框架内的特定位置非常精确地对准,这大大提高了整个测量设备的生产量。
47.一旦已经识别出重叠目标的单独图像,就可以例如通过对所识别的区域内的选定像素强度值求平均或求和,以测量那些单独图像的强度。可以将图像的强度和/或其他特性彼此进行比较。这些结果可以被组合以测量光刻过程的不同参数。重叠性能是这种参数的重要示例。
48.通过使用例如上文提及的例如us20110027704a的应用中描述的方法,测量子目标32至35内的两个层之间的重叠误差(即,不期望的和无意的重叠未对准)。这样的方法可以被称为基于重叠的微衍射(μdbo)。该测量可以通过重叠目标不对称性来完成,如通过比较 1阶和-1阶暗场图像中的强度(可以比较其他对应的更高阶的强度,例如 2阶和-2阶)所披露的,以获得强度不对称性的度量。
49.在使用诸如图4所示的多光栅目标的已知的方法中,通过以下等式可以确定重叠ov:
[0050][0051]
其中:
[0052]-是来自正偏移目标的 1衍射阶(例如,强度值);
[0053]-是来自正偏移目标的-1衍射阶;
[0054]-是来自负偏移目标的 1衍射阶;
[0055]-是来自负偏移目标的-1衍射阶;
[0056]-(例如,来自正偏移目标的 1和-1强度中的不对称性);以及
[0057]-(例如,来自负偏移目标的 1和-1强度中的不对称性)。
[0058]
等式1可以根据灵敏度系数k来重新制定,该灵敏度系数k是具有不依赖于重叠的
特殊特性的、依赖于叠层的参数(假设完美的目标):
[0059]a d
a-d
=k
·
ov
ꢀꢀꢀꢀꢀꢀꢀ
(等式2)
[0060]
其中:
[0061][0062]
与形成子目标的光栅的节距相比,等式2是基于较小偏移值和重叠误差的假设的简单的线性等式。然而,不对称性对于重叠误差和在较宽范围上的偏移的依赖性具有基本上正弦的形式,并且也可以使用正弦模型,而不是等式2的线性模型。
[0063]
使用四个不同子目标的已知的方法需要围绕每个子目标(图4和图5中未示出)的边界,以使它们在图像40中是可区分的。这意味着图案形成区域的某个部分由于边缘效应而不可用。另外,仅使用两个特定的偏移强加了线性度的以上假设,这可能导致当真实关系为非线性时的不准确性。
[0064]
除了适合于测量两个半导体处理层之间的重叠的目标之外,还已知晶片的对准为光刻过程提供了有用的信息。如对于现有技术而言已知的,对准目标的尺寸可以大于重叠目标的尺寸。
[0065]
半导体过程的量测的常见问题是,出于对准目的或出于重叠的目的,量测目标被处理条件的变化平均地影响。此外,减小被所述量测特定目标所占据的空间的尺寸是用于光刻过程的量测的持续目标。
[0066]
本发明公开了一种目标布置,该目标布置包括第一目标区域和第二目标区域,第一目标区域至少具有第一节距且至少具有第二节距,第二目标区域至少具有第三节距,其中,第一目标区域的具有第二节距的一部分与第二目标区域的一部分重叠。在实施例中,第一目标区域是对准目标的具有在第一方向上的节距和在第二方向上的另一个节距的一部分。在实施例中,两个方向是垂直的。在另一个实施例中,第二目标区域是量测目标的适合于测量重叠、焦点、剂量、或存在于光刻晶片上的器件结构的物理参数(例如,倾斜度、侧壁角度和/或临界尺寸)的一部分。第三节距是量测目标的适合于测量重叠、焦点、剂量、或存在于光刻晶片上的器件结构的物理参数(例如,倾斜度、侧壁角度、临界尺寸)的一部分的节距。在实施例中,对准目标的具有第二节距的一部分与量测目标重叠,该量测目标适合于测量重叠、焦点、剂量、或存在于光刻晶片上的器件结构的物理参数,例如倾斜度、侧壁角度、临界尺寸。在实施例中,根据本领域的状态,对准目标的第一节距使得对准量测是可能的。
[0067]
图6描述了目标布置的一部分。目标布置由位于第一层中的第一布置和位于第二层中的第二目标布置形成。在实施例中,第一目标布置是顶部光栅(gt),并且第二目标布置是底部光栅(gb)。光栅gt包括具有节距pt的光栅,如图6所示,节距pt是目标布置的第二目标区域中的第三节距。这些光栅可以具有单一节距pt。在实施例中,光栅形成布置gt可以具有具有不同节距pt1、pt2、pt3的部分,如图6中描绘的。布置gt可以在第一层中。布置gb可以在第二层中。在晶片上,布置gt可以覆盖布置gb。
[0068]
图6进一步描述了目标布置的作为底部光栅gb的一部分。所述部分包括由具有节距pb1、pb2或pb3的光栅形成的中间区域。在实施例中,具有节距pt1的区域与具有节距pb1的区域重叠。在实施例中,具有节距pb1、pb2、pb3的区域与具有单一节距pt的区域重叠。在另一个实施例中,布置gb包括限定尺寸aleft和aright的结构。参考图6中在布置gb中描绘的结构,并且仅作为示例,由aleft和aright限定的结构可以形成具有在垂直于节距pb1、
pb2或pb3的方向上的节距的光栅,在垂直于节距pb1、pb2或pb3的方向上的该节距是适合于允许测量对准信息的节距,如在本领域的状态中描述的那样。
[0069]
在实施例中,如图6中描述的目标布置的使用可以如下:布置gt与由节距pb1、pb2和pb3限定的gb的中间部分重叠。在实施例中,pb1、pb2和pb3可以相同。在实施例中,布置gt包括单个节距pt。在实施例中,pt、pb1、pb2、pb2是相同的节距。在实施例中,pb3是与pb1相同的节距。pb2与pt1相同,并且pb1是与pt2相同的节距。当用量测工具(量测工具提供照射辐射和用于检测从由重叠的gt和gb形成的所述目标布置反射的辐射的装置)测量时,可以使用本领域中已知的方法来提取关于重叠、焦点、剂量、或存在于光刻晶片上的器件结构的物理参数(例如倾斜度、侧壁角度、临界尺寸)的信息。量测工具可以是基于衍射的重叠量测工具(dbo)或基于图像的量测工具(ibo)。此外,当区域gb的全部或其仅一部分用适合于对准量测(如本领域中已知的量测)的量测工具测量时,可以提取对准相关的量测参数。因此,当前目标布置整体上的优点是:提供关于晶片的位置的量测信息(如从对准相关量测过程提供的)和/或关于量测过程中的两个或更多个层之间的相对对准(如从重叠或相关参数量测过程提供的)的信息两者。对准和重叠或相关参数是从现有技术中已知的量测过程。
[0070]
图7进一步描绘了图7(a)中的目标布置和针对图7(a)的目标布置的一部分获得的图像。区域aul、aur、abl和abr是在所谓的底层中找到的目标布置,该层包括图6的布置gb的结构,区域ul、ur、bl和br是在所谓的顶层中找到的目标布置,该层包括图6的布置gt的结构。在区域aul、aur、abl、abr与区域ul、ur、bl、br之间存在重叠。在示例中,区域aul与区域ul重叠,区域aur与区域ur重叠,区域abl与bl重叠,并且区域br与abr重叠。区域aul、aur、abl和abr可以用于对准量测。如上所述,重叠的部分可以用于对准和重叠、焦点、剂量、或光栅的其他物理参数,如在现有技术中尽可能使用dbo或ibo量测工具所理解的。
[0071]
图7(,b)描述在dbo或ibo量测工具的检测器上形成的图像。通过用照射辐射照射与区域aul的一部分重叠并且检测散射辐射的至少区域ul来形成图像imageul。在示例中,形成区域ul和aul的光栅是图6的布置。对于量测应用,量测工具(基于量测工具的对准或dbo或ibo)可以包括计算机载体中的软件,该软件可以识别与gb和gt布置的光栅之间的重叠有关的感兴趣的区域。在实施例中,roip3由pb3与pt光栅之间的重叠形成,roip2由pb2与pt光栅之间的重叠形成,roip1由pb1与pt光栅之间的重叠形成。
[0072]
在本发明的另一个实施例中,目标区域的节距可以是连续的,即每个光栅的重心之间的距离以被函数描述的方式变化。在实施例中,函数可以是正弦函数或余弦函数。在量测目标或对准目标的区域中具有节距的连续变化的优点在于,由于目标区域的其中存在节距的不连续性的边缘,负面效应被最小化。在实施例中,参考图7(a),区域aul的对准节距可以以连续的方式朝区域ul的量测节距变化。在实施例中,节距的连续变化可以由2d函数控制,该2d函数将由x或y方向上的变化来描述。
[0073]
可以明白的是,所示的全部特定布置都是纯粹的示例,并且存在落在本公开内容的范围内的接近无限数量的可能的目标布置。例如,目标布置可以仅包括用于仅在单个方向上测量的目标区域。还可以在焊盘之间增加间隔以抵消串扰和/或视差问题。所示的目标布置是被设计用于测量重叠的目标布置。然而,本文中的概念也适用于设计为用于的感兴趣的另一参数的测量的目标布置。例如,焦点布置(例如,形成有具有焦点敏感不对称性的区域)也可以受益,因为依赖于焦点的不对称性也将改变测量中的符号,并且因此与依赖于
量测工具的失真偏移解除耦合。
[0074]
与在衬底和图案形成装置上实现的目标的物理光栅结构相关联,实施例可以包括计算机程序,该计算机程序包括描述测量衬底上的目标和/或分析测量值以获得关于光刻过程的信息的方法的一个或更多个机器可读指令序列。该计算机程序可以例如在图3的设备中的单元pu和/或图2的控制单元lacu内执行。还可以提供具有存储在其中的这种计算机程序的数据存储介质(例如,半导体存储器、磁盘或光盘)。在现有的量测设备(例如,图3所示的类型)已经在生产和/或使用中的情况下,本发明可以通过提供更新的计算机程序产品以用于使处理器执行计算重叠误差所需的步骤来实现。
[0075]
程序可以可选地被布置为控制光学系统、衬底支撑件等,以执行计算用于测量合适的多个目标上的不对称性的重叠误差所需的步骤。
[0076]
因此,所公开的是一种目标布置,所述目标布置适合于对包括定位在所述目标布置内的至少两个目标的光刻过程进行量测,使得所述目标布置具有旋转对称性。所述至少两个目标可以定位于所述目标布置内,使得所述至少两个目标的被测量的特性具有旋转对称性。还公开了一种测量光刻过程的参数的方法,该方法包括:通过用辐射照射目标并且检测由目标散射的辐射,测量量测目标布置的至少两个目标;以及确定所述目标的测量中的特性,其中,所述特性具有旋转对称性。
[0077]
尽管上文已经在光学光刻的内容背景中具体参考了本发明的实施例的使用,但是将明白的是,本发明可以用于其他应用中,例如压印光刻,并且其中,在内容背景允许的情况下,本发明不限于光学光刻。在压印光刻中,图案形成装置中的形貌限定了在衬底上产生的图案。可以将图案形成装置的形貌压入供应给衬底的抗蚀剂层中,于是通过施加电磁辐射、热、压力或它们的组合来使抗蚀剂固化。在抗蚀剂固化之后,图案形成装置被移出抗蚀剂,从而在抗蚀剂中留下图案。
[0078]
本文中使用的术语“辐射”和”束”包括所有类型的电磁辐射,包括紫外(uv)辐射(例如,具有365nm、355nm、248nm、193nm、157nm或126nm或约365nm、355nm、248nm、193nm、157nm或126nm的波长)和极紫外(euv)辐射(例如,具有在5nm至20nm的范围内的波长)以及粒子束,诸如离子束或电子束。
[0079]
在内容背景允许的情况下,术语“透镜”可以指各种类型的部件中的任何一种或组合,包括折射型、反射型、磁性型、电磁型和静电型部件。
[0080]
在不背离本发明的一般概念的情况下,特定实施例的前述描述将完全披露本发明的一般特性,使得其他人能够通过应用本领域技术内的知识来容易地修改和/或适应各种应用,例如特定实施例,而无需过度实验。因此,基于本文中给出的教导和指导,此类修改和变型旨在处于所公开的实施例的等同物的含义和范围内。将理解的是,本文中的措辞或术语是出于例如描述的目的,而非限制的目的,使得本说明书的术语或措辞将由本领域技术人员根据教导和指导来解释。
[0081]
本发明的广度和范围不应该受到上述示例性实施例中的任一个限制,而是应该仅根据随附的权利要求书及其等同内容来限定。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献