一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

车载温度调节系统的制作方法

2022-11-23 08:35:38 来源:中国专利 TAG:


1.本公开涉及车载温度调节系统。


背景技术:

2.以往,已知有能够进行通过利用内燃机的排热来加热流入加热器芯的冷却水而进行的供暖(排热供暖)、和通过利用热泵来加热该冷却水而进行的供暖(hp供暖)这两个方式的供暖的车载温度调节系统(日本特开2020-168950、日本特开2016-130045)。
3.特别是,日本特开2020-168950所记载的车载温度调节系统具有构成为使得冷却水通过与热泵的制冷剂进行热交换的介质间热交换器和加热器芯而循环的热回路。另外,在该车载温度调节系统中,与内燃机进行热交换的内燃机热交换器的出口与位于加热器芯的下游且介质间热交换器上游处的上述热回路的流路和位于介质间热交换器的下游且加热器芯的上游处的上述热回路的流路连通,并且,利用切换阀使内燃机热交换器的出口与这两个流路中的任一个选择性地连通。


技术实现要素:

4.日本特开2020-168950所记载的车载温度调节系统构成为能够使得内燃机热交换器的出口与加热器芯的上游侧及下游侧选择性地连通,具有复杂的结构。
5.另外,在进行除湿供暖时,为了进行供暖需要将向热泵流入的冷却水的温度控制得高。另外,为了进行除湿,需要利用热泵使空气的温度暂且降低,为了提高热泵中的冷却效率,需要将向介质间热交换器流入的冷却水的温度控制得低。
6.鉴于上述课题,本公开提供能够适当地进行除湿供暖的简单的结构的车载温度调节系统。
7.本公开的方案涉及具备制冷回路、热回路及控制装置的车载温度调节系统。所述制冷回路具有构成为从制冷剂向热介质散热而使所述制冷剂冷凝的介质间热交换器和构成为使所述制冷剂从向车室内供给的空气吸热而使该制冷剂蒸发的蒸发器,并且,构成为通过使制冷剂通过介质间热交换器和蒸发器而循环从而实现制冷循环。所述热回路具有用于车室内的供暖的加热器芯、所述介质间热交换器、内燃机热回路、及构成为向外气中散热而冷却热介质的散热器,并且,构成为能够使所述热介质通过加热器芯、所述介质间热交换器、内燃机热回路及散热器而循环。所述控制装置构成为控制所述热回路中的热介质的流通状态。所述内燃机热回路构成为使热介质不通过所述加热器芯和所述介质间热交换器而通过与内燃机进行热交换的内燃机热交换器地流通。所述热回路具有第1分支部、第2分支部、第1调整阀及第2调整阀。此处,所述第1分支部是具有从所述内燃机热回路流出的热介质与从所述介质间热交换器流出的热介质进行合流的合流部,且将在该合流部处合流的热介质分为向所述加热器芯流入的热介质和向所述散热器流入的热介质的部分。所述第2分支部是将从所述加热器芯流出的热介质分为向所述介质间热交换器流入的热介质和向所述内燃机热回路流入的热介质的部分。所述第1调整阀构成为调整从该第1分支部向所述加
热器芯流入的热介质的流量与从所述第1分支部向所述散热器流入的热介质的流量的比例。所述第2调整阀构成为调整从该第2分支部向所述介质间热交换器流入的热介质的流量与从所述第2分支部向所述内燃机热回路流入的热介质的流量的比例。所述控制装置构成为控制所述第1调整阀及所述第2调整阀。
8.在上述方案的车载温度调节系统中,所述第1调整阀可以构成为以4阶段切换流量。
9.在上述方案的车载温度调节系统中,所述第1调整阀可以构成为以比4阶段多的多阶段或连续地调整流量。
10.在上述方案的车载温度调节系统中,所述控制装置可以构成为,在进行所述车室内的除湿供暖的情况下,基于向所述加热器芯流入的热介质的温度和向所述介质间热交换器流入的热介质的温度,控制所述第1调整阀及所述第2调整阀。
11.在上述构成的车载温度调节系统中,所述控制装置可以构成为,在进行所述车室内的除湿供暖的情况下,在向所述加热器芯流入的热介质的温度低于预定的基准温度的情况下,以使得向所述第1分支部流入了的热介质不向所述散热器流入而向所述加热器芯流入的方式控制所述第1调整阀。并且,所述控制装置可以构成为,在向所述加热器芯流入的热介质的温度为所述基准温度以上时,以使得向所述第1分支部流入了的热介质向所述加热器芯和所述散热器双方流入的方式控制所述第1调整阀。
12.在上述构成的车载温度调节系统中,所述控制装置可以构成为,在进行所述车室内的除湿供暖的情况且以使得向所述第1分支部流入了的热介质不向所述散热器流入而向所述加热器芯流入的方式控制着所述第1调整阀的情况下,以使得向所述第2分支部流入了的热介质向所述介质间热交换器和所述内燃机热回路双方流入的方式控制所述第2调整阀。
13.在上述构成的车载温度调节系统中,所述控制装置可以构成为,在进行所述车室内的除湿供暖的情况且以使得向所述第1分支部流入了的热介质不向所述散热器流入而向所述加热器芯流入的方式控制着所述第1调整阀的情况下,以使得在向所述介质间热交换器流入的热介质的温度高时与低时相比相对于向所述内燃机热回路流入的热介质的流量的向所述介质间热交换器流入的热介质的流量多的方式控制所述第2调整阀。
14.在上述构成的车载温度调节系统中,所述控制装置可以构成为,在进行所述车室内的除湿制冷的情况下且以使得向所述第1分支部流入了的热介质向所述加热器芯和所述散热器双方流入的方式控制着所述第1调整阀时,以使得向所述第2分支部流入了的热介质不向所述介质间热交换器流入而向所述内燃机热回路流入的方式控制所述第2调整阀。
15.在上述构成的车载温度调节系统中,所述控制装置可以构成为,在进行所述车室内的除湿制冷的情况下以使得向所述第1分支部流入了的热介质向所述加热器芯和所述散热器双方流入的方式控制着所述第1调整阀时,以使得在向所述介质间热交换器流入的热介质的温度高时与低时相比相对于向所述散热器流入的热介质的流量的向所述加热器芯流入的热介质的流量少的方式控制所述第1调整阀。
16.根据本公开的车载温度调节系统,提供能够适当地进行除湿供暖的简单的结构的车载温度调节系统。
附图说明
17.以下将参照附图来说明本发明的示例性实施方式的特征、优点、以及技术上和工业上的意义,在这些附图中,同样的附图标记表示同样的要素,并且其中:
18.图1是概略地示出搭载作为本发明的1例的实施方式的温度调节系统的车辆的结构的图。
19.图2是概略地示出所述实施方式的所述车载温度调节系统的结构图。
20.图3a是概略地示出图2所示的第4三通阀的不同的工作状态的图。
21.图3b是概略地示出图2所示的第4三通阀的不同的工作状态的图。
22.图3c是概略地示出图2所示的第4三通阀的不同的工作状态的图。
23.图3d是概略地示出图2所示的第4三通阀的不同的工作状态的图。
24.图4是概略地示出搭载了所述车载温度调节系统的车辆的空调用的空气通路的结构图。
25.图5示出有供暖要求且内燃机停止着的情况下的、所述车载温度调节系统中的热介质的流通状态(第1供暖模式)。
26.图6示出有供暖要求且内燃机工作着的情况下的、所述车载温度调节系统中的热介质的流通状态(第2供暖模式)。
27.图7示出有制冷要求的情况下的、所述车载温度调节系统中的热介质的流通状态(制冷模式)。
28.图8示出有除湿供暖要求且向加热器芯流入的冷却水的温度不过度高的情况下的、所述车载温度调节系统中的热介质的流通状态(第1除湿供暖模式)。
29.图9是示出向冷凝器流入的冷却水的温度、与相对于向所述第4三通阀流入了的冷却水的流量的向冷凝器流入通路流入的冷却水的流量的比例的图。
30.图10示出有除湿供暖要求且向加热器芯流入的冷却水的温度不过度高的情况下的、所述车载温度调节系统中的热介质的流通状态(第2除湿供暖模式)。
31.图11是示出向冷凝器流入的冷却水的温度、与相对于向图2所示的第3三通阀流入了的冷却水的流量的向芯流入通路流入的冷却水的流量的比例的图。
32.图12是示出有除湿供暖要求时的所述第3三通阀及所述第4三通阀的切换处理的流程的流程图。
具体实施方式
33.以下,参照附图对实施方式详细地进行说明。此外,在以下的说明中,对于同样的构成要素标注相同的参照标号。
34.首先,对搭载作为本发明的一例的实施方式的温度调节系统的车辆的结构进行说明。
35.图1是概略地示出搭载所述车载温度调节系统的车辆100的结构的图。在图1中,左侧表示车辆100的前方,右侧表示车辆100的后方。如图1所示,车辆100具有内燃机110、电动发电机(mg)112及动力分配机构(pd)116。此外,车辆100具备与mg112电连接的动力控制单元(pcu)118和与pcu118电连接的电池120。
36.内燃机110是使燃料在内燃机的内部燃烧并将燃烧气体的热能变换为机械能的原
动机。内燃机110与pd116连接,内燃机110的输出用于驱动车辆100或利用mg112进行发电。
37.mg112作为电动机及发电机发挥功能。mg112与pd116连接,用于驱动车辆100或在对车辆100进行制动时进行再生。此外,在本实施方式中,作为驱动车辆100的马达,使用了具有发电功能的mg112,但也可以使用不具有发电功能的马达。
38.pcu118连接于电池120与mg112之间,控制向mg112供给的电力。pcu118具有驱动马达的变换器、控制电压的升压转换器、对高电压进行降压的dcdc转换器等发热部件。电池120与pcu118及mg112连接,将用于驱动车辆100的电力向mg112供给。
39.在本实施方式中,内燃机110、mg112及pcu118配置于车辆100的前方、即比车室靠前方处。另一方面,电池120配置于车辆100的中央、即车室的下方。
40.此外,车辆100只要是具备内燃机110及mg(或马达)112的车辆即可,可以是任何形态的车辆。因此,例如,车辆100也可以构成为内燃机仅用于发电且仅马达进行车辆100的驱动。另外,例如,车辆100也可以构成为具有主要用于车辆100的驱动用的mg和主要用于发电用的mg这两个mg。
41.接着,对所述车载温度调节系统的结构进行说明。
42.参照图1~图3d,对一个实施方式的温度调节系统的结构进行说明。图2是概略地示出车载温度调节系统的结构图。车载温度调节系统具备制冷回路2、低温回路3、高温回路4及控制装置6。制冷回路2、低温回路3及高温回路4作为在与回路的外部之间进行热的授受的热回路发挥功能。
43.首先,对制冷回路2进行说明。制冷回路2具备压缩机21、冷凝器22的制冷剂配管22a、接收器23、第1膨胀阀24、第2膨胀阀25、蒸发器26、使液体循环而进行装置的温度控制的装置即冷却器27(chiller)的制冷剂配管27a、第1电磁调整阀28及第2电磁调整阀29。制冷回路2构成为通过使制冷剂通过这些构成部件而循环从而实现制冷循环。对于制冷剂,使用例如氢氟烃(例如,hfc-134a)等、一般在制冷循环中作为制冷剂而使用的任意的物质。所述冷凝器22是本发明的“介质间热交换器”的一例。
44.另外,制冷回路2具有制冷基本流路2a、蒸发器流路2b及冷却器流路2c。蒸发器流路2b和冷却器流路2c互相并列设置,分别与制冷基本流路2a连接。
45.在制冷剂的循环方向上,压缩机21、冷凝器22的制冷剂配管22a及接收器23按该顺序设置于制冷基本流路2a。在制冷剂的循环方向上,第1电磁调整阀28、第1膨胀阀24及蒸发器26按该顺序设置于蒸发器流路2b。此外,第2电磁调整阀29、第2膨胀阀25及冷却器27的制冷剂配管27a按该顺序设置于冷却器流路2c。
46.压缩机21作为对制冷剂进行压缩的压缩机发挥功能。在本实施方式中,压缩机21是电动式,构成为通过调整向压缩机21的供给电力从而使得其排出容量无级地变化。在压缩机21中,从蒸发器26或冷却器27流出的低温、低压且主要是气体状的制冷剂通过被绝热地压缩从而变化为高温、高压且主要是气体状的制冷剂。
47.冷凝器22具有制冷剂配管22a和冷却水配管22b。冷凝器22作为使得从制冷剂向在后述的高温回路4的冷却水配管22b中流动的冷却水散热而使制冷剂冷凝的介质间热交换器发挥功能。换个角度来说,冷凝器22作为利用内燃机110的排热以外的热来加热高温回路4的冷却水的加热部发挥功能。冷凝器22的制冷剂配管22a作为在制冷循环中使制冷剂冷凝的冷凝器发挥功能。另外,在冷凝器22的制冷剂配管22a中,从压缩机21流出的高温、高压且
主要是气体状的制冷剂通过被等压地冷却从而变化为高温、高压的主要是液状的制冷剂。
48.接收器23贮存由冷凝器22的制冷剂配管22a冷凝后的制冷剂。另外,由于在冷凝器22中未必能够将所有的制冷剂进行液化,因此接收器23构成为进行气液的分离。从接收器23仅流出分离出气体状的制冷剂后的液状的制冷剂。
49.第1膨胀阀24及第2膨胀阀25作为使制冷剂膨胀的膨胀器发挥功能。这些膨胀阀24、25具备细径的通路,并且通过从该细径的通路喷雾出制冷剂而使制冷剂的压力急剧下降。第1膨胀阀24将从接收器23供给来的液状的制冷剂向蒸发器26内呈雾状喷射。同样,第2膨胀阀25将从接收器23供给来的液状的制冷剂向冷却器27的制冷剂配管27a内呈雾状喷射。在这些膨胀阀24、25中,从接收器23流出的高温、高压的液状的制冷剂被减压而部分气化,由此变化为低温、低压的雾状的制冷剂。
50.蒸发器26作为使制冷剂吸热而使制冷剂蒸发的蒸发器发挥功能。具体来说,蒸发器26使制冷剂从蒸发器26周围的空气吸热而使制冷剂蒸发。因此,在蒸发器26中,从第1膨胀阀24流出的低温、低压的雾状的制冷剂通过蒸发而变化为低温、低压的气体状的制冷剂。其结果,蒸发器26周围的空气被冷却,能够进行车室内的制冷。
51.冷却器27具备制冷剂配管27a和冷却水配管27b。冷却器27作为使制冷剂从在后述的低温回路3的冷却水配管27b中流动的冷却水吸热而使制冷剂蒸发的介质间热交换器发挥功能。冷却器27的制冷剂配管27a作为使制冷剂蒸发的蒸发器发挥功能。另外,在冷却器27的制冷剂配管27a中,从第2膨胀阀25流出的低温、低压的雾状的制冷剂通过蒸发而变换为低温、低压的气体状的制冷剂。其结果,低温回路3的冷却水被冷却。
52.第1电磁调整阀28及第2电磁调整阀29用于变更制冷回路2内的制冷剂的流通方式。第1电磁调整阀28的开度越大则向蒸发器流路2b流入的制冷剂越多,因而向蒸发器26流入的制冷剂越多。另外,第2电磁调整阀29的开度越大则向冷却器流路2c流入的制冷剂越多,因而向冷却器27流入的制冷剂越多。此外,只要能够调整从制冷基本流路2a向蒸发器流路2b及冷却器流路2c流入的流量即可,可以代替这些电磁调整阀28、29而设置有任何阀。
53.此外,在本实施方式中,制冷回路2仅具有冷凝器22来作为从制冷回路2内的制冷剂向外部放出热的热交换器。然而,制冷回路2也可以具有从制冷剂向外部(例如,外气)放出热的其他的热交换器。
54.接着,对低温回路3进行说明。低温回路3具备第1泵31、冷却器27的冷却水配管27b、低温散热器32、第1三通阀33及第2三通阀34。此外,低温回路3具备电池热交换器35、pcu热交换器36及mg热交换器37。在低温回路3中,冷却水通过这些构成部件而循环。此外,冷却水是第2热介质的一例,在低温回路3内,也可以代替冷却水而使用任意的其他的热介质。
55.低温回路3具有低温基本流路3a、低温散热器流路3b及发热机器流路3c。低温散热器流路3b和发热机器流路3c互相并列设置,分别与低温基本流路3a连接。
56.在冷却水的循环方向上,第1泵31、冷却器27的冷却水配管27b、电池热交换器35按该顺序依次设置于低温基本流路3a。另外,在低温基本流路3a连接有以绕过电池热交换器35的方式设置的电池旁通流路3d。在低温基本流路3a与电池旁通流路3d的连接部设置有第1三通阀33。
57.另外,在低温散热器流路3b设置有低温散热器32。在冷却水的循环方向上,pcu热
交换器36及mg热交换器37按该顺序依次设置于发热机器流路3c。在发热机器流路3c,也可以设置有与pcu或mg以外的发热机器进行热交换的热交换器。在低温基本流路3a与低温散热器流路3b及发热机器流路3c之间设置有第2三通阀34。
58.第1泵31压送在低温回路3内循环的冷却水。在本实施方式中,第1泵31是电动式的水泵,并构成为通过调整向第1泵31的供给电力从而使得其排出容量无级变化。
59.低温散热器32是在低温回路3内循环的冷却水与车辆100的外部的空气(外气)之间进行热交换的热交换器。低温散热器32构成为,在冷却水的温度比外气的温度高时进行从冷却水向外气的散热,在冷却水的温度比外气的温度低时进行从外气向冷却水的吸热。
60.第1三通阀33构成为使从冷却器27的冷却水配管27b流出的冷却水在电池热交换器35与电池旁通流路3d之间选择性地流通。第2三通阀34构成为使从低温基本流路3a流出的冷却水在低温散热器流路3b与发热机器流路3c之间选择性地流通。
61.电池热交换器35构成为与车辆100的电池120进行热交换。pcu热交换器36构成为与车辆100的pcu118进行热交换。另外,mg热交换器37构成为与车辆100的mg112进行热交换。
62.此外,在本实施方式中,在制冷回路2及低温回路3设置有冷却器27,冷却器27作为使热从低温回路3的冷却水向制冷回路2的制冷剂移动的介质间热交换器发挥功能。然而,在制冷回路2,也可以代替冷却器27而设置有与车外的大气中的气体进行热交换而使热从大气中的气体向制冷回路2的制冷剂移动的热交换器。在该情况下,在车载温度调节系统不设置低温回路3,因而电池120、pcu118及mg112的冷却由车载温度调节系统以外的机构进行。
63.接着,对高温回路4进行说明。高温回路4具备第2泵41、冷凝器22的冷却水配管22b、高温散热器42、加热器芯43、第3三通阀44、第4三通阀45、及内燃机热回路5。在高温回路4中冷却水也通过这些构成部件而循环。此外,该冷却水是第1热介质的一例,在高温回路4内,也可以代替冷却水而使用任意的其他的热介质。此处,所述高温散热器42是本发明的“散热器”的一例。所述第3三通阀44是本发明的“第1调整阀”的一例,所述第4三通阀45是本发明的“第2调整阀”的一例。
64.另外,高温回路4具有第1连通路4a和第2连通路4b。
65.第1连通路4a与后述的内燃机热交换器52的下游侧的内燃机热回路5及冷凝器22的冷却水配管22b的出口连通,并且与加热器芯43的入口及高温散热器42的入口连通。具体来说,第1连通路4a具有与冷凝器22的冷却水配管22b的出口连通的冷凝器流出通路4a1、与内燃机热回路5连通的内燃机流出通路4a2、连通于冷凝器流出通路4a1与内燃机流出通路4a2进行合流的合流部的合流通路4a3、以及合流通路4a3所分支出的芯流入通路4a4及散热器流入通路4a5。芯流入通路4a4与加热器芯43的入口连通,散热器流入通路4a5与高温散热器42的入口连通。
66.因此,第1连通路4a能够使从内燃机热回路5流出的冷却水及从冷凝器22流出的冷却水向加热器芯43和/或高温散热器42流入。具体来说,在冷凝器流出通路4a1与内燃机流出通路4a2的合流部,从冷凝器22流出的冷却水与从内燃机热回路5流出的冷却水进行合流并向合流通路4a3流入。并且,在从合流通路4a3向芯流入通路4a4及散热器流入通路4a5的分支部,从合流通路4a3流过来的冷却水分为向加热器芯43流入的冷却水和向高温散热器
42流入的冷却水。
67.第2连通路4b与加热器芯43的出口及高温散热器42的出口连通,并且与内燃机热交换器52的上游侧的内燃机热回路5及冷凝器22的冷却水配管22b的入口连通。具体来说,第2连通路4b具有与冷凝器22的冷却水配管22b的入口连通的冷凝器流入通路4b1、与内燃机热回路5连通的内燃机流入通路4b2、与冷凝器流入通路4b1及内燃机流入通路4b2连通并且与加热器芯43的出口连通的芯流出通路4b3、及与高温散热器42的出口及冷凝器流入通路4b1连通的散热器流出通路4b4。
68.因此,第2连通路4b能够使从加热器芯43流出的冷却水及从高温散热器42流出的冷却水向内燃机热回路5和/或冷凝器22流入。具体来说,在从芯流出通路4b3向冷凝器流入通路4b1及内燃机流入通路4b2的分支部,从芯流出通路4b3流过来的冷却水分为向冷凝器22流入的冷却水和向内燃机热回路5流入的冷却水。另外,从散热器流出通路4b4流过来的冷却水全都经由冷凝器流入通路4b1向冷凝器22流入。
69.根据以上内容,在本实施方式中,高温回路4具有第1连通路4a和第2连通路4b。第1连通路4a是与内燃机热交换器52的下游侧的内燃机热回路5及冷凝器22的出口和加热器芯43的入口及高温散热器42的入口连通而使冷却水从内燃机热回路5和/或冷凝器22向加热器芯43和/或高温散热器42流通的通路。第2连通路4b是与内燃机热交换器52的上游侧的内燃机热回路5及冷凝器22的入口和加热器芯43的出口及高温散热器42的出口连通而使冷却水从加热器芯43和/或高温散热器42向内燃机热回路5和/或冷凝器22流通的通路。
70.第2泵41压送在高温回路4内循环的冷却水。在本实施方式中,第2泵41是与第1泵31同样的电动式的水泵。特别是,在本实施方式中,第2泵41设置于冷凝器流入通路4b1。另外,高温散热器42与低温散热器32同样,是在高温回路4内循环的冷却水与外气之间进行热交换的热交换器。
71.加热器芯43用于利用高温回路4内的冷却水的热来对车室内进行供暖。即,加热器芯43构成为,在高温回路4内循环的冷却水与加热器芯43周围的空气之间进行热交换而对加热器芯43周围的空气进行加热,其结果,进行车室内的供暖。具体来说,加热器芯43构成为从冷却水向加热器芯43周围的空气排热。因此,在加热器芯43流动高温的冷却水时,冷却水的温度下降,并且加热器芯43周围的空气被加热。
72.第3三通阀44设置于合流通路4a3分支为芯流入通路4a4和散热器流入通路4a5的分支部。因此,向第3三通阀44流入从冷凝器22及内燃机热回路5流出并在合流通路4a3合流的冷却水。
73.图3a~图3d是概略地示出第3三通阀44的不同的工作状态的图。如图3a~图3d所示,第3三通阀44具有壳体44a和在壳体44a内转动的阀芯44b。壳体44a具有与合流通路4a3连通的入口x、与芯流入通路4a4连通的第1出口y、及与散热器流入通路4a5连通的第2出口z。阀芯44b通过在壳体44a内进行转动,从而变更入口x与第1出口y、第2出口z的连通状态。
74.在第3三通阀44的阀芯44b处于图3a所示的第1状态时,入口x与第1出口y连通。因此,在该情况下,向第3三通阀44流入了的冷却水(即,从合流通路4a3流入了的冷却水)全都通过芯流入通路4a4向加热器芯43流入。
75.另外,在第3三通阀44处于图3b所示的第2状态时,入口x与第1出口y及第2出口z双方连通。不过,从入口x向第1出口y的开口面积比从入口x向第2出口z的通路的开口面积大。
因此,在该情况下,向第3三通阀44流入了的冷却水向芯流入通路4a4及散热器流入通路4a5双方流入,但向芯流入通路4a4的流入比例比向散热器流入通路4a5的流入比例大。
76.而且,在第3三通阀44处于图3c所示的第3状态时,入口x与第1出口y及第2出口z双方连通。不过,在第3状态下,从入口x向第2出口z的开口面积比从入口x向第1出口y的通路的开口面积大。因此,在该情况下,向第3三通阀44流入了的冷却水向芯流入通路4a4及散热器流入通路4a5双方流入,但向散热器流入通路4a5的流入比例比向芯流入通路4a4的流入比例大。
77.此外,在第3三通阀44的阀芯44b处于图3d所示的第4状态时,入口x与第2出口z连通。因此,在该情况下,向第3三通阀44流入了的冷却水全都通过散热器流入通路4a5向高温散热器42流入。
78.如以上说明的那样,在本实施方式中,第3三通阀44作为调整从合流通路4a3的分支部向芯向流入通路4a4(即向加热器芯43)流入的冷却水的流量与从合流通路4a3的分支部向散热器流入通路4a5(即向高温散热器42)流入的冷却水的流量的比例的调整阀发挥功能。
79.此外,第3三通阀44也可以是以比图3a~图3d所示的4阶段多的多阶段来调整向加热器芯43及高温散热器42流入的冷却水的流量的比例的调整阀,还可以是连续地进行调整的调整阀。另外,也可以代替第3三通阀44,例如,将在芯流入通路4a4及散热器流入通路4a5分别设置的两个电磁调整阀用作对向加热器芯43及高温散热器42流入的冷却水的流量的比例阶段性地或连续地进行调整的调整阀。
80.第4三通阀45设置于芯流出通路4b3分支为冷凝器流入通路4b1和内燃机流入通路4b2的分支部。因此,向第4三通阀45流入从加热器芯43向芯流出通路4b3流出的冷却水。
81.另外,第4三通阀45具有与第3三通阀44同样的结构,并且,第4三通阀45的入口x与芯流出通路4b3连通,第1出口y与内燃机流入通路4b2连通,第2出口z与冷凝器流入通路4b1连通。因此,第4三通阀45作为调整从芯流出通路4b3的分支部向冷凝器流入通路4b1(即,向冷凝器22)流入的冷却水的流量、与从芯流出通路4b3的分支部向内燃机流入通路4b2(即,向内燃机热回路5)流入的冷却水的流量的比例的调整阀发挥功能。此外,只要能够对向冷凝器22及内燃机热回路5流入的冷却水的流量的比例阶段性地或连续地进行调整,则也可以代替第4三通阀45而使用其他的调整阀。
82.接着,对内燃机热回路5进行说明。内燃机热回路5是用于放出在内燃机110中生成的热的热回路。内燃机热回路5具有第3泵51、内燃机热交换器52、内燃机散热器53及恒温器54。在内燃机热回路5中,与高温回路4同样地冷却水通过这些构成部件而循环。因此,内燃机热回路5使冷却水不通过冷凝器22的冷却水配管22b、高温散热器42及加热器芯43而通过内燃机热交换器52地流通。
83.另外,内燃机热回路5被分为内燃机基本流路5a、内燃机散热器流路5b及内燃机旁通流路5c。内燃机散热器流路5b和内燃机旁通流路5c互相并列设置,分别与内燃机基本流路5a连接。
84.在冷却水的循环方向上,第3泵51、内燃机热交换器52按该顺序依次设置于内燃机基本流路5a。在内燃机散热器流路5b设置有内燃机散热器53。另外,内燃机流出通路4a2及内燃机流入通路4b2与内燃机旁通流路5c连通。特别是,内燃机流出通路4a2与内燃机旁通
流路5c的上游侧部分连通。其结果,内燃机流出通路4a2与内燃机热交换器52的出口附近连通。另一方面,内燃机流入通路4b2与内燃机旁通流路5c的下游侧部分连通。其结果,内燃机流入通路4b2与内燃机热交换器52的入口附近连通。因此,内燃机热交换器52构成为与高温回路4连通而供高温回路4的冷却水流通。在内燃机基本流路5a与内燃机散热器流路5b及内燃机旁通流路5c之间设置有恒温器54。此外,在图2所示的例子中,内燃机流出通路4a2虽然与内燃机旁通流路5c连通,但也可以与内燃机基本流路5a等连通。
85.第3泵51压送在内燃机热回路5内循环的冷却水。在本实施方式中,第3泵51是与第1泵31同样的电动式的水泵。另外,内燃机散热器53与低温散热器32同样,是在内燃机热回路5内循环的冷却水与外气之间进行热交换的热交换器。
86.内燃机热交换器52用于利用内燃机110的排热来加热冷却水。即,内燃机热交换器52从内燃机110向内燃机热回路5内的冷却水排热而加热冷却水。内燃机热交换器52通过使伴随于内燃机110内的燃料的燃烧而产生的热向冷却水排出,从而抑制内燃机110过度升温。内燃机热交换器52例如由设置于内燃机110的缸体或缸盖内的冷却水通路构成。
87.恒温器54是在切断通过内燃机散热器流路5b的冷却水的流动的闭阀状态与允许冷却水通过内燃机散热器流路5b而流动的开阀状态之间进行切换的阀。恒温器54在通过内燃机旁通流路5c而循环的冷却水的温度为预先设定的温度以上时,以使得冷却水流向内燃机散热器流路5b的方式打开。另一方面,恒温器54在通过内燃机旁通流路5c而循环的冷却水的温度低于预先设定的温度时,以使得冷却水不流向内燃机散热器流路5b的方式关闭。其结果,在内燃机热交换器52流通的冷却水的温度被保持为恒定。
88.接着,对空气通路进行说明。图4是概略地示出搭载了车载温度调节系统的车辆100的空调用的空气通路7的结构图。在空气通路7中,空气沿图中箭头所示的方向流动。图4所示的空气通路7与车辆100的外部或车室的空气吸入口连接,根据控制装置6的控制状态而外气或车室内的空气向空气通路7流入。另外,图4所示的空气通路7与向车室内吹出空气的多个吹出口连接,根据控制装置6的控制状态而从空气通路7向其中任意的吹出口供给空气。
89.如图4所示,在空气的流动方向上,鼓风机71、蒸发器26、空气混合门72及加热器芯43按该顺序依次设置于本实施方式的空调用的空气通路7。
90.鼓风机71具备鼓风机马达71a和鼓风机风扇71b。鼓风机71构成为,在鼓风机风扇71b由鼓风机马达71a驱动时,外气或车室内的空气向空气通路7流入,空气通过空气通路7而流动。在要求了车室的供暖或制冷的情况下,基本上鼓风机风扇71b被驱动。
91.空气混合门72调整通过空气通路7而流动的空气中的、通过加热器芯43而流动的空气的流量。空气混合门72构成为能够在使得在空气通路7流动的所有的空气在加热器芯43流动的状态、使得在空气通路7流动的所有的空气不在加热器芯43流动的状态、及它们之间的状态之间进行调整。
92.在这样构成的空气通路7中,在鼓风机71被驱动着时,在制冷剂在蒸发器26循环着的情况下,通过空气通路7而流动的空气被冷却。另外,在鼓风机71被驱动着时,在冷却水在加热器芯43循环着且以使得空气在加热器芯43流动的方式控制着空气混合门72的情况下,通过空气通路7内而流动的空气被加热。
93.另外,如图1所示,在车辆100的前格栅的内侧配置低温散热器32、高温散热器42及
内燃机散热器53。因此,在车辆100行驶着时行驶风吹到这些散热器32、42、53。另外,与这些散热器32、42、53相邻地设置风扇76。风扇76构成为在被驱动时风吹到散热器32、42、53。因此,即使在车辆100没有行驶时,也能够通过驱动风扇76来使风吹到散热器32、42、53。
94.接着,对控制装置进行说明。参照图2,控制装置6具有电子控制单元(ecu)61。ecu61具备进行各种运算的处理器、存储程序和各种信息的存储器、及与各种致动器和各种传感器连接的接口。
95.另外,控制装置6具有设置于芯流入通路4a4的第1水温传感器62。第1水温传感器62检测向加热器芯43流入的冷却水的温度。此外,控制装置6具有设置于冷凝器流入通路4b1的第2水温传感器63。第2水温传感器63检测向冷凝器22流入的冷却水的温度。ecu61与这些传感器62、63连接,向ecu61输入来自这些传感器的输出信号。
96.此外,控制装置6具备检测车辆100的室内的温度的室内温度传感器66、检测车辆100的室外的温度的外气温度传感器67、及由用户操作的操作面板68。ecu61与这些传感器及操作面板68连接,向ecu61输入来自这些传感器及操作面板68的输出信号。
97.ecu61基于来自传感器66、67及操作面板68的输出信号来判断制冷要求、供暖要求及除湿要求的有无。例如,在用户使操作面板68的供暖开关为接通的情况下,ecu61判断为要求了供暖。另外,在用户使操作面板68的自动开关为断开的情况下,例如,在由用户设定的室内温度比由室内温度传感器66检测到的温度高时ecu61判断为要求了供暖。
98.此外,ecu61与车载温度调节系统的各种致动器连接,控制这些致动器。具体来说,ecu61与压缩机21、电磁调整阀28、29、泵31、41、51、三通阀33、34、44、45、鼓风机马达71a、空气混合门72及风扇76连接,控制它们。因此,ecu61作为控制制冷回路2、低温回路3、高温回路4(包括内燃机热回路5)中的热介质(制冷剂及冷却水)的流通状态的控制装置发挥功能。
99.接着,对所述车载温度调节系统的动作进行说明。
100.接着,参照图5~图11,对车载温度调节系统中的、热介质(制冷剂及冷却水)的流通状态进行说明。在图5~图8及图10中,流制冷剂、冷却水的流路由实线表示,没有流制冷剂、冷却水的流路由虚线表示。另外,图中的细箭头表示制冷剂、冷却水流动的方向,图中的粗箭头表示热的移动方向。
101.首先,对有供暖要求的供暖模式下的热介质的流通状态进行说明。图5示出有供暖要求且内燃机110停止着的情况下的、车载温度调节系统中的热介质的流通状态(第1供暖模式)。在第1供暖模式下,使用从制冷回路2得到的热来进行基于加热器芯43的供暖。
102.如图5所示,在第1供暖模式下,使制冷回路2的压缩机21工作,并且,使第1电磁调整阀28关闭且使第2电磁调整阀29打开。因此,在制冷回路2中,制冷剂不通过蒸发器26而通过冷却器27地循环。
103.另外,在第1供暖模式下,使低温回路3的第1泵31工作。另外,在第1供暖模式下,第1三通阀33被设定为使得冷却水向电池热交换器35流通,第2三通阀34被设定为使得冷却水向低温散热器流路3b及发热机器流路3c双方流通。其结果,在低温回路3中,冷却水通过冷却器27的冷却水配管27b、低温散热器32、电池热交换器35、pcu热交换器36、mg热交换器37而循环。
104.而且,在第1供暖模式下,使高温回路4的第2泵41工作。另外,在第1供暖模式下,第3三通阀44以使得冷却水向加热器芯43流入的方式被设定为第1状态(图3a),第4三通阀45
以使得冷却水向冷凝器流入通路4b1流入的方式被设定为第4状态(图3d)。其结果,在高温回路4中,冷却水通过加热器芯43和冷凝器22的冷却水配管22b而循环。
105.根据以上内容,在第1供暖模式下,在低温回路3中,利用低温散热器32从外气或发热机器向冷却水吸收热,利用冷却器27使热从低温回路3的冷却水向制冷剂移动。在制冷回路2中,利用冷却器27向制冷剂吸收热,利用冷凝器22使热从制冷剂向高温回路4的冷却水移动。因此,制冷回路2作为使由冷却器27等吸收了的热在冷凝器22放出的热泵发挥功能。并且,在高温回路4中,利用冷凝器22向冷却水吸收了的热在加热器芯43被放出。因此,在第1供暖模式下,利用低温散热器32从外气或从发热机器吸收热,利用加热器芯43放出该热。
106.图6示出有供暖要求且内燃机110工作着的情况下的、车载温度调节系统中的热介质的流通状态(第2供暖模式)。特别是,在第2供暖模式下,使用从内燃机110得到的热来进行基于加热器芯43的供暖。在该情况下,车辆100的驱动基本上由内燃机110进行,因此,在图6所示的例子中,不进行mg112等的冷却。
107.如图6所示,在第2供暖模式下,使制冷回路2的压缩机21及第1泵31停止。因此,在制冷回路2内使制冷剂不循环,另外,在低温回路3内冷却水不循环。
108.另外,在第2供暖模式下,使高温回路4的第2泵41停止,使内燃机热回路5的第3泵51工作。并且,第3三通阀44以使得冷却水向加热器芯43流入的方式被设定为第1状态(图3a),第4三通阀45以使得冷却水向内燃机热回路5流入的方式被设定为第1状态(图3a)。其结果,在高温回路4中,利用第3泵51,冷却水通过内燃机热回路5和加热器芯43而循环。其结果,在第2供暖模式下,在内燃机热交换器52中从内燃机110吸收热,并且,利用加热器芯43放出该热。此外,在图6所示的例子中,冷却水不通过内燃机散热器流路5b地流动,但根据内燃机热回路5内的冷却水的温度而恒温器54打开,在内燃机散热器流路5b也流冷却水。
109.接着,对有制冷要求的制冷模式下的热介质的流通状态进行说明。图7示出有制冷要求的情况下的、车载温度调节系统中的热介质的流通状态(制冷模式)。在图7所示的例子中,内燃机110停止着,但在内燃机110工作着的情况下冷却水在内燃机热回路5内循环。
110.如图7所示,在制冷模式下,使制冷回路2的压缩机21工作,并且,使第1电磁调整阀28打开且使第2电磁调整阀29关闭。因此,在制冷回路2中,制冷剂不通过冷却器27而通过蒸发器26地循环。此外,在制冷模式下,为了促进发热机器的冷却,也可以打开第2电磁调整阀29而使制冷剂也在冷却器27流通。
111.另外,在制冷模式下,使低温回路3的第1泵31工作。另外,第1三通阀33被设定为使得冷却水向电池热交换器35流通,第2三通阀34被设定为使得冷却水向低温散热器流路3b及发热机器流路3c双方流通。其结果,在低温回路3中,冷却水通过冷却器27的冷却水配管27b、低温散热器32、电池热交换器35、pcu热交换器36、mg热交换器37而循环。由此,从发热机器向冷却水吸收热,并且,该热在低温散热器32中被向大气中放出。
112.根据以上内容,在制冷模式下,在制冷回路2中,利用蒸发器26从周围的空气向制冷剂吸收热,利用冷凝器22使热从制冷剂向高温回路4的冷却水移动。在高温回路4中,利用冷凝器22而被冷却水吸收了的热利用高温散热器42放出。因此,在制冷模式下,利用蒸发器26从通过空气通路7的周围的空气吸收热而进行车室内的制冷,利用高温散热器42放出该热。
113.接着,对有除湿供暖要求的除湿供暖模式下的热介质的流通状态进行说明。在除
湿供暖中,在蒸发器26中通过空气通路7的空气被暂且冷却。此时,由于空气的温度下降而饱和水蒸气量减少,空气中的水蒸气的一部分凝结,其结果,进行除湿。然后,通过将该空气利用加热器芯43进行加热,从而进行车室内的供暖。在加热器芯43中为了加热空气所需的热量基本上比在蒸发器26中从空气吸收的热量大,因此在进行除湿供暖时,需要通过使内燃机110工作来加热高温回路4内的冷却水。
114.图8示出有除湿供暖要求且向加热器芯43流入的冷却水的温度没有过度高的情况(例如,低于45℃的情况)下的、车载温度调节系统中的热介质的流通状态(第1除湿供暖模式)。在该情况下,车辆100的驱动基本上由内燃机110进行,因此,在图6所示的例子中,不进行mg112等的冷却。
115.如图8所示,在第1除湿供暖模式下,使制冷回路2的压缩机21工作,并且,使第1电磁调整阀28打开且使第2电磁调整阀29关闭。因此,在制冷回路2中,制冷剂不通过冷却器27而通过蒸发器26地循环。另外,在第1除湿供暖模式下,使低温回路3的第1泵31停止,因而在低温回路3内冷却水不循环。此外,在也由mg112驱动车辆100的情况下,也可以与图7所示的制冷模式同样地使低温回路3内的冷却水循环。此外,在第1除湿供暖模式下,使内燃机热回路5的第3泵51工作。因此,冷却水在内燃机热回路5内循环。
116.另外,在第1除湿供暖模式下,使高温回路4的第2泵41工作。而且,在第1除湿供暖模式下,第3三通阀44以使得冷却水向加热器芯43流入的方式被设定为第1状态(图3a),第4三通阀45以使得冷却水向冷凝器流入通路4b1及内燃机流入通路4b2双方流入的方式被设定为第2状态(图3b)或第3状态(图3c)。其结果,在高温回路4中,冷却水不通过高温散热器42而通过加热器芯43地循环,并且通过冷凝器22及内燃机热回路5的双方而循环。
117.特别是,在本实施方式中,根据向冷凝器22流入的冷却水的温度,切换第4三通阀45的工作状态。图9是示出向冷凝器22流入的冷却水的温度(冷凝器入口温度)、与相对于向第4三通阀45流入了的冷却水的流量的向冷凝器流入通路4b1流入的冷却水的流量的比例(以下,称为“冷凝器流量比例”)的图。如图9中由实线所示那样,在冷凝器入口温度比第1基准温度twref1(例如,45℃)低时第4三通阀45被设定为第2状态,因而冷凝器流量比例低。另一方面,在冷凝器入口温度为第1基准温度twref1以上时第4三通阀45被设定为第3状态,因而冷凝器流量比例高。
118.此外,图9的实线示出能够将第4三通阀45如图3a~图3d所示那样以4阶段进行切换的情况下的关系。另一方面,只要第4三通阀45是能够以比4阶段多的多阶段或连续地调整流量的调整阀即可,如图9中由虚线所示那样该调整阀以冷凝器入口温度越高则冷凝器流量比例越多的方式进行控制。
119.根据以上内容,在第1除湿供暖模式下,以使得从合流通路4a3向第3三通阀44流入了的冷却水不向高温散热器42流入而向加热器芯43流入的方式控制第3三通阀44。此外,在第3三通阀44被这样控制的第1除湿供暖模式下,以使得从芯流出通路4b3向第4三通阀45流入了的冷却水向冷凝器22和内燃机热回路5双方流入的方式控制第4三通阀45。特别是,在本实施方式中,第4三通阀45以在冷凝器入口温度高时与冷凝器入口温度低时相比使得相对于向内燃机热回路5流入的冷却水的流量的向冷凝器22流入的冷却水的流量变多的方式进行控制。
120.在进行除湿供暖时,为了提高蒸发器26中的空气的冷却效果,需要在冷凝器22中
使热从制冷剂向冷却水充分移动。并且,为此优选将向冷凝器22流入的冷却水的温度控制得低。
121.另一方面,在如第1除湿供暖模式那样使得向第3三通阀44流入了的冷却水全部向加热器芯43流入了的情况下,向冷凝器22流入的冷却水的温度利用第4三通阀45进行控制。特别是,当增加在第4三通阀45中向内燃机热回路5流入的冷却水的比例时,向加热器芯43流入的冷却水的温度上升,其结果,从加热器芯43流出的冷却水的温度也上升,向冷凝器22流入的冷却水的温度上升。相反地,当增加在第4三通阀45中向冷凝器22流入的冷却水的比例时,向冷凝器22流入的冷却水的温度下降。因此,根据本实施方式,能够适当地控制向冷凝器22流入的冷却水的温度,并将冷却效果维持得较高,同时进行除湿供暖。
122.图10示出有除湿供暖要求且向加热器芯43流入的冷却水的温度过度高的情况(例如,为45℃以上的情况)下的、车载温度调节系统中的热介质的流通状态(第2除湿供暖模式)。在图10所示的例子中也是,不进行mg112等的冷却,但为了冷却mg112等,也可以与图7所示的制冷模式同样地使低温回路3内的冷却水循环。
123.如图10所示,在第2除湿供暖模式下,与第1除湿供暖模式同样,使制冷回路2的压缩机21工作,并且,使第1电磁调整阀28打开且使第2电磁调整阀29关闭。因此,在制冷回路2中,制冷剂不通过冷却器27而通过蒸发器26地循环。此外,在第2除湿供暖模式下,使内燃机热回路5的第3泵51工作。因此,冷却水在内燃机热回路5内循环。
124.另外,在第2除湿供暖模式下,使高温回路4的第2泵41工作。而且,在第2除湿供暖模式下,第3三通阀44以使得冷却水向加热器芯43及高温散热器42双方流入的方式被设定为第2状态(图3b)或第3状态(图3c)。第4三通阀45以使得从加热器芯43流出的冷却水向内燃机流入通路4b2流入的方式被设定为第1状态(图3a)。其结果,在高温回路4中,冷却水通过加热器芯43及高温散热器42双方而循环,并且,以使得从加热器芯43流出的冷却水通过内燃机热回路5且从高温散热器42流出的冷却水通过冷凝器22的方式进行循环。
125.特别是,在本实施方式中,根据向冷凝器22流入的冷却水的温度,切换第3三通阀44的工作状态。图11是示出向冷凝器22流入的冷却水的温度(冷凝器入口温度)、与相对于向第3三通阀44流入了的冷却水的流量的向芯流入通路4a4流入的冷却水的流量的比例(以下,称为“加热器芯流量比例”)的图。如图11中由实线所示那样,在冷凝器入口温度比第2基准温度twref2(例如,45℃)低时第3三通阀44被设定为第2状态,因而加热器芯流量比例高。另一方面,在冷凝器入口温度为第2基准温度twref2以上时第3三通阀44被设定为第3状态,因而加热器芯流量比例低。
126.此外,图11的实线示出能够将第3三通阀44如图3a~图3d所示那样以4阶段切换的情况下的关系。另一方面,只要第3三通阀44是能够以比4阶段多的多阶段或连续地调整流量的调整阀即可,如图11中由虚线所示那样该调整阀以冷凝器入口温度越高则加热器芯流量比例越少的方式进行控制。
127.根据以上内容,在第2除湿供暖模式下,以使得从合流通路4a3向第3三通阀44流入了的冷却水向加热器芯43及高温散热器42双方流入的方式控制第3三通阀44。此外,在第3三通阀44被这样控制的第2除湿供暖模式下,以使得从芯流出通路4b3向第4三通阀45流入了的冷却水不向冷凝器22流入而向内燃机热回路5流入的方式控制第4三通阀45。特别是,在本实施方式中,第3三通阀44在冷凝器入口温度高时与冷凝器入口温度低时相比以使得
相对于向高温散热器42流入的冷却水的流量的向加热器芯43流入的冷却水的流量变少的方式进行控制。
128.在如第2除湿供暖模式那样向第3三通阀44流入了的冷却水向加热器芯43及高温散热器42双方流入了的情况下,向冷凝器22流入的冷却水的温度利用第3三通阀44进行控制。特别是,当增加在第3三通阀44中向加热器芯43流入的冷却水的比例时,向内燃机热回路5流入的冷却水的比例增加。其结果,向合流通路4a3流入的冷却水的温度上升,经由高温散热器42向冷凝器22流入的冷却水的温度上升。相反地,当增加在第3三通阀44中向高温散热器42流入的冷却水的比例时,向冷凝器22流入的冷却水的温度下降。因此,根据本实施方式,能够适当地控制向冷凝器22流入的冷却水的温度,并将冷却效果维持得较高,同时进行除湿供暖。
129.另外,在本实施方式中,在进行车室内的除湿供暖的情况下,在向加热器芯43流入的冷却水的温度低时,以使得冷却水不向高温散热器42流入而向加热器芯43流入的方式控制第3三通阀44。另一方面,在向加热器芯43流入的冷却水的温度高时,以使得冷却水向加热器芯43和高温散热器42双方流入的方式控制第3三通阀44。其结果,在向加热器芯43流入的冷却水的温度高时冷却水的一部分经由高温散热器42向冷凝器22流入,其结果,能够将向冷凝器22流入的冷却水的温度维持得较低。另一方面,在向加热器芯43流入的冷却水的温度低时冷却水不向高温散热器42流入,由此能够抑制在高温散热器42中热向外气放出,因而能够抑制向加热器芯43流入的冷却水的温度过度下降。因此,由此也能够适当地控制向冷凝器22流入的冷却水的温度并将冷却效果维持得较高同时进行除湿供暖。
130.根据以上内容,在本实施方式中,在进行车室内的除湿供暖的情况下,基于向加热器芯43流入的冷却水的温度和向冷凝器22流入的冷却水的温度来控制第3三通阀44及第4三通阀45。其结果,根据本实施方式,能够适当地控制向冷凝器22流入的冷却水的温度并将冷却效果维持得较高同时进行除湿供暖。
131.接着,对第3三通阀及第4三通阀的控制进行说明。
132.如上所述,第3三通阀44及第4三通阀45的控制由ecu61进行。ecu61在有除湿供暖要求时基本上使内燃机110工作并且使压缩机21工作而在制冷回路2内使制冷剂循环。以下,参照图12对有除湿供暖要求时的第3三通阀44及第4三通阀45的切换控制进行说明。图12是示出有除湿供暖要求时的第3三通阀44及第4三通阀45的切换处理的流程的流程图。图示的切换处理每当经过一定时间间隔执行。
133.首先,ecu61判定是否有除湿供暖要求(除湿供暖要求=on)(步骤s11)。在步骤s11中,在判定为无除湿供暖要求的情况下,执行另外于图12所示的流程的、无除湿供暖要求时的第3三通阀44及第4三通阀45的切换处理。
134.在步骤s11中判定为有除湿供暖要求的情况下,ecu61判定向加热器芯43流入的冷却水的温度twcore是否低于第3基准温度twref3(例如,45℃)。向加热器芯43流入的冷却水的温度twcore由第1水温传感器62检测。
135.在步骤s12中判定为向加热器芯43流入的冷却水的温度twcore低于第3基准温度twref3的情况下,为了将车载温度调节系统的工作模式设定为第1除湿供暖模式,ecu61将第3三通阀44的工作状态设定为第1状态(步骤s13)。
136.接着,ecu61判定向冷凝器22流入的冷却水的温度twcon是否低于第1基准温度
twref1(步骤s14)。向冷凝器22流入的冷却水的温度twcon由第2水温传感器63检测。在步骤s14中判定为冷却水的温度twcon低于第1基准温度twref1的情况下,第4三通阀45被设定为第2状态(步骤s15)。另一方面,在步骤s14中判定为冷却水的温度twcon为第1基准温度twref1以上的情况下,第4三通阀45被设定为第3状态(步骤s16)。
137.另一方面,在步骤s12中判定为向加热器芯43流入的冷却水的温度twcore为第3基准温度twref3以上的情况下,为了将车载温度调节系统的工作模式设定为第2除湿供暖模式,ecu61将第4三通阀45的工作状态设定为第1状态(步骤s17)。
138.接着,ecu61判定向冷凝器22流入的冷却水的温度twcon是否低于第2基准温度twref2(步骤s18)。在步骤s18中判定为冷却水的温度twcon低于第2基准温度twref2的情况下,第3三通阀44被设定为第2状态(步骤s19)。另一方面,在步骤s18中判定为冷却水的温度twcon为第2基准温度twref2以上的情况下,第3三通阀44被设定为第3状态(步骤s20)。
139.以上,说明了作为一例的实施方式及变形例,但本发明不限定于这些实施方式,能够在权利要求书的记载范围内实施各种各样的修改及变更。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献