一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

堆叠对准技术的制作方法

2022-11-14 12:12:27 来源:中国专利 TAG:

堆叠对准技术
1.相关申请的交叉引用
2.本技术要求于2020年3月24日提交的ep申请20165332.6的优先权,其通过引用以其整体并入本文。
技术领域
3.本文提供的实施例一般涉及可用于确定衬底堆叠中的衬底的对准的技术。实施例尤其适用于在多束带电粒子装置中用于操纵带电粒子的子束的设备的制造和/或测试。


背景技术:

4.当制造半导体集成电路(ic)芯片时,作为例如光学效应和附带颗粒的结果,在制造工艺期间在衬底(即,晶片)或掩模上不可避免地出现不期望的图案缺陷,从而降低了成品率。因此,监控不期望的图案缺陷的程度是ic芯片制造中的重要过程。更一般地,衬底或其它物体/材料的表面的检查和/或测量是在其制造期间和/或制造之后的导入过程。
5.具有带电粒子束的图案检查工具已经用于检查物体(例如用于检测图案缺陷)。这些工具通常使用电子显微镜技术,诸如扫描电子显微镜(sem)。在sem中,具有相对高能量的电子的初级电子束以最终减速步骤为目标,以便以相对低的着陆能量着陆在样品上。电子束作为探测点聚焦在样品上。探测点处的材料结构与来自电子束的着陆电子之间的相互作用使得电子从表面发射(诸如次级电子,背散射电子或俄歇电子)。所生成的次级电子可以从样品的材料结构发射。通过在样品表面之上扫描作为探测点的初级电子束,可以在样品表面上发射次级电子。通过从样品表面收集这些发射的次级电子,图案检查工具可以获得表示样品表面的材料结构的特征的图像。
6.带电粒子束的另一应用是光刻。带电粒子束与衬底表面上的抗蚀剂层反应。通过控制带电粒子束指向的抗蚀剂层上的位置,可以在抗蚀剂中生成期望的图案。
7.带电粒子装置可以是用于生成、照射、投射和/或检测一个或多个带电粒子束的装置。在带电粒子装置内,提供了多个用于操纵一个或多个带电粒子束的器件。每个器件可以包括衬底堆叠。一般需要改进包括衬底堆叠的器件的制造和测试。


技术实现要素:

8.本文所提供的实施例公开了用于确定堆叠中的衬底的相对对准的技术。实施例还包括确定衬底堆叠和该堆叠的pcb支撑的相对对准。
9.根据本发明的第一方面,提供了一种包括多个衬底的衬底堆叠,其中:衬底堆叠中的每个衬底包括至少一个对准开口组;在每个衬底中的至少一个对准开口组被对准,以用于使光束穿过每个衬底中对应的对准开口;并且每个衬底包括至少一个对准开口,该至少一个对准开口具有比其他衬底中对应的对准开口更小的直径。
10.根据本发明的第二方面,提供了一种用于确定包括多个衬底的衬底堆叠中的衬底的对准的方法,该方法包括:确定已经穿过限定在衬底堆叠中的每个衬底中的相应的多个
对准开口的多个光束的位置;以及根据所确定的位置确定衬底堆叠中的至少两个衬底的相对x、y和rz对准;其中:针对通过衬底堆叠的每个光束路径,光束路径上的衬底中的一个衬底的对准开口具有比光束路径上的相应一个或多个其它衬底的所有一个或多个其它对准开口更小的直径;以及针对多个光束路径中的至少两个光束路径中的每一者,该光束路径上的衬底中的一个不同衬底具有比光束路径上的相应一个或多个其它衬底的所有一个或多个其它对准开口更小的直径,使得针对衬底堆叠中的至少两个衬底中的每一个衬底,存在如下的一个或多个光束路径,该一个或多个光束路径的位置指示仅所述一个衬底的位置。
11.根据本发明的第三方面,提供了一种计算系统,其被配置为通过执行根据第二方面的方法,确定衬底堆叠中的衬底的对准。
12.根据本发明的第四方面,提供了一种用于获得指示光束位置的数据的工具,该工具包括:堆叠保持器,其被配置为保持根据第一方面的衬底堆叠;照射器,其被配置为照射衬底堆叠的表面的至少一部分;以及光检测器,其被配置为根据已经穿过衬底堆叠的多个光束而生成指示光束位置的数据。
13.根据本发明的第五方面,提供了一种包括根据第四方面的工具和根据第三方面的计算系统的系统。
14.根据本发明的第六方面,提供了一种用于确定衬底堆叠中的衬底的对准的方法,衬底堆叠具有至少两个衬底,其中在每个衬底中存在多个对准开口,该对准开口与衬底堆叠的其它衬底中对应的对准开口对准,使得存在穿过与每一衬底中的每一对准开口相关联的衬底堆叠的贯通通道,该方法包括:确定多个光束的相对位置,每个光束已经沿光路经由相应的贯通通道穿过衬底堆叠;以及根据所确定的位置确定衬底堆叠中的衬底的相对xy和rz对准;其中:限定用于穿过贯通通道的相应光路的贯通通道的衬底中的一个衬底的对准开口具有比限定贯通通道的其他对准开口更小的直径;并且针对每个光路,衬底堆叠中的不同衬底的直径比限定衬底堆叠中的相应贯通通道的其它对准开口的直径更小。
15.根据本发明的第七方面,提供了一种包括束操纵器的衬底的衬底堆叠,衬底堆叠具有至少两个衬底,其中在每个衬底中存在多个对准开口,对准开口与衬底堆叠的其它衬底中对应的对准开口对准,使得存在穿过与每个衬底中的每个对准开口相关联的衬底堆叠的贯通通道,其中多个贯通通道中的每一者用于光束的通过,并且光束适于确定衬底堆叠中的衬底的相对x,y和rz对准;其中:衬底中的一个衬底的、限定用于穿过贯通通道的相应光路的贯通通道的对准开口具有比限定贯通通道的其他对准开口更小的直径;并且衬底堆叠中的不同衬底具有对准开口,该对准开口具有比限定衬底堆叠中的相应贯通通道的其它对准开口更小的直径。
16.根据本发明的第八方面,提供了一种根据权利要求33或34所述的衬底堆叠与印刷电路板pcb的组合,该衬底堆叠被提供在该pcb上,其中:在pcb中限定开口,该开口被配置为与衬底堆叠中的贯通通道对准,用于与堆叠光源相互作用;并且pcb的表面包括被配置为与pcb光源相互作用的多个对准结构。
17.根据本发明的第九方面,提供了一种印刷电路板(pcb)和衬底堆叠的组合,在该衬底堆叠中限定了针对光束路径开口的多个贯通通道,衬底堆叠被设置在pcb上,其中在pcb的表面中的是多个对准结构,多个对准结构被配置为与光源相互作用,用于使得pcb的对准
能够被确定。
18.根据本发明的第十方面,提供了一种用于确定衬底堆叠与印刷电路板pcb的相对对准的方法,其中该衬底堆叠被设置在该pcb上,该方法包括:确定第一多个光束的位置,第一多个光束已经穿过通过衬底堆叠的相应多个开口和pcb中的至少一个开口;确定取决于多个pcb对准结构的第二多个光束的位置;以及根据所确定的第一多个光束和第二多个光束的位置,确定衬底堆叠和pcb的相对x、y和rz对准。
19.根据本发明的第十一方面,提供了一种计算系统,其被配置为通过执行根据第十方面的方法来确定pcb和衬底堆叠的对准。
20.从以下结合附图的描述中,本发明的其它优点将变得显而易见,其中通过图示和示例的方式阐述了本发明的某些实施例。
附图说明
21.从结合附图对示例性实施例的描述中,本公开的以上和其他方面将变得更加明显。
22.图1是图示了示例性带电粒子束检查装置的示意图。
23.图2是图示了作为图1的示例性带电粒子束检查装置的一部分的示例性多束装置的示意图。
24.图3是图示了图1的示例性带电粒子束检查装置的源转换单元的示例性配置的示例性多束装置的示意图。
25.图4是示出根据实施例的两个衬底的堆叠的横截面的示意图。
26.图5示出了根据实施例的光点的四个不同的相对位置。
27.图6a和图6b示出了根据实施例的对准开口组的配置。
具体实施方式
28.现在将详细参考示例性实施例,其示例在附图中示出。以下描述参考附图,其中不同附图中的相同标号表示相同或类似的元件,除非另有说明。在示例性实施例的以下描述中阐述的实现并不代表与本发明一致的所有实现。相反,它们仅仅是与所附权利要求中所陈述的与本发明相关的方面一致的装置和方法的示例。
29.可以通过显著增加ic芯片上的电路部件(诸如晶体管、电容器、二极管)的封装密度来实现器件物理尺寸的减小和电子器件计算能力的增强。这可以通过增加分辨率来实现,从而能够制造更小的结构。例如,智能电话的ic芯片(尺寸是拇指甲的尺寸并且在2019年或更早可用)可以包括20亿个以上的晶体管,每个晶体管的尺寸小于人类头发的1/1000。因此,半导体ic制造是具有成百上千个单独步骤的、复杂且耗时的工艺并不令人惊讶。即使在一个步骤中的误差也有可能显著影响最终产品的功能。仅仅一个“致命缺陷”就可能导致器件故障。制造工艺的目标是提高工艺的总成品率。例如,针对50步骤的工艺(其中步骤可以指示在晶片上形成的层数),为了获得75%的成品率,每个单独的步骤必须具有大于99.4%的成品率。如果单个步骤的成品率为95%,则总工艺成品率将低至7-8%。
30.虽然高的工艺成品率在ic芯片制造设施中是期望的,但是保持高的衬底(即,晶片)生产量(定义为每小时处理的衬底数量)也是必要的。缺陷的存在会影响高工艺成品率
和高衬底生产量。尤其是在需要操作员干预来检查缺陷时。因此,通过检查工具(例如,扫描电子显微镜(“sem”))对微米级和纳米级缺陷的高生产量检测和标识对于维持高成品率和低成本是必要的。
31.sem包括扫描设备和检测器装置。该扫描设备包括照射装置和投射装置,该照射装置包括用于生成初级电子的电子源,该投射装置用于用初级电子的一个或多个聚焦束来扫描诸如衬底的样品。初级电子与样品相互作用并生成次级电子。当扫描样品时,检测装置从样品捕获次级电子,使得sem可以产生样品的扫描区域的图像。对于高生产量检查,一些检查装置使用初级电子的多个聚焦束(即多束)。多束的分量束可以被称为子束或束波。多束可以同时扫描样品的不同部分。因此,多束检查装置能够以比单束检查装置高得多的速度检查样品。
32.在多束检查装置中,一些初级电子束的路径偏离扫描设备的中心轴线(即,初级电子光学轴线的中点)。为了确保所有电子束以基本上相同的入射角,和/或以期望的节距,和/或在样品表面上的期望位置处到达样品表面,需要操纵与中心轴线具有更大径向距离的子束路径,以移动通过比路径更靠近中心轴线的子束路径更大的角度。这种更强的操纵可能导致像差,该像差导致样品衬底的模糊和离焦图像。特别地,针对不在中心轴线上的子束路径,子束中的像差可能随着距中心轴线的径向位移而增加,因为这些子束路径的操纵器需要在较大的电压下操作。当检测到次级电子时,这种像差可以保持与次级电子相关联。因此,这种像差降低了在检查期间产生的图像的质量。
33.下面描述已知的多束检查装置的实现。
34.附图是示意性的。因此,为了清楚起见,附图中部件的相对尺寸被放大。在附图的以下描述中,相同或相似的附图标记指代相同或相似的部件或实体,并且仅描述关于各个实施例的差异。虽然描述和附图针对电子光学装置,但是应当理解,这些实施例不用于将本公开限于特定的带电粒子。因此,在本文件中对电子的引用可以更一般地被认为是对带电粒子的引用,其中带电粒子不一定是电子。
35.现在参考图1,图1是图示示例性带电粒子束检查装置100的示意图。图1的带电粒子束检查装置100包括主腔室10,负载锁定腔室20,电子束工具40,设备前端模块(efem)30和控制器50。电子束工具40位于主腔室10内。
36.efem 30包括第一负载端口30a和第二负载端口30b。efem 30可包括附加的负载端口。例如,第一负载端口30a和第二负载端口30b可以接纳包含衬底(例如,半导体衬底或由其它材料制成的衬底)或待检查的样品(衬底,晶片和样品在下文统称为“样品”)的衬底前开式传送盒(foup)。efem 30中的一个或多个机械臂(未示出)将样品输送到负载锁定腔室20。
37.负载锁定腔室20用于去除样品周围的气体。这生成了局部气体压力低于周围环境中的压力的真空。负载锁定腔室20可连接到负载锁定真空泵系统(未示出),其去除负载锁定腔室20中的气体分子。负载锁定真空泵系统的操作使得负载锁定腔室能够达到低于大气压力的第一压力。在达到第一压力后,一个或多个机械臂(未示出)将样品从负载锁定腔室20输送到主腔室10。主腔室10连接到主腔室真空泵系统(未示出)。主腔室真空泵系统去除主腔室10中的气体分子,使得样品周围的压力达到低于第一压力的第二压力。在达到第二压力之后,样品被输送到电子束工具,通过该电子束工具可以检查样品。电子束工具40可以
包括单束或多束电子光学装置。
38.控制器50电连接到电子束工具40。控制器50可以是被配置成控制带电粒子束检查装置100的处理器(诸如计算机)。控制器50还可以包括被配置为执行各种信号和图像处理功能的处理电路系统。尽管控制器50在图1中被示出为在包括主腔室10、负载锁定腔室20和efem 30的结构的外部,但是应当理解,控制器50可以是该结构的一部分。控制器50可以位于带电粒子束检查装置的一个组成元件中,或者它可以分布在至少两个组成元件之上。虽然本公开提供了容纳电子束检查工具的主腔室10的示例,但是应当注意,本公开的各方面在其最广泛的意义上不限于容纳电子束检查工具的腔室。相反,应当理解,上述原理也可以应用于在第二压力下操作的设备的其它布置和其它工具。
39.现在参考图2,图2是示出包括多束检查工具的示例性电子束工具40的示意图,该多束检查工具是图1的示例性带电粒子束检查装置100的一部分。多束电子束工具40(本文也称为装置40)包括电子源201、枪孔径板271、聚束透镜(condenser lens)210、源转换单元220、初级投射装置230、机动工作台(motorized stage)209和样品架207。电子源201、枪孔径板271、聚束透镜210、源转换单元220是由多束电子束工具40包括的照射装置的部件。样品架207由机动工作台209支撑,以便保持用于检查的样品208(例如,衬底或掩模)。多束电子束工具40还可以包括次级投射装置250和相关的电子检测设备240。初级投射装置230可以包括物镜231。电子检测设备240可以包括多个检测元件241、242和243。光分束器233和偏转扫描单元232可以被定位在初级投射装置230内。
40.用于生成初级束的部件可以与装置40的初级电子光学轴线对准。这些组件可以包括:电子源201、枪孔径板271、聚束透镜210、源转换单元220、分束器233、偏转扫描单元232和初级投射装置230。次级投射装置250及其相关联的电子检测设备240可以与装置40的次级电子光学轴线251对准。
41.初级电子光学轴线204由作为照射装置的电子束工具40的部分的电子光学轴线组成。次级电子光学轴线251是作为检测装置的电子束工具40的部分的电子光学轴线。初级电子光学轴线204在本文中也可被称为初级光学轴线(为了便于参考)或带电粒子光学轴线。次级电子光学轴线251在本文中也可称为次级光学轴线或次级带电粒子光学轴线。
42.电子源201可以包括阴极(未示出)和提取器或阳极(未示出)。在操作期间,电子源201被配置为从阴极发射作为初级电子的电子。初级电子通过提取器和/或阳极提取或加速以形成初级电子束202,该初级电子束202形成初级束交叉(虚的或实的)203。初级电子束202可以被可视化为从初级束交叉203发射。
43.在这种布置中,初级电子束在其到达样品时,并且优选地在其到达投射装置之前是多束的。这种多束电子束可以以多种不同的方式从初级电子束生成。例如,多束可以由位于交叉之前的多束阵列,位于源转换单元220中的多束阵列或位于这些位置之间的任何点处的多束阵列生成。多束阵列可以包括在束路径上被布置成阵列的多个电子束操纵元件。每个操纵元件可以影响初级电子束以生成子束。因此,多束阵列与入射主束路径相互作用以生成多束阵列的多束路径下束。
44.在操作中,枪孔径板271被配置成阻挡初级电子束202的外围电子以减小库仑效应。库仑效应可以扩大初级子束211、212、213的每个探测点221、222和223的尺寸,因此降低了检查分辨率。枪孔板271也可被称为库仑孔径阵列。
45.聚束透镜210被配置为聚焦初级电子束202。聚束透镜210可被设计为将初级电子束202聚焦成为平行束并正常地入射到源转换单元220上。聚束透镜210可以是可移动的聚束透镜,其可以被配置成使得其第一主平面的位置是可移动的。可移动聚束透镜可以被配置为磁性的。聚束透镜210可以是防旋转聚束透镜和/或它可以是可移动的。
46.源转换单元220可以包括图像形成元件阵列、像差补偿器阵列、束限制孔径阵列和预弯曲微偏转器阵列。预弯曲微偏转器阵列可以偏转初级电子束202的多个初级子束211、212、213以正常地进入束限制孔径阵列,图像形成元件阵列和像差补偿器阵列。在这种布置中,图像形成元件阵列可以用作多束阵列,以在多束路径中生成多个子束(即,初级子束211、212、213)。图像形成阵列可以包括多个电子束操纵器(诸如微偏转器微透镜(或两者的组合)),以影响初级电子束202的多个初级子束211、212、213,并形成初级束交叉203的多个平行图像(虚的或实的),每个初级子束211、212和213对应一个。像差补偿器阵列可以包括场曲率补偿器阵列(未示出)和像散补偿器阵列(未示出)。场曲率补偿器阵列可以包括多个微透镜以补偿初级子束211、212和213的场曲率像差。像散补偿器阵列可以包括多个微像散校正装置(micro-stigmator)以补偿初级子束211、212和213的像散像差。束限制孔径阵列可以被配置为限制各个初级子束211、212和213的直径。图2将三个初级子束211、212和213作为示例示出,并且应当理解,源转换单元220可以被配置为形成任何数量的初级子束。控制器50可以连接到图1的带电粒子束检查装置100的各个部件(诸如源转换单元220、电子检测设备240、初级投射装置230或机动工作台209)。如下面进一步详细解释的,控制器50可以执行各种图像和信号处理功能。控制器50还可生成各种控制信号以控制带电粒子束检查装置(包括带电粒子多束装置)的操作。
47.聚束透镜210还可以被配置为通过改变聚束透镜210的聚焦能力来调整源转换单元220的初级子束211、212、213下束的电流。可替换地,或另外地,初级子束211、212、213的电流可以通过改变与各个初级子束相对应的束限制孔径阵列内的束限制孔径的径向尺寸来改变。如果聚束透镜是可移动的和磁性的,则离轴线子束212和213可导致以旋转角度照射源转换单元220。旋转角度随着可移动聚束透镜的聚焦能力或第一主平面的位置而改变。作为防旋转聚束透镜的聚束透镜210可以被配置为在聚束透镜210的聚焦能力改变时保持旋转角度不变。当聚束透镜210的聚焦能力和其第一主平面的位置变化时,这种也是可移动的聚束透镜210可以导致旋转角不改变。
48.物镜231可以被配置为将子束211、212和213聚焦到样品208上以进行检查,并且可以在样品208的表面上形成三个探测点221、222和223。
49.分束器233例如可以是包括生成静电偶极场和磁偶极子场的静电偏转器的维恩滤波器(wien filter)(图2中未示出)。在操作中,分束器233可以被配置为通过静电偶极场在初级子束211、212和213的各个电子上施加静电力。静电力与由分束器233的磁偶极子场施加在各个电子上的磁力幅度相等,但方向相反。因此,初级子束211、212和213可以以至少基本上零偏转角至少基本上笔直地穿过分束器233。
50.在操作中,偏转扫描单元232被配置为偏转初级子束211、212和213,以在样品208的表面部分中的各个扫描区域上扫描探测点221、222和223。响应于初级子束211、212和213或探测点221、222和223在样品208上的入射,从样品208生成包括次级电子和背散射电子的电子。次级电子在三个次级电子束261、262和263中传播。次级电子束261、262和263通常具
有次级电子(具有≤50ev的电子能量),并且还可以具有至少一些背散射电子(具有在50ev和初级子束211、212和213的着陆能量之间的电子能量)。分束器233被布置为将次级电子束261、262和263的路径朝向次级投射装置250偏转。次级投射装置250随后将次级电子束261、262和263的路径聚焦到电子检测设备240的多个检测区域241、242和243上。检测区域可以是被布置为检测对应的次级电子束261、262和263的单独的检测元件241、242和243。检测区域生成对应的信号,该信号被发送到控制器50或信号处理系统(未示出),例如,以构造样品208的对应扫描区域的图像。
51.检测元件241、242和243可以检测对应的次级电子束261、262和263。在利用检测元件241、242和243入射次级电子束时,这些元件可以生成对应的强度信号输出(未示出)。输出可以被引导到图像处理系统(例如,控制器50)。每个检测元件241、242和243可以包括一个或多个像素。检测元件的强度信号输出可以是由检测元件内的所有像素生成的信号之和。
52.控制器50可以包括图像处理系统,该图像处理系统包括图像获取器(未示出)和存储设备(未示出)。例如,控制器可以包括处理器、计算机、服务器、大型主机、终端、个人计算机、任何类型的移动计算设备等,或其组合。图像获取器可以包括控制器的处理功能的至少一部分。因此,图像获取器可以包括至少一个或多个处理器。图像获取器可通信地耦合到允许信号通信的装置40的电子检测设备240,诸如电导体、光纤电缆、便携式存储介质、ir、蓝牙、因特网、无线网络、无线电等等,或其组合。图像获取器可以从电子检测设备240接收信号,可以处理包括在信号中的数据,并且可以从中构造图像。因此,图像获取器可以获取样品208的图像。图像获取器还可以执行各种后处理功能,诸如生成轮廓,在所获取的图像上叠加指示符等。图像获取器可以被配置为执行所获取图像的亮度和对比度等的调节。存储器可以是诸如硬盘、闪存驱动器、云存储器、随机存取存储器(ram),其它类型的计算机可读存储器等的存储介质。存储器可以与图像获取器耦合,并且可以用于将扫描的原始图像数据保存为原始图像和后处理的图像。
53.图像获取器可以基于从电子检测设备240接收的成像信号获取样品的一个或多个图像。成像信号可以对应于用于进行带电粒子成像的扫描操作。所获取的图像可以是包括多个成像区域的单个图像。单个图像可以被存储在存储器中。单个图像可以是可被划分成多个区域的原始图像。每个区域可以包括一个包含样品208的特征的成像区域。所获取的图像可以包括在一个时间段内多次采样的样品208的单个成像区域的多个图像。多个图像可以被存储在存储装置中。控制器50可以被配置为利用样品208的相同位置的多个图像执行图像处理步骤。
54.控制器50可以包括测量电路(例如,模数转换器)以获得所检测的次级电子的分布。在检测时间窗期间收集的电子分布数据可以与入射到样品表面上的初级子束211、212和213中的每一个的对应的扫描路径数据结合使用,以重建检查中的样品结构的图像。经重建的图像可用于揭示样品208的内部或外部结构的各种特征。因此,经重建的图像可用于揭示可能存在于样品中的任何缺陷。
55.控制器50可以控制机动工作台209以在检查样品208期间移动样品208。至少在样品检查期间,控制器50可以使得能够机动工作台209在优选地连续的方向上(例如,以恒定的速度)移动样品208。控制器50可以控制机动工作台209的移动,使得它根据各种参数改变
样品208的移动速度。例如,控制器可以取决于扫描过程的检查步骤的特征来控制工作台速度(包括其方向)。
56.尽管图2示出了装置40使用三个初级电子子束,但是应当理解,装置40可以使用两个或更多数量的初级电子子束。
57.现在参考图3,图3是示出图1的示例性带电粒子束检查装置的源转换单元的示例性配置的示例性多束装置的示意图。装置300可以包括电子源301、预先子束形成孔径阵列372、聚束透镜310(类似于图2的聚束透镜210)、源转换单元320、物镜331(类似于图2的物镜231)和样品308(类似于图2的样品208)。电子源301、预先子束形成孔径阵列372、聚束透镜310可以是装置300所包括的照射设备的部件。源转换单元320,物镜331可以是装置300所包括的投射装置的部件。源转换单元320可以类似于图2的源转换单元220,其中图2的图像形成元件阵列是图像形成元件阵列322,图2的像差补偿器阵列是像差补偿器阵列324,图2的束限制孔径阵列是束限制孔径阵列321,图2的预弯曲微偏转器阵列是预弯曲微偏转器阵列323。电子源301、预先子束形成孔径阵列372、聚束透镜310、源转换单元320和物镜331与装置的初级电子光学轴线304对准。电子源301通常沿着初级电子光学轴线304生成初级电子束302,并且具有源交叉(虚的或实的)301s。预先子束形成孔阵列372切割初级电子束302的外围电子以减小由此生成的库仑效应。库仑效应是由于不同子束路径中电子之间的相互作用而导致的子束像差的来源。通过预先子束形成机构的预先子束形成孔径阵列372,可以将初级电子束302修整成指定数目的子束,例如三个子束311、312和313。尽管在前面和后面的描述中提到了三个子束和它们的路径,但是应当理解,该描述旨在应用具有任意数量的子束的装置、工具或系统。
58.源转换单元320可包括具有束限制孔的束波限制孔阵列321,子束限制孔被配置为限制初级电子束302的子束311、312和313。源转换单元320还可以包括具有图像形成微偏转器322_1、322_2和322_3的图像形成元件阵列322。存在与每个子束的路径相关联的相应的微偏转器。微偏转器322_1、322_2和322_3被配置为使子束311、312和313的路径朝向电子光学轴线304偏转。偏转的子束311、312和313形成源交叉301s的虚像。虚像由物镜331投射到样品308上,并在其上形成探测点,它们是三个探测点391、392和393。每个探测点对应于子束路径在样品表面上的入射位置。源转换单元320还可以包括像差补偿器阵列324,其被配置为补偿每个子束的像差。每个子束中的像差通常出现在将形成样品表面的探测点391、392和393上。像差补偿器阵列324可以包括具有微透镜的场曲率补偿器阵列(未示出)。场曲率补偿器和微透镜被配置为针对探测点391、392和393中明显的场曲率像差补偿子束。像差补偿器阵列324可以包括具有微像散校正装置的像散补偿器阵列(未示出)。控制微像散校正装置以对子束进行操作,以补偿否则存在于探测点391、392和393中的像散像差。
59.源转换单元320还可以包括具有预弯曲微偏转器323_1、323_2和323_3的预弯曲微偏转器阵列323,以分别弯曲子束311、312和313。预弯曲微偏转器323_1、323_2和323_3可以将子束的路径弯曲到束波限制孔径阵列321上。入射到束波限制孔径阵列321上的子束路径可以与束波限制孔径阵列321的取向平面正交。聚束透镜310可以将子束的路径引导到束波限制孔径阵列321上。聚束透镜310可将三个子束311,312和313聚焦成沿初级电子光学轴线304的平行束,使得其垂直入射到源转换单元320上,源转换单元320可对应于子束限制孔径阵列321。
60.图像形成元件阵列322、像差补偿器阵列324和预弯曲微偏转器阵列323可包括多层子束操纵设备,其中一些可以是例如:微偏转器、微透镜或微像散校正装置的形式或阵列。
61.在源转换单元320中,初级电子束302的子束311、312和313分别被图像形成元件阵列322的微偏转器322_1、322_2和322_3朝向初级电子光学轴线304偏转。应当理解,子束311路径在到达微偏转器322_1之前可能已经对应于电子光学轴线304,因此子束311路径可能不会被微偏转器322_1偏转。
62.物镜331将子束聚焦到样品308的表面上,即,它将三个虚像投射到样品表面上。样品表面上由三个子束311至313形成的三个图像在其上形成三个探测点391、392和393。子束311至313的偏转角由物镜311调节,以减小三个探测点391~393的离轴线像差。三个偏转的子束因此穿过或接近物镜331的前焦点。
63.图2和图3中的上述部件中的至少一些可以单独地或彼此组合地被称为操纵器阵列或操纵器,因为它们操纵带电粒子的一个或多个束或子束。
64.上述多束检查工具包括具有单个带电粒子源的多光束带电粒子装置,其可以被称为多束带电粒子光学装置或多束带电粒子系统。多束带电粒子装置包括照射装置和投射装置。照射装置可以从来自源的电子束生成多束带电粒子。该投射装置向样品投射多束带电粒子。利用多束带电粒子扫描样品表面的至少一部分。
65.多束带电粒子装置可以包括一个或多个束操纵器。在单束带电粒子装置中,可以有用于操纵束路径的束操纵器。在多束带电粒子装置中,可以有束操纵器阵列(即,操纵器阵列),用于操纵多束的子束。每个束操纵器可以是例如mems器件或用于操纵带电粒子路径的任何类型的其它器件/结构。每个束操纵器可以包括一个或多个衬底。可以存在穿过每个束操纵器的开口,用于穿过束操纵器的子束路径。由开口限定的贯通通道的周边可以具有一个或多个电极。每个束操纵器被配置成操纵(诸如透镜(例如,聚焦)和/或偏转)穿过其开口的子束路径。束操纵器可以以n
×
m阵列设置。n可以例如在2和20之间(诸如5)。例如,m可以在2和20之间(诸如5)。然而,n和m可以具有任何值,并且n和m中的每一个可以是几千。
66.作为束操纵器阵列的操纵器阵列可以被形成为衬底的堆叠,称为衬底堆叠。衬底堆叠中的每个衬底可以包括多个开口(即,孔),用于提供通过衬底堆叠的子束路径。多个开口可称为束路径开口。操纵器阵列中的每个束操纵器可以通过将两个或更多个衬底组固定(例如,结合在一起)来构造,其中每个衬底组沿着束路径基本上直接在另一衬底组之前和/或之后。每个衬底组可以包括一个或多个衬底。
67.每个束操纵器的性能取决于被结合在一起以形成束操纵器的衬底的相对对准。特别地,在不同衬底组中的对应的束路径开口之间的实质未对准将扭曲,或者在严重的情况下防止一个或多个子束通过衬底堆叠的路径。
68.实施例提供用于确定固定在一起的衬底组的相对对准的技术。下面参考固定在一起以形成包括束操纵器阵列的操纵器阵列的多个衬底组来描述实施例。然而,实施例还包括固定在一起以形成单个束操纵器的多个衬底组。实施例还包括固定在一起用于任何应用的多个衬底组。
69.如上所述,每个衬底包括用于提供子束路径的多个开口。除了束路径开口之外,实施例包括在每个衬底中形成多个对准开口。衬底堆叠的主表面侧之一的对准开口被照射。
对准开口的位置和直径使得衬底堆叠中的衬底的相对对准取决于穿过衬底堆叠中的对准开口的光束的相对位置。因此,可以根据对穿过对准开口的光束的检查来确定衬底堆叠中的衬底的相对对准。
70.图4是示出根据实施例的两个衬底的堆叠的横截面的示意图。
71.图4中的衬底堆叠包括第一衬底404和第二衬底405。第一衬底404可以被称为上束衬底404,因为当衬底堆叠被光源418照射时,第一衬底是将被带电粒子照射的第一衬底。第二衬底可以称为下束衬底。第一衬底404包括第一对准开口组412、413和414。第一衬底404还包括第二对准开口组415、416和417。第一衬底404还包括针对多束带电粒子的带电粒子束路径的束路径开口427。束路径开口427以图案布置在第一对准开口组和第二对准开口组之间的第一衬底404的主表面中。
72.第二衬底包括第一对准开口组406、407和408。第二衬底还包括第二对准开口组409、410和411。第二衬底405还包括用于多束带电粒子的带电粒子束路径的束路径开口426。束路径开口426以图案布置在第一对准开口组和第二对准开口组之间的第二衬底405的主表面中。
73.第二衬底405可以是孔径阵列。当在多束带电粒子装置中使用衬底堆叠时,孔径阵列是由带电粒子照射的衬底堆叠的主表面。第二衬底405的所有束路径开口可具有比第一衬底404的对应束路径开口更窄的直径。孔径阵列中的束路径开口限定子束。子束的尺寸和形状也将取决于沿束路径开口的束操纵器。
74.在本实施例中,第二衬底405可以被称为参考衬底。参考衬底是衬底堆叠中的其他衬底的位置相对于其进行定义的衬底。尽管衬底堆叠中的任何衬底都可以用作参考衬底,但是参考衬底优选地是包括孔径阵列的衬底。这是因为包括孔径阵列的衬底限定了子束,并且因此与衬底堆叠中的任何其它衬底相比,对操纵器阵列的性能具有更大的影响。
75.在图4中,每个光点402的直径取决于第二衬底405中的束部分开口的直径。每个光点402的直径不取决于第一衬底404中的束部分开口的直径,因为第一衬底404中的束路径开口具有比第二衬底中的束路径开口的直径更大的直径。
76.在第二衬底405中的第一对准开口组中,对准开口407具有比对准开口406和408更窄的直径。对准开口407可以位于其它对准开口406和408之间。类似地,在第二衬底405中的第二对准开口组中,对准开口410具有比对准开口409和411更窄的直径。对准开口410可以位于其它对准开口409和411之间。
77.在第一衬底404中的第一对准开口组中,对准开口412和414具有比对准开口413更窄的直径。对准开口413可以位于其它对准开口412和414之间。类似地,在第一衬底404中的第二对准开口组中,对准开口415和417具有比开口416更窄的直径。对准开口416可以位于其它对准开口415和417之间。
78.所有对准开口412、414、415、417、407和410的直径可以都是基本上相同的。它们的直径可以例如在100μm至1500μm的范围内。
79.所有对准开口413、416、406、408、409和411的直径可以都是基本上相同的。它们的直径可以例如在200μm至2000μm的范围内。
80.光源418被配置为照射第一衬底404的暴露主表面的对准开口。当第一衬底404的暴露的主表面被照射时,光学光束401可以通过在第一衬底404和第二衬底405中的第一对
准开口组。光学光束402也可以通过第一衬底404和第二衬底405中的光束路径开口。光学光束403还可以穿过在第一衬底404和第二衬底405中的第二对准开口组。
81.对于已经通过对准开口的每个光束,光束的斑点尺寸可以仅取决于光束已经通过的对准开口的最小直径。此外,光点的位置可以仅取决于包括具有最小直径的对准开口的衬底的位置。
82.因此,针对第一衬底404,对准开口412、414、415和417可以各自确定通过这些对准开口的光束的斑点尺寸。这是因为第一衬底404的对准开口412、414、415和417都具有比第二衬底405的对应对准开口406、408、409和411更窄的直径。因此,穿过这些对准开口的光束的位置可以仅取决于第一衬底404的位置,而不取决于第二衬底405的位置。
83.类似地,针对第二衬底405,对准开口407和410各自确定通过这些对准开口的光束的斑点尺寸。这是因为第二衬底405的对准开口407和410都具有比第一衬底404的对应对准开口413和416更窄的直径。因此,穿过这些对准开口的光束的位置可以仅取决于第二衬底405的位置,而不取决于第一衬底404的位置。
84.对准开口407和410可以被称为参考开口,因为它们位于参考衬底中并且是限定光点的尺寸和位置的开口。对准开口412、414、415和417可以被称为比较开口,因为它们不位于参考衬底中并且是限定光点的尺寸和位置的开口。
85.实施例可以根据已经穿过对准开口的光束的相对位置来确定衬底堆叠中的衬底的相对对准。具体地,根据参考开口407和410生成的光点以及根据比较开口412、414、415、417生成的光点的相对位置可以用于确定第一衬底404和第二衬底405(即,参考衬底)的相对对准。
86.光束可以在相机光检测器(诸如相机)的表面上形成光点。光检测器在图4中未示出。每个光点可以指示已经通过衬底堆叠的光束的位置。光检测器可以生成对应于所形成的光点的信号。该光检测器可以包括处理器,该处理器被配置成从所生成的信号生成指示光点位置的数据。光检测器可以将信号传输到能够生成指示光点位置的所述数据的外部处理器。实施例包括处理指示光点位置的数据,以便补偿衬底堆叠和光检测器的光学轴线之间的任何倾斜。可以将指示光点位置的数据提供给图像生成器并由其使用,以生成一个或多个图像。可以根据一个或多个图像中光点的相对位置来确定衬底的相对对准。然而,实施例还包括自动使用指示光点位置的数据来确定衬底的对准,而不生成任何图像。
87.用于根据所获得的指示光点位置的数据来确定衬底的对准的所有过程可以由计算系统执行。计算系统可以包括图像生成器。
88.实施例包括用于生成指示光点位置的数据的工具。该工具可包括被配置为保持衬底堆叠的保持器。该工具可包括照射器,该照射器被配置为照射衬底堆叠的主表面中的一者的至少一部分。该工具可以包括一个或多个用于检测光束位置的光检测器。该工具可以包括上述计算系统,用于根据所获得的指示光点位置的数据来确定衬底的对准。可替换地,计算系统可以远离工具。
89.在图4中,每个衬底具有基本上平面的结构。每个衬底的平面可以被定义为在x-y平面中(在笛卡尔(cartesian)坐标几何中)。衬底在基本上与x-y平面正交的方向上堆叠(即,在z方向上沿z轴堆叠)。第一衬底404被示出为与第二衬底405适当地对准。特别地,衬底的主表面在基本上平行的平面中,并且衬底中的束路径开口具有对应的位置。
90.每个衬底中的对准开口组被配置成使得参考开口407和410以及比较开口412、414、415、417沿衬底堆叠的平面中的方向(例如,在x方向上)布置。在每个衬底中的第一对准开口组中的对准开口组被布置成使得参考开口407位于两个比较开口412和414之间。当第一衬底和第二衬底适当地对准时,对应于参考开口407的光点可以与对应于比较开口412和414的光点等距。类似地,每个衬底中的第一对准开口组中的对准开口被布置成使得参考开口410位于两个比较开口415和417之间。当第一衬底和第二衬底适当地对准时,对应于参考开口410的光点可以与对应于比较开口415和417的光点等距。在每个衬底中,束路径开口可以沿着轴线(诸如x轴)与第一对准开口组和第二对准开口组对准。束路径开口可以与第一对准开口组和第二对准开口组中的每一者等距。
91.在衬底的平面中并且沿着与x轴正交的方向(即,沿着y轴),每个对准开口组中的对准开口可以具有基本上为零的位移。
92.图5示出了已经穿过包括两个衬底的衬底堆叠中的对准开口的光束401、402和403的光点的四个不同相对位置的示例的平面图。光点的四个不同相对位置的示例可以对应于图4所示的第一衬底404和第二衬底405的四个不同相对对准。
93.第一示例501示出了当第一衬底404和第二衬底405之间存在正确对准时的光点图案。第二示例至第四示例示出了具有三种不同类型的未对准的光点图案。
94.第一示例501中的光点的相对位置指示第一衬底和第二衬底在x、y和rz(其中rz是绕z轴的旋转量)上适当地对准,如上文针对图4所述。来自第一对准开口组(图5中最左边的)和第二对准开口组(图5中最右边的)的光点都基本上沿x轴对准,这表明衬底基本上相对于y方向和rz旋转位置对准。即,在y方向上没有衬底的实质未对准,并且rz是适当的。来自第一对准开口组和第二对准开口组内的光点在x方向上都基本上相等地间隔开。这表明两个衬底基本上在x方向上对准。即,在x方向上衬底之间没有实质未对准。
95.第二示例502中生成的光点的相对位置指示第一衬底和第二衬底在y和rz上适当地对准,但在x上未对准。来自第一和第二对准开口组内的光点都基本上位于x轴上,这表明衬底基本上相对于y方向和rz旋转位置对准。然而,从第一对准开口组和第二对准开口组内检测到的光点沿x轴不相等地间隔开,也就是说,对应于每个对准开口组的中间光点从光点之间的中心位置沿相同方向以相同幅度位移。这指示在x方向上两个衬底之间的未对准。
96.在第三示例503中生成的光点的相对位置指示第一衬底和第二衬底在x和rz上适当地对准,但在y上未对准。来自第一对准开口组和第二对准开口组的光点中的一些但不是全部光点位于x轴上,特别地,每组的中间光点相对于每组中的其它光点在y方向上具有类似位移和方向的位移。这表明在y方向上存在衬底的未对准。这种光点图案指示rz中的旋转对准。来自第一对准开口组和第二对准开口组内的光点都在x方向上基本上相等地间隔开,这表示衬底沿x方向对准。即,两个衬底在x方向没有实质未对准。
97.在第四示例504中所生成的光点的相对位置指示第一衬底和第二衬底在x和y方向上适当地对准,但在rz方向上未对准。对应于第一对准开口组的光点在x方向上对准,并且中心对准开口在y方向上位移一个量,该y方向可以称为正y方向。对应于第二对准开口组的光点在x方向上对准,并且中心开口在y方向上位移与第一对准开口组的中心点相同的量,但是在相反的y方向上(即,负y方向上)。在两组的中心对准开口的相反方向上的这种类似的位移幅度表示衬底在y方向上对准并且在rz方向上旋转位移(即,围绕z轴)。即,两个衬底
在rz上不对准。来自第一对准开口组和第二对准开口组内的光点在x方向上都基本相等地间隔开,这表示两个衬底在x方向上基本上对准;即,衬底在x方向上没有基本上的未对准。
98.因此,光点的相对位置可以用于确定第一衬底404和第二衬底405在x、y和rz上的相对位置。可以将x、y和/或rz上的实际衬底未对准确定为包括多个单独的未对准分量,其中每个未对准分量在x、y和rz中的一者上。针对衬底堆叠中除参考衬底之外的每个衬底,可以为衬底的x,y和rz中的每个衬底相对于参考衬底的相对对准分量设置容差水平。容差水平可以称为每个衬底的定位自由度。针对衬底堆叠中的每个衬底,容差水平可以不同。如果衬底堆叠中的所有衬底相对于参考衬底的相对对准分量在设定的容差水平内,则可以确定衬底堆叠在对准性能规范内。
99.针对衬底堆叠中的每个衬底,可以存在通过衬底堆叠的至少一个光束路径,针对该至少一个光束路径,至少一个光束的斑点尺寸和位置可以仅取决于所述衬底的位置。也就是说,针对衬底堆叠中的每个衬底和在至少一个光束路径上,该衬底可以包括至少一个对准开口,该至少一个对准开口具有比衬底堆叠中的其它衬底的所有对应对准开口更窄的直径。
100.针对不同的光束路径,限定斑点尺寸的对准开口的最窄直径在不同的衬底之间可以不同。这允许通过针对衬底的至少一个光点来单独标识衬底堆叠中每个衬底的位置。
101.每个对准开口组中的对准开口的数量可以取决于衬底堆叠中的衬底的数量。每个对准开口组中的对准开口的数量可以大于或等于衬底堆叠中的衬底的数量,使得针对每个衬底,存在仅对应于其位置的至少一个光点。在一种布置中,至少比衬底堆叠中的衬底数量多一个孔。
102.实施例可以用于确定衬底堆叠中任何数量的衬底的相对对准。例如,衬底堆叠中的衬底数量可以是2到20。
103.尽管实施例包括仅有一个对准开口组,但优选地有至少两个对准开口组。优选地,两个对准开口组位于衬底的主表面的相对端。例如,两个对准开口组可以位于x轴的相对端,如图5所示。对准开口组之间的相对大的间隔增加了rz对准确定的精度。
104.如上所述,对准开口组可设置在束路径开口的任一侧上。每个对准开口组可以与束路径开口间隔相当大的距离,使得对准开口不影响或以其它方式影响每个衬底的有效区域,如提供束操纵器所需要的。
105.实施例可以用于确定已结合在一起的衬底组中的两个或更多个衬底是否在性能规范的限制内在x、y和rz上对准。如果衬底的对准不在性能规范内,则可以确定废弃衬底组,使得包括衬底组的最终产品没有缺陷。可替换地,可确定使衬底脱粘并以调整的对准将它们重新粘合。
106.实施例还以可用于确定包括已结合在一起的两个或更多个衬底组的衬底堆叠是否在x、y和rz上适当地对准。如果衬底组没有适当地对准,则可以确定废弃衬底堆叠,使得包括衬底堆叠的最终产品没有缺陷。可替换地,可以确定使衬底组脱粘并且以调整的对准将它们重新粘合。
107.针对包括多个衬底的每个衬底组,衬底可以被布置为使得针对衬底组中的每个衬底,存在通过衬底组的至少一个光束路径,针对该至少一个光束路径,至少一个光束的斑点尺寸和位置仅取决于所述衬底的位置。可替换地,衬底可以被配置为使得针对一些衬底,不
存在取决于衬底位置的光束点尺寸和位置。例如,当衬底组中的一些衬底的x,y和rz位置的精度对于该衬底组中的所有衬底并不关键时,这可能是适当的。
108.实施例还包括在衬底或衬底组结合在一起之前确定衬底或衬底组的x、y和rz的相对对准。光点位置可以用于调整衬底或衬底组在x、y和rz上的位置,使得衬底或衬底组在它们结合在一起之前被适当地对准。
109.每个对准开口组中的对准开口的配置(即,布置)可以基本上相同。每个对准开口组中的对准开口可以被配置为使得对准开口被配置在基本上直的线上。可替换地,每个对准开口组中的对准开口可以被配置成使得对准开口被配置在多条基本上直的线上。
110.图6a示出了对准开口组的可能配置。每个对准开口组中的对准开口被配置成使得对准开口被配置在两条正交的基本上直的线上。对准标记对准所沿的正交线平行于x和y轴。应当注意,图6a仅示出了对准开口的示例性相对位置。图6a没有指示对准开口的相对直径,(即,尺寸),因为这些在衬底堆叠中的衬底之间不同。
111.图6a所示的对准开口组可用在包括两个以上衬底的衬底堆叠中。例如,对准开口组可用于包括五个衬底的衬底堆叠。衬底堆叠中的一个衬底可以是相对于其确定其它衬底的对准的参考衬底。如前所述,参考衬底可以是这样的衬底,对于该衬底,光束路径开口是孔径阵列,子束路径由该孔径阵列限定。对准开口601可以在参考衬底中最窄。因此,对准开口601可以被称为参考开口。对于所有对准开口602,603、604、605、606和607,最窄的对准开口是除参考衬底之外的衬底。因此,所有对准开口602、603、604、605、606和607被称为比较开口。
112.对准开口603和604在同一衬底中可以都是最窄的,因此针对所述同一衬底是比较开口。这样的优点在于,当包括这些比较开口的衬底的与参考衬底正确对准时,由对准开口601、603和604生成的光点都在x方向上对准并且相等地间隔开。因此,前面参照图5描述的技术可以容易地用于确定任何未对准分量。
113.类似地,对准开口606和607对于相同衬底可以都是比较开口,这不同于具有作为对准开口的对准开口603和604的衬底。当具有作为比较开口的对准开口606和607的衬底的与参考衬底正确对准时,由对准开口601、606和607生成的光点全部在y方向上对准且相等地间隔开。因此,前面参照图5描述的技术可以容易地用于确定任何未对准分量。
114.对准开口602可以是用于衬底的比较开口,对于该衬底,其它对准开口中没有一个是比较开口。因此,只有一个光点将指示衬底的位置,对于该衬底,对准开口602是比较开口。可以确定来自比较开口和参考开口的光点在x和y方向上的位移。由此,可以确定衬底的与参考衬底的相对对准,对于该衬底对准开口602是比较开口。
115.类似地,对准开口605可以是用于衬底的比较开口,对于该衬底,其它对准开口中没有一个是比较开口。因此,只有一个光点将指示衬底的位置,对于该衬底,对准开口605是比较开口。可以确定来自比较开口和参考开口的光点在x和y方向上的位移。由此,可以确定衬底的与参考衬底的相对对准,对于该衬底对准开口605是比较开口。
116.对于具有多于一个比较开口的衬底,可以更精确地确定相对于参考衬底的相对对准。然而,当对于衬底仅存在一个比较开口时,仍然可以确定衬底的对准是否满足性能规范。因此,具有最关键对准容差的衬底堆叠中的衬底优选地具有多于一个的比较开口。对于衬底堆叠中的其它衬底仅具有一个比较开口可能是适当的,并且有利地减少了所需的对准
开口的数量。
117.图6a所示的对准开口组可优选地与另外的对准开口组一起使用。另外的对准开口组可以是例如与图6a所示或者与如图6b所示的对准开口组相同。图6b所示的对准开口组可以是图6a所示的对准开口组的实质镜像。即,不同对准开口组中的对准开口的位置可以具有关于y轴的反射对称性。图6a和6b中的对准开口组可以设置在衬底的主表面的相对端。图6b中的对准开口组可被配置成使得对准开口601

、602

、603

、604

、605

、06

和607

向每个衬底提供与图6a中的对准开口601、602、603、604、605、606和607相同的参考和比较开口的对应关系。
118.多个对准开口组的使用增加了所提供的比较开口的数量。这既增加了可以确定任何未对准的精度,又增加了可以提供一个或多个比较开口的衬底的数量。
119.另外的对准开口可以添加到图6a和图6b所示的两个对准开口组中。每个另外的对准开口将为衬底堆叠中的衬底提供比较开口。优选地,每个另外的对准开口在y方向上或在x方向上定位,使得其仅在x方向上或仅在y方向上从参考开口位移。然而,只要至少可以确定对准开口相对于参考开口407的相对位置,对准开口可以定位在任何位置处的对准开口组中。特别地,实施例包括提供沿着相对于图6a和图6b中的x和y方向的对角线的另外的对准开口。
120.衬底堆叠通常设置在印刷电路板pcb上。pcb既可以为衬底堆叠提供物理支撑,也可以为衬底堆叠中的衬底提供电连接。pcb还可以支撑衬底堆叠之外的其它部件。因此,器件的制造工艺可以包括在pcb上定位衬底堆叠的工艺。实施例包括用于确定衬底堆叠是否适当地定位在pcb上的技术。pcb设置有pcb对准结构,该结构可用于确定衬底堆叠和pcb的相对对准。
121.pcb可以是具有上主表面和下主表面的平面结构。衬底堆叠可以设置在pcb的上主表面上。pcb的主表面的尺寸可以大于衬底堆叠中所有衬底的主表面的相应尺寸。
122.如前所述,衬底堆叠可以包括多个对准开口组以及束路径开口。可以存在通过pcb的单个大开口,使得在使用中,多束带电粒子可以穿过束路径开口和通过pcb的单个开口。pcb中的单个开口对于光束可以足够大以使其既穿过对准开口组又穿过pcb。可替换地,pcb可以包括另外的开口,使得穿过衬底堆叠的所有光束也可以穿过pcb。
123.如上所述,pcb设置有可用于确定衬底堆叠和pcb的相对对准的pcb对准结构。pcb对准结构可以包括设置在pcb的上主表面上的标记。例如,标记可以是诸如基准标记的光学反射器。标记可以具有特征图案。可替换地,pcb对准结构可以是通过pcb的贯通通道。
124.每个pcb对准结构可以与组装后被衬底堆叠覆盖的pcb的上主表面上的区域间隔开。因此,当衬底堆叠是在pcb上时,每个pcb对准结构没有被衬底堆叠覆盖。pcb对准结构可以布置成使得当衬底堆叠以正确的对准定位在pcb上时,pcb对准结构在平面图中与叠层中的对准开口组基本上线性地对准。在一个实施例中,衬底堆叠被布置在至少两个pcb对准结构之间,并且pcb对准结构在x方向上与衬底堆叠中的对准开口组基本上线性地对准。
125.实施例包括通过照射堆叠和pcb的上主表面来确定pcb和衬底堆叠的相对对准。如前所述,取决于衬底堆叠位置的光束的照射可以既穿过pcb也穿过对准开口组和/或通过衬底堆叠的束路径开口。可以根据通过对准开口组和/或束路径开口的光束的位置来确定衬底堆叠的位置。
126.照射还将从作为光学反射器的每个pcb对准结构生成反射光束。pcb的位置可以根据反射光束的位置来确定。
127.照射还将生成穿过每个pcb对准结构的(多个)透射光束,该pcb对准结构是穿过pcb的开口。pcb的位置可以根据透射光束的位置来确定。
128.pcb和衬底堆叠在x、y和rz上的相对对准可以根据来自取决于衬底堆叠的位置的光束的光点和来自取决于pcb的位置的光束的光点的相对位置来确定。
129.来自透射光束的光点可以与来自已经穿过衬底堆叠的光束的光点在同一平面中生成。来自反射光束的光点可以与来自其它光束的光点在不同的平面中生成。
130.光束可以在一个或多个光检测器(诸如相机)的表面上形成光点。每个光点可以指示已经穿过衬底堆叠或者取决于pcb对准结构的位置的光束的位置。光点信号可以由光点入射到其上的每个光检测器生成。每个光点信号可以指示由光子检测器生成的光点位置数据。指示光点位置的数据可以由一个或多个光检测器生成和/或捕获。实施例包括处理指示光点位置的数据,以便补偿pcb和/或衬底堆叠与一个或多个光检测器的光学轴线之间的任何倾斜。可以将表示光点位置的数据提供给图像生成器并由图像生成器使用以生成一个或多个图像,并且可以根据一个或多个图像中的光点的相对位置来确定衬底堆叠和pcb的相对对准。然而,实施例还包括自动使用指示光点位置的数据来确定衬底堆叠和pcb的相对对准。
131.用于根据所获得的指示光点位置的数据来确定pcb和衬底堆叠的对准的所有过程可以由计算系统执行。计算系统可以包括图像生成器。
132.实施例包括用于生成指示光点位置的数据的工具。该工具可以包括保持器,该保持器被配置为保持其上具有衬底堆叠的pcb。该工具可以包括照射器,该照射器被配置为照射pcb和衬底堆叠的主表面中的一者的至少一部分。该工具可以包括一个或多个用于检测光束位置的光检测器。该工具可以包括上述计算系统,用于根据所获得的指示光点位置的数据来确定pcb和衬底堆叠的对准。可替换地,计算系统可以远离工具。
133.实施例可以用于确定已经结合在一起的pcb和衬底堆叠是否在性能规范的限制内在x、y和rz上对准。如果对准不在性能规范内,则可以确定废弃pcb和衬底堆叠,使得包括pcb上的衬底堆叠的最终产品没有缺陷。可替换地,可以确定使衬底堆叠和pcb脱粘。然后,衬底堆叠和pcb可以用校正的对准重新粘合。
134.实施例还包括用于确定衬底堆叠中的衬底的相对rx、ry和z位置的技术。
135.如前所述,衬底堆叠中的每个衬底具有基本上在x-y平面中的基本上平面的结构。衬底堆叠中的衬底在z方向上堆叠。关于x方向的旋转位移被称为rx。关于y方向的旋转位移被称为ry。衬底堆叠中的每个衬底的上主表面可以基本上是平面的(例如矩形)。矩形的边可以基本上分别在x方向和y方向上。
136.针对衬底堆叠中的每个衬底,其在x方向和y方向上的尺寸可以大于或等于衬底堆叠中位于其上方的所有衬底的尺寸。也就是说,衬底堆叠中最上面的衬底可以在衬底堆叠中所有衬底的x方向和y方向上具有最小的尺寸。衬底堆叠中的每个其它衬底在x方向和y方向上的尺寸可以大于或等于直接在其上方的衬底的尺寸。衬底堆叠可以具有阶梯金字塔的外观,每个阶梯对应于衬底堆叠中衬底主表面的暴露部分。衬底叠层可以是具有连续更小的横截面积的阶梯衬底。
137.实施例包括使用光学高度传感器在衬底堆叠的上表面之上生成高度图。可以使用许多已知的光学高度传感器。这些可以根据发射和反射光来测量z方向上到表面的距离。光束可以是激光束。高度图示出了衬底堆叠中每个衬底的上主表面的暴露表面的z位置。实施例包括使用由光学高度图提供的z位置的变化来确定衬底堆叠中的衬底的相对rx、ry和z位置。
138.实施例还包括获得pcb上的衬底堆叠的光学高度图,并使用该光学高度图来确定pcb和衬底堆叠的相对rx、ry和z位置。
139.实施例包括对上述技术的许多修改和变化。
140.在图4中,通过利用来自位于衬底堆叠下方的光源418的光照射衬底堆叠来生成光点。实施例还包括通过利用来自位于衬底堆叠上方的光源418的光照射衬底堆叠来生成光点。
141.多束带电粒子装置可以是检查(或量测检查(metroinspection))工具的部件或电子束光刻工具的一部分。根据实施例的多束带电粒子装置可以用于许多不同的应用中,这些应用通常包括电子显微镜,而不仅仅是sem和光刻。
142.实施例包括多束检查和/或量测工具,该多束检查和/或量测工具包括根据实施例的技术制造的束操纵器设备。束操纵设备可以是扫描设备的一部分,该扫描设备被布置成将多束带电粒子投射到样品上。多束检查工具可以包括检测器,其被布置为检测从被照射的样品接收的带电粒子(诸如次级电子)。
143.实施例还包括多束光刻工具,其包括上述束操纵器设备。
144.特别地,多束带电粒子装置可以包括上述束操纵器设备和上面参考图1至图3描述的设备的任何部件。
145.多束带电粒子装置可以包括单个带电粒子源,如图1至图3所示。可替换地,多束带电粒子装置可以包括多个带电粒子源。可以有用于每个源的单独列和根据在每一列中提供的实施例的操纵器装置。或者,多束带电粒子装置可以包括多个带电粒子源和仅单个列。
146.在整个实施例中,描述了z方向,并且这可以是带电粒子光学轴线。该轴线描述通过照射装置和从照射装置输出的带电粒子的路径。输出多束的子束可以都基本上平行于带电粒子光学轴线。带电粒子光学轴线可以与照射设备的机械轴线相同或不同。
147.实施例的特别优选的应用是制造和测试用作带电粒子装置中的束操纵器的衬底堆叠和pcb。然而,实施例的技术可以更一般地应用于用于任何应用的任何衬底堆叠和pcb的制造和测试。实施例允许确定衬底堆叠中的衬底的对准。实施例还可用于确定pcb和定位在pcb上的任何部件的相对对准。
148.实施例包括以下陈述。
149.根据本发明的第一方面,提供了一种包括多个衬底的衬底堆叠,其中:衬底堆叠中的每个衬底包括至少一个对准开口组;在每个衬底中的至少一个对准开口组被对准,以使光束穿过每个衬底中的相应对准开口;并且每个衬底包括至少一个对准开口,该至少一个对准开口具有比其他衬底中的对应对准开口更小的直径。
150.优选地,衬底堆叠中的每个衬底包括多个对准开口组;并且衬底堆叠中的每个衬底的每个对准开口组被配置成使得对于衬底堆叠中的每个衬底,存在通过对准开口组的至少一个光束路径,该至少一个光束路径指示所述一个衬底相对于其它衬底的位置。
151.优选地,每个对准开口组中的对准开口被配置成使得对准开口形成包括基本上直的线的图案。
152.优选地,每个对准开口组中的对准开口被配置成使得对准开口形成包括多条基本上直的线的图案。
153.优选地,每个对准开口组中的对准开口被配置成使得对准开口形成包括彼此基本上正交相交的两条基本直的线的图案。
154.优选地,衬底堆叠包括束操纵器阵列;并且阵列中的每个束操纵器被配置为操纵多束带电粒子的子束。
155.优选地,束操纵器的阵列是n
×
m阵列;n在2和20之间(诸如5);并且m在2和20之间(诸如5)。
156.优选地:每个衬底包括至少第一对准开口组和第二对准开口组;在衬底上的每个对准开口组在衬底的与束操纵器阵列不同的部分上;并且束操纵器阵列被布置在第一对准开口组和第二对准开口组之间。
157.优选地,每个衬底的第一对准开口组和第二对准开口组位于衬底的主表面的相对端。
158.根据本发明的第二方面,提供一种用于确定包括多个衬底的衬底堆叠中的衬底的对准的方法,该方法包括:确定已经穿过限定在衬底堆叠中的每个衬底中的相应的多个对准开口的多个光束的位置;以及根据所确定的位置确定衬底堆叠中的至少两个衬底的相对x、y和rz对准;其中:针对通过衬底堆叠的每个光束路径,光束路径上的衬底中的一个衬底的对准开口具有比光束路径上的相应一个或多个其它衬底的所有一个或多个其它对准开口更小的直径;并且针对多个光束路径中的至少两个光束路径中的每一个光束路径,光束路径上的衬底中的一个不同衬底具有如下的对准开口,该对准开口的具有比光束路径上的相应一个或多个其它衬底的所有一个或多个其它对准开口更小的直径,使得:针对衬底堆叠中的至少两个衬底中的每一个衬底,存在如下的一个或多个光束路径,该一个或多个光束路径的位置指示仅所述一个衬底的位置。
159.优选地,所有衬底中的对准开口直径被配置成使得对于每个衬底,一个或多个光束路径的位置仅取决于所述一个衬底。
160.优选地,衬底堆叠中的每个衬底具有基本上平面的结构;并且衬底堆叠中的衬底在基本上与平面结构正交的方向上堆叠。
161.优选地,衬底堆叠中的每个衬底包括多个对准开口组;并且衬底堆叠中的每个衬底的每个对准开口组被配置成使得对于衬底堆叠中的每个衬底,存在通过对准开口组的至少一个光束路径,该至少一个光束路径指示所述一个衬底相对于其它衬底的位置。
162.优选地,每个对准开口组中的对准开口的配置基本上相同。
163.优选地,每个对准开口组中的对准开口被配置成使得对准开口形成包括基本上直的线的图案。
164.优选地,每个对准开口组中的对准开口被配置成使得对准开口形成包括多条基本上直的线的图案。
165.优选地,每个对准开口组中的对准开口被配置成使得对准开口形成包括彼此基本正交相交的两条基本上直的线的图案。
166.优选地,衬底堆叠包括束操纵器阵列;并且阵列中的每个束操纵器被配置为操纵多束带电粒子的子束。
167.优选地,一个或多个衬底包括束操纵器阵列中的一个或多个束操纵器的至少一部分。
168.优选地,束操纵器的阵列是n
×
m阵列;n在2和20之间(诸如5);并且m在2和20之间(诸如5)。
169.优选地:每个衬底包括至少第一对准开口组和第二对准开口组;在衬底上的每个对准开口组在衬底与束操纵器阵列不同的部分上;并且所述束操纵器阵列设置在所述第一对准开口组和所述第二对准开口组之间。
170.优选地,每个衬底的第一对准开口和第二对准开口位于衬底的主表面的相对端。
171.优选地,第一对准开口组中的对准开口的布置与第二对准开口组中的对准开口的布置具有镜像对称性。
172.优选地,该方法还包括:照射衬底的衬底堆叠上的对准开口,使得多个光束行进通过衬底堆叠;获得指示光束位置的数据;根据指示光束位置的数据确定衬底堆叠中衬底的相对对准。
173.优选地,该方法还包括根据指示光束位置的数据生成指示多个光束的相对位置的一个或多个图像。
174.优选地,指示光束位置的数据由光检测器获得,并且该方法还包括处理指示光束位置的数据,以便补偿衬底堆叠和光检测器的光学轴线之间的任何倾斜。
175.优选地,该方法还包括根据所确定的衬底的x、y和rz对准来确定衬底堆叠内的衬底对准是否满足性能规范。
176.根据本发明的第三方面,提供了一种计算系统,其被配置为通过执行根据第二方面的方法来确定衬底堆叠中的衬底的对准。
177.根据本发明的第四方面,提供了一种用于获得指示光束位置的数据的工具,该工具包括:被配置成保持根据第一方面的衬底堆叠的堆叠保持器;照射器,其被配置为照射衬底堆叠的表面的至少一部分;以及光检测器,其被配置为根据已经穿过衬底堆叠的多个光束而生成指示光束位置的数据。
178.根据本发明的第五方面,提供了一种包括根据第四方面的工具和根据第三方面的计算系统的系统。
179.根据本发明的第六方面,提供了一种用于确定衬底堆叠中的衬底的对准的方法,衬底堆叠具有至少两个衬底,其中在每个衬底中存在多个对准开口,该多个对准开口与衬底堆叠的其它衬底中的对应对准开口对准,使得存在穿过与每一衬底中的每一对准开口相关联的衬底堆叠的贯通通道,该方法包括:确定多个光束的相对位置,每个光束已经沿光路经由相应的贯通通道穿过衬底堆叠;以及根据所确定的位置确定衬底堆叠中的衬底的相对x、y和rz对准;其中:限定用于穿过贯通通道的相应光路的贯通通道的衬底中的一个衬底的对准开口具有比限定贯通通道的其他对准开口更小的直径;并且对于每个光路,衬底堆叠中的不同衬底的直径小于限定衬底堆叠中的相应贯通通道的其它对准开口的直径。
180.优选地,光路被配置成使得:每个光路具有指示衬底堆叠中的一个衬底相对于衬底堆叠中的另一衬底的位置,和/或光路的相对位置指示衬底堆叠中的衬底的x、y和rz对
准。
181.根据本发明的第七方面,提供了一种包括束操纵器的衬底的衬底堆叠,该衬底堆叠具有至少两个衬底,其中在每个衬底中存在多个对准开口,该多个对准开口与衬底堆叠的其它衬底中的对应对准开口对准,使得存在穿过与每个衬底中的每个对准开口相关联的衬底堆叠的贯通通道,其中多个贯通通道中的每一个用于光束的通过,并且光束适于确定衬底堆叠中的衬底的相对x、y和rz对准;其中:其中一个衬底的,该对准开口限定用于穿过贯通通道的相应光路的贯通通道,具有比限定贯通通道的其他对准开口更小的直径;并且衬底堆叠中的不同衬底具有对准开口,该对准具有比限定衬底堆叠中的相应贯通通道的其它对准开口更小的直径。
182.优选地,每个贯通通道是用于不同光路的通道;每个光路具有指示衬底堆叠中的一个衬底相对于衬底堆叠中的其它衬底的位置;和/或光路的相对位置指示衬底堆叠中衬底的x、y和rz对准。
183.根据本发明的第八方面,提供了一种印刷电路板(pcb)和如权利要求33或34所述的衬底堆叠的组合,该衬底堆叠被设置在该pcb上,其中:在pcb中限定开口,该开口被配置成与衬底堆叠中的贯通通道对准,用于与堆叠光源相互作用;并且pcb的表面包括被配置为与pcb光源相互作用的多个对准结构。
184.优选地,pcb和衬底堆叠被配置成使得堆叠光源与衬底堆叠中的贯通通道和pcb中的对应开口的相互作用以及pcb光源与多个对准结构的相互作用能够确定衬底堆叠和pcb的相对x、y和rz对准。
185.根据本发明的第九方面,提供了一种印刷电路板、pcb以及衬底堆叠,在该衬底堆叠中限定了用于束路径开口的多个贯通通道,衬底堆叠被设置在pcb上,其中在pcb的表面中的是多个对准结构,该多个对准结构被配置为与光源相互作用,用于使得pcb的对准能够被确定。
186.根据本发明的第十方面,提供了一种用于确定衬底堆叠与印刷电路板pcb的相对对准的方法,其中该衬底堆叠被设置在pcb上,该方法包括:确定第一多个光束的位置,该第一多个光束已经穿过通过衬底堆叠的相应多个开口和pcb中的至少一个开口;确定取决于多个pcb对准结构的第二多个光束的位置;以及根据所确定的第一和第二多个光束的位置来确定衬底堆叠和pcb的相对x、y和rz对准。
187.优选地,pcb对准结构包括pcb上的标记,该标记被配置成反射第二多个光束中的至少一些;其中,在第二多个光束已经被反射离开pcb上的相应的多个标记之后,确定第二多个光束的位置。
188.优选地,pcb对准结构包括pcb中的一个或多个对准开口;其中该第二多个光束的位置在该第二多个光束已经穿过通过该pcb的相应的多个对准开口之后被确定。
189.优选地,第二多个光束没有一个穿过衬底堆叠。
190.优选地,该方法还包括:照射pcb和衬底堆叠;获得指示第一和第二多个光束的位置的数据;以及根据所获得的指示第一和第二多个光束的位置的数据来确定衬底堆叠和pcb的相对x、y和rz对准。
191.优选地,一个或多个图像由光检测器生成,并且该方法还包括处理指示第一和第二多个光束的位置的数据,以便补偿衬底堆叠和光检测器的光学轴线之间的任何倾斜。
192.优选地,该方法还包括根据所确定的x、y和rz对准来确定pcb和衬底堆叠的相对对准是否满足性能规范。
193.根据本发明的第十一方面,提供了一种计算系统,其被配置为通过执行根据第十方面的方法来确定pcb和衬底堆叠的对准。
194.虽然已经结合各个实施例描述了本发明,但是通过考虑本文公开的本发明的说明书和实践,本发明的其它实施例对于本领域技术人员将是显而易见的。说明书和示例仅被认为是示例性的,本发明的真实范围和精神由所附权利要求和条款指示。
195.提供以下条款;条款1:一种包括多个衬底的衬底堆叠,其中:在所述衬底堆叠中的每个衬底包括至少一个对准开口组;每个衬底中的所述至少一个对准开口组被对准,以用于使光束穿过每个衬底中的对应的对准开口;并且每个衬底包括至少一个对准开口,所述至少一个对准开口具有比其他衬底中的所述对应对准开口更小的直径。
196.条款2:根据条款1所述的衬底堆叠,其中所述衬底堆叠中的每个衬底包括多个对准开口组;并且所述衬底堆叠中的每个衬底的每个对准开口组被配置成使得对于所述衬底堆叠中的所述衬底的每个所述衬底,存在通过所述对准开口组的至少一个光束路径,所述至少一个光束路径指示所述一个衬底相对于其它衬底的位置。
197.条款3:根据条款1或2中任一项所述的衬底堆叠,其中每个对准开口组中的所述对准开口被配置成使得所述对准开口形成包括基本上直的线的图案。
198.条款4:根据条款1或2中任一项所述的衬底堆叠,其中每个对准开口组中的所述对准开口被配置成使得所述对准开口形成包括多条基本上直的线的图案。
199.条款5:根据条款1或2所述的衬底堆叠,其中每个对准开口组中的所述对准开口被配置成使得所述对准开口形成包括彼此基本上正交地相交的两条基本上直的线的图案。
200.条款6:根据前述条款中任一项所述的衬底堆叠,其中所述衬底堆叠包括束操纵器阵列;并且所述阵列中的每个束操纵器被配置为操纵多束带电粒子的子束。
201.条款7:根据条款6所述的衬底堆叠,其中所述束操纵器阵列是n
×
m阵列;n在2和20之间,诸如5;并且m在2和20之间,诸如5。
202.条款8:根据任一前述条款所述的衬底堆叠,其中:每个衬底包括至少第一对准开口组和第二对准开口组;衬底上的每个对准开口在所述衬底的与所述束操纵器阵列不同的部分上;并且所述束操纵器阵列被布置在所述第一对准开口组和所述第二对准开口组之间。
203.条款9:根据条款8所述的衬底堆叠,其中每个衬底的所述第一对准开口组和所述第二对准开口组位于所述衬底的主表面的相对端。
204.条款10:一种用于确定包括多个衬底的衬底堆叠中的衬底的所述对准的方法,所述方法包括:确定已经穿过限定在所述衬底堆叠中的每个衬底中的相应的多个对准开口的多个光束的所述位置;以及根据所确定的所述位置确定所述衬底堆叠中的至少两个衬底的相对x、y和rz的所述对准;其中:针对通过所述衬底堆叠的每个光束路径,所述光束路径上的所述衬底中的一个衬底的所述对准开口具有比所述光束路径上的相应一个或多个其它衬底的所有一个或多个其它对准开口小的直径;并且针对所述多个光束路径中的至少两个光束路径中的每一个光束路径,所述光束路径上的所述衬底中的一个不同衬底具有如下的对准开口,该对准开口具有比所述光束路径上的相应一个或多个其它衬底的所有一个或多
个其它对准开口更小的直径,使得:针对所述衬底堆叠中的至少两个衬底中的每一个衬底,存在如下的一个或多个光束路径,该一个或多个光束路径的位置指示仅所述一个衬底的位置。
205.条款11:根据条款10所述的方法,其中所有所述衬底中的所述对准开口直径被配置成使得针对所述衬底的每个衬底,一个或多个光束路径的所述位置仅取决于所述一个衬底。
206.条款12:根据条款10或11所述的方法,其中所述衬底堆叠中的每个衬底具有基本上平面的结构;并且所述衬底堆叠中的所述衬底在基本上垂直于所述平面结构的方向上堆叠。
207.条款13:根据条款10至12中任一项所述的方法,其中所述衬底堆叠中的每个衬底包括多个对准开口组;并且所述衬底堆叠中的每个衬底的每个对准开口组被配置成使得针对所述衬底堆叠中的所述衬底的每个者,存在通过所述对准开口组的至少一个光束路径,所述至少一个光束路径指示所述一个衬底相对于其它衬底的所述位置。
208.条款14:根据条款13中任一项所述的方法,其中每个对准开口组中的对准开口的所述配置基本上相同。
209.条款15:根据条款13或14中任一项所述的方法,其中每个对准开口组中的所述对准开口被配置成使得对准开口形成包括基本上直的线的图案。
210.条款16:根据条款13或14中任一项所述的方法,其中每个对准开口组中的所述对准开口被配置成使得所述对准开口形成包括多条基本上直的线的图案。
211.条款17:根据条款13或14中任一项所述的方法,其中每个对准开口组中的所述对准开口被配置成使得所述对准开口形成包括彼此基本上正交地相交的两条基本上直的线的图案。
212.条款18:根据条款10至17中任一项所述的方法,其中所述衬底堆叠包括束操纵器阵列;并且所述阵列中的每个束操纵器被配置为操纵多束带电粒子的子束。
213.条款19:根据条款18所述的方法,其中所述衬底中的一个或多个包括所述束操纵器阵列中的一个或多个束操纵器的至少一部分。
214.条款20:根据条款18或19所述的方法,其中所述束操纵器阵列是n
×
m阵列;n在2和20之间,诸如5;并且m在2和20之间,诸如5。
215.条款21:根据条款13至20中任一项所述的方法,其中:每个衬底包括至少第一对准开口组和第二对准开口组;衬底上的每个对准开口组在所述衬底的与所述束操纵器阵列不同的部分上;并且所述束操纵器阵列被布置在所述第一对准开口组和所述第二对准开口组之间。
216.条款22:根据条款21所述的方法,其中每个衬底的所述第一对准开口和第二对准开口位于所述衬底的主表面的相对端。
217.条款23:根据条款21或22所述的方法,其中所述第一对准开口组中的所述对准开口的所述布置与所述第二对准开口组中的所述对准开口的所述布置具有镜像对称性。
218.条款24:根据条款10至23中任一项所述的方法,还包括:照射衬底的所述衬底堆叠上的所述对准开口,使得多个光束穿过所述衬底堆叠;获得指示所述光束位置的数据;根据指示所述光束位置的所述数据来确定所述衬底堆叠中衬底的相对对准。
219.条款25:根据条款24所述的方法,还包括根据指示所述光束位置的所述数据生成指示所述多个光束的所述相对位置的一个或多个图像。
220.条款26:根据条款24或25所述的方法,其中指示所述光束位置的所述数据由光检测器获得,并且所述方法还包括处理指示所述光束位置的所述数据以便补偿所述衬底堆叠与所述光检测器的光学轴线之间的任何倾斜。
221.条款27:根据条款10至26中任一项所述的方法,还包括根据所确定的所述衬底的所述x、y和rz对准来确定所述衬底堆叠内的衬底的所述对准是否满足性能规范。
222.条款28:一种计算系统,被配置为通过执行根据条款10至27中任一项所述的方法来确定衬底堆叠中的衬底的所述对准。
223.条款29:一种用于获得指示光束位置的数据的工具,所述工具包括:堆叠保持器,所述堆叠保持器被配置为保持根据条款1至9中任一项所述的衬底堆叠;照射器,所述照射器被配置为照射所述衬底堆叠的表面的至少一部分;以及光检测器,所述光检测器被配置为根据已穿过所述衬底堆叠的多个光束而生成指示所述光束位置的数据。
224.条款30:一种系统,包括根据条款29所述的工具和根据条款28所述的计算系统。
225.条款31:一种用于确定衬底堆叠中的衬底的所述对准的方法,所述衬底堆叠具有至少两个衬底,其中在所述衬底中的每一者中存在多个对准开口,所述对准开口与所述衬底堆叠的其它衬底中的对应对准开口对准,使得存在穿过与每一衬底中的每一对准开口相关联的所述衬底堆叠的贯通通道,所述方法包括:确定多个光束的所述相对位置,每个光束已经沿光路经由相应的贯通通道穿过所述衬底堆叠;以及根据所确定的所述位置确定所述衬底堆叠中的所述衬底的所述相对x、y和rz对准;其中:限定用于穿过所述贯通通道的相应光路的所述贯通通道的所述衬底中的一个衬底的所述对准开口具有比限定所述贯通通道的其他对准开口更小的直径;并且针对每个光路,所述衬底堆叠中的不同衬底的直径小于限定所述衬底堆叠中的所述相应贯通通道的其它对准开口的直径。
226.条款32:根据条款31所述的方法,其中所述光路被配置为使得:每个光路具有指示所述衬底堆叠中的一个衬底相对于所述衬底堆叠中的另一衬底的位置,和/或所述光路的所述相对位置指示所述衬底堆叠中的所述衬底的所述x、y和rz对准。
227.条款33:一种包括束操纵器的衬底的衬底堆叠,所述衬底堆叠具有至少两个衬底,其中在每个衬底中存在多个对准开口,所述对准开口与所述衬底堆叠的其它衬底中的对应对准开口对准,使得存在穿过与每一衬底中的每一对准开口相关联的所述衬底堆叠的贯通通道,其中所述多个贯通通道中的每一者用于光束的通过,且所述光束适于确定所述衬底堆叠中的所述衬底的所述相对x、y及rz对准;其中:所述衬底中的一个衬底的、限定用于穿过贯通通道的相应光路的所述贯通通道的所述对准开口,具有比限定所述贯通通道的其他对准开口更小的直径;并且所述衬底堆叠中的不同衬底具有对准开口,所述对准开口具有比限定所述衬底堆叠中的所述相应贯通通道的其它对准开口更小的直径。
228.条款34:根据条款33所述的衬底的衬底堆叠,每个贯通通道是用于不同光路的通道;每个光路具有指示衬底堆叠中的一个衬底相对于所述衬底堆叠中的其它衬底的位置;和/或所述光路的所述相对位置指示所述衬底堆叠中所述衬底的所述x、y和rz对准。
229.条款35:一种印刷电路板pcb和根据条款33或34所述的衬底堆叠的组合,所述衬底堆叠被设置在所述pcb上,其中在所述pcb中限定开口,所述开口被配置成与所述衬底堆叠
中的所述贯通通道对准以用于与堆叠光源相互作用;所述pcb的表面包括被配置成与pcb光源相互作用的多个对准结构。
230.条款36:根据条款35所述的组合,其中所述pcb和所述衬底堆叠被配置成使得所述堆叠光源与所述衬底堆叠中的所述贯通通道和所述pcb中的所述对应开口的相互作用,以及所述pcb光源与所述多个对准结构的所述相互作用使得所述衬底堆叠和所述pcb的所述相对x、y和rz对准能够被确定。
231.条款37:一种印刷电路板、pcb和衬底堆叠的组合,其中限定了用于光束路径开口的多个贯通通道,所述衬底堆叠设置在所述pcb上,其中在所述pcb的表面中的是多个对准结构,所述对准结构被配置为与光源相互作用,用于使得能够确定所述pcb的对准。
232.条款38:一种用于确定衬底堆叠和印刷电路板pcb的所述相对对准的方法,其中所述衬底堆被设置在所述pcb上,所述方法包括:确定第一多个光束的所述位置,所述第一多个光束已经穿过通过所述衬底堆叠的相应多个开口和所述pcb中的至少一个开口;确定取决于多个pcb对准结构的第二多个光束的位置;以及根据所确定的所述第一多个光束和第二多个光束的所述位置来确定所述衬底堆叠和所述pcb的所述相对x、y和rz对准。
233.条款39:根据条款38所述的方法,其中所述pcb对准结构包括所述pcb上的标记,所述标记被配置为反射所述第二多个光束中的至少一些;其中,在所述第二多个光束已经被反射离开所述pcb上的相应的多个标记之后,确定所述第二多个光束的所述位置。
234.条款40:根据条款39所述的方法,其中所述pcb对准结构包括所述pcb中的一个或多个对准开口;其中所述第二多个光束的所述位置在所述第二多个光束已经穿过通过所述pcb的相应的多个对准开口之后被确定。
235.条款41:根据条款38至40中任一项所述的方法,其中所述第二多个光束没有一个穿过所述衬底堆叠。
236.条款42:根据条款38至41中任一项所述的方法,还包括:照射所述pcb和所述衬底堆叠;获得指示所述第一多个光束和所述第二多个光束的所述位置的数据;以及根据所获得的指示所述第一多个光束和所述第二多个光束的所述位置的所述数据来确定所述衬底堆叠和所述pcb的所述相对x、y和rz对准。
237.条款43:根据条款38至41中任一项所述的方法,其中所述一个或多个图像由光检测器生成,并且所述方法还包括处理指示所述第一多个光束和所述第二多个光束的所述位置的数据,以便补偿所述衬底堆叠与所述光检测器的光学轴线之间的任何倾斜。
238.条款44:根据条款38至41中任一项所述的方法,还包括根据所确定的所述x、y和rz对准来确定所述pcb和衬底堆叠的所述相对对准是否满足性能规范。
239.条款45:一种计算系统,所述计算系统被配置成通过执行根据条款38至44中任一项所述的方法来确定pcb和衬底堆叠的所述对准。
240.以上描述旨在说明而非限制。因此,对于本领域的技术人员来说显而易见的是,在不脱离以下阐述的权利要求和以上提供的条款的范围的情况下,可以如所描述的进行修改。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献