一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

腕式可穿戴设备及腕式可穿戴设备的控制方法与流程

2022-11-02 03:05:37 来源:中国专利 TAG:


1.本技术涉及健康监测技术领域,尤其涉及到一种腕式可穿戴设备及腕式可穿戴设备的控制方法。


背景技术:

2.近几年随着腕式可穿戴设备的发展,很多腕式可穿戴设备都具有了健康监测的功能。心脏类疾病由于具有突发性和隐匿性,对人类健康危害程度较高,腕式可穿戴设备用于心脏类疾病的监控和预防应用也较为普遍。
3.目前,腕式可穿戴设备较为常用的心脏监控技术是光体积变化描记法(photolethysmogram,ppg),可以实现静息状态以及运动状态的心率的检测。随着ppg检测精度的提升,也可以利用ppg技术来记录心率,以进行心率异变分析(heart rate variability,hrv),同时用于房颤等简单心率异常的病症的预防和预警。
4.但是,ppg只能记录心脏跳动的频率和脉搏波形,更多复杂的心脏疾病的病症并不表现在心率数据上。相对而言,心电图技术(electrocardiography,ecg)能够更加全面的反应心脏状态。具体应用ecg检查心脏状态时,需要在皮肤上设置电极以监测心脏的电活动的电压与时间的关系,可以有效识别出大部分心脏类疾病,包括心脏节律紊乱(例如房颤和心动过速),冠状动脉血流量不足(例如心肌缺血和心肌梗塞)和电解质紊乱(例如低钾血症和高钾血症)等。
5.临床应用ecg医学检查时,通常即记录一小段时间(例如十秒钟)的心电图,而大多数的心脏疾病的症状的出现具有时间的不确定性,因此需要配合24小时的医用ecg设备来监测心脏状况。但是传统的24小时的医用ecg设备由于体积大,难以携带,导致难以实现随时记录ecg波形。而腕式可穿戴设备具有随身携带的便利性,可以尽可能地实时监控用户的心电图波形,对于心脏状态的监测具有重大的价值。因此,提供一种具有ecg功能模块的腕式可穿戴设备,且提高腕式可穿戴设备的ecg监测时的便利性,是目前急需解决的问题。


技术实现要素:

6.本技术提供了一种具有心电图检测功能的腕式可穿戴设备及腕式可穿戴设备的控制方法,以实现至少六导联的心电图波形的检测,检测较多的心脏异常状况,丰富腕式可穿戴设备的功能,简化用户检测心脏状态的操作。
7.第一方面,本技术提供了一种腕式可穿戴设备,上述腕式可穿戴设备包括设备本体和固定带,固定带能够将设备本体佩戴于用户的腕部。还包括电池、控制电路和四个电极,其中,四个电极分别为第一电极、第二电极、第三电极和第四电极。电池与电极和控制电路电连接,从而可以用于为上述部件供电。控制电路与电极电连接。上述电极能够与人体接触,从而采集电信号。具体使用过程中,可以使第一电极和第二电极与用户第一上肢接触,第三电极与用户第二上肢接触,第四电极与用户心脏下方身体接触,从而上述至少四个电极可以至少采集参考电信号、第一上肢处的电信号、第二上肢处电信号和心脏下方处的电
信号。控制电路用于接收上述电极采集的电信号,以生成心电图波形。由于该腕式可穿戴设备至少包括四个电极,因此,可以获取至少六个导联的心电图波形,从而监测较多的心脏异常情况,丰富腕式可穿戴设备的功能。
8.具体设置上述四个电极时,分别与用户左侧上肢、右侧上肢和心脏下方身体接触。本技术技术方案中。至少第四电极设置于固定带,从而便于用户使位于固定带的第四电极与心脏下方身体接触。因此,用户可以长期佩戴腕式可穿戴设备,随时检测心脏状态,还可以降低用户心电图检测复杂度,提升检测过程的便利性。
9.上述腕式可穿戴设备还可以包括无线通信模块,该无线通信模块与控制电路连接还与外部设备通讯连接,则可以将上述控制电路生成的心电图波形传输至外部设备,以使得外部设备展示并分析心电图波形。当然,对于腕式可穿戴设备获取的心电图波形以及分析结果,也可以在腕式可穿戴设备进行展示。
10.上述腕式可穿戴设备还可以包括加速传感器和陀螺仪中的至少一个,控制电路与上述加速传感器和/或陀螺仪电连接,用于接收加速传感器的信息和/或陀螺仪获取的运动数据。用户的左手抬腕时和右手抬腕时对应的运动数据不同,因此,腕式可穿戴设备可以判断当前腕式可穿戴设备佩戴于第一上肢还是第二上肢,从而确定第一上肢电信息和第二上肢电信息的计算方式。在需要利用腕式可穿戴设备测量心脏状态时,可以直接进行检测,而无需更换腕式可穿戴设备至某一侧手臂,或者人为进行设定操作。该方案一方面可以简化测量过程,使用户及时且便捷的测量心脏状态,且有利于避免由于用户忘记更换佩戴腕式可穿戴设备的手臂或者设定操作失误,导致测量到的数据错误的问题,以提高腕式可穿戴设备获得的数据的准确性。
11.具体的技术方案中,固定带包括第一固定部和第二固定部,第一固定部与设备本体连接形成环状体,从而利用上述环状体将腕式可穿戴设备佩戴于用户腕部。上述第二固定部的一端与设备本体连接,另一端自由,至少第四电极设置于第二固定部。则用户利用该腕式可穿戴设备检测心脏状态时,可以将第二固定部拉伸开,使得位于第二固定部的第四电极与设备本体之间具有一定距离,利用该第四电极检测心脏下方身体的电信号,可以提高腕式可穿戴设备测量心脏状态时操作的便捷性。
12.具体在上述第二固定部设置电极时,可以使第二固定部设置有两个电极。也就是第三电极和第四电极设置于第二固定部,具体的,第三电极设置于第二固定部朝向第一固定部的一侧的表面,第四电极设置于第二固定部背离第一固定部的一侧的表面,且第三电极和第四电极相背设置。也就是两个电极在第二固定部所在的表面的垂直投影,大致重叠或者说至少部分重叠。用户使用该腕式可穿戴设备检测心脏状态时,用户用未佩戴腕式可穿戴设备的一侧手将第二固定部拉出,按压第二固定部的第三电极,使第三电极背侧的第四电极与用户心脏下方身体接触。用户使用该腕式可穿戴设备检测心脏状态时,操作较为便捷和舒适。
13.另一种技术方案中,第二固定部的第三电极和第四电极沿第二固定部的延伸方向设置于第二固定部。第三电极和第四电极设置于第二固定部的同一侧的表面。第二固定部在第三电极和第四电极之间的区域能够向背离电极所在的表面方向弯折,则第三电极和第四电极相背设置,也就可以相当于上述实施例中的腕式可穿戴设备。
14.当第二固定部在第三电极与第四电极之间的区域,能够向背离上述第三电极和第
四电极所在的表面方向弯折且可拆卸固定。从而使第三电极与第四电极以较为稳定的形式相背设置,便于检测操作。
15.具体设置上述第二固定部时,上述设置于第二固定部的第三电极和第四电极,设置于第二固定部背离第一固定部的一侧的表面,则固定带展开时,第三电极和第四电极与腕式可穿戴设备的环状体内侧的电极位于同一侧。将上述第二固定部展开时,所有电极位于腕式可穿戴设备的同一侧的表面,从而将固定带展开,并将腕式可穿戴设备或者固定带绑缚于用户心脏下方,此时可以使较多的电极与用户心脏下方接触,以采集较多的电信号,以增加腕式可穿戴设备可以获取的导联数,使得腕式可穿戴设备可以检测较多种类的心脏异常。
16.具体设置上述第二固定部时,上述第二固定部与第一固定部可以为一体结构,也可以为分体结构。具体的,当第一固定部为一体结构时,便于将固定带展开,从而测量用户心脏下方胸部的电信号,以增加腕式可穿戴设备可以获取的导联数。
17.具体设置上述第二固定部和第一固定部为一体结构的固定带时,可以使上述设备本体的一侧具有带环,另一侧与第一固定部远离第二固定部的一端连接,第二固定部穿过带环,从而使固定带固定于设备本体。该方案便于将固定带与设备本体连接和拆除,从而可以将固定带展开,以测量用户心脏下方胸部的电信号。
18.上述第二固定部与第一固定部为分体结构时,第二固定部和第一固定部分别与设备本体连接。而为了使位于固定带的电极与上述电池和控制电路连接,可以使第一固定部与第二固定部分别与设备本体电气连接,从而传输信号。
19.具体设置上述电极时,可以使所有的电极均设置于固定带,其中,第一电极和第二电极可以设置于第一固定部朝向用户腕部的一侧。第三电极和第四电极设置于第二固定部。
20.上述固定带可以与设备本体可拆卸连接,则可以将固定带与设备本体拆开,将固定带绑缚于用户心脏下方胸部,则可以使所有的电极与用户心脏下方胸部接触。该方案可以将固定带单独作为检测心脏状态的电极组件。
21.其它技术方案中,上述腕式可穿戴设备的电池和控制电流也可以设置于固定带。也就是电池、控制电路以及电极等,都设置于固定带,则固定带本身就相当于心电图检测装置,可以独立工作。也便于将固定带绑缚于用户心脏下方胸部,无需额外配置电池和控制电路等结构。
22.为了简化腕式可穿戴设备的结构,还可以在第二固定部与第一固定部之间设置固定组件,固定组件可拆卸固定第二固定部与第一固定部。从而当用户佩戴腕式可穿戴设备时,可以使第二固定部与第一固定部固定,以提高用户佩戴舒适性。而当用户需要检测心脏状态时,是第二固定部与第一固定部拆开即可。
23.再一种具体的技术方案中,腕式可穿戴设备的固定带可以不具有第二固定部,该腕式可穿戴设备包括设备本体和固定带,固定带与设备本体连接。第一电极和第二电极设置于设备本体朝向用户腕部的一侧的表面,第三电极设置于设备本体的侧面或者背离用户腕部的一侧表面,第四电极设置于固定带背离用户腕部的一侧表面。该方案中,可以直接利用佩戴腕式可穿戴设备的腕部将第四电极与用户心脏下方身体接触。
24.为了将上述固定带或者腕式可穿戴设备绑缚与用户心脏下方胸部,腕式可穿戴设
备还可以包括辅助带,上述辅助带能够将腕式可穿戴设备和固定带绑缚与用户心脏下方胸部,以检测用户心脏下方胸部的电信号,获取较多导联的心电图波形。
25.腕式可穿戴设备的电池和控制电路还可以设置于上述辅助带,或者说,上述辅助带内也可以设置有电池和控制电路。则将只具有电极的固定带绑缚于用户心脏下方胸部时,可以使固定带与辅助带电气连接,以进行心电图的监测。
26.固定带内部设置有柔性电传输部件,柔性电传输部件将电极连接至电池和控制电路。该方案中,可以利用柔性电传输部件来实现电极的电气连接,固定带内部设置柔性电传输部件,则不影响固定带佩戴效果,且不易损坏柔性电传输部件,从而保证腕式可穿戴设备的可靠性。
27.为了保护上述柔性电传输部件,固定带内部还设置有加强部件,加强部件的弹性模量小于固定带的弹性模量。该加强部件可以为加强线或者加强面,本技术不做限制。加强部件可以保护柔性电传输部件,防止柔性电传输部件受到拉力产生损伤。
28.第二方面,本技术还提供了一种腕式可穿戴设备的控制方法,上述腕式可穿戴设备包括第一电极、第三电极和第四电极,例如可以为上述任一技术方案中的腕式可穿戴设备。该方法包括:接收第一电极采集的第一电信号、第二电极采集的第二电信号、第三电极采集的第三电信号和第四电极采集的第四电信号;根据第一电信号、第二电信号、第三电信号和第四电信号,生成第一上肢电信息、第二上肢电信息和心脏下方身体电信息;根据第一上肢电信息、第二上肢电信息和心脏下方身体电信息,生成至少六个导联的心电图波形。该方案中,可以使第一电极作为参考电极,采集的第一电信号作为参考信号,从而可以提升腕式可穿戴设备检测用户心电图的精确性。根据上述至少四个电极测得的电信号,可以得到用户的第一上肢电信息、第二上肢电信息和心脏下方身体电信息。该方案可以获取较多的数据信息,得到至少六个导联的心电图波形,以丰富腕式可穿戴设备可以监测到的用户的心脏异常情况。
29.由于第一上肢电信息和第二上肢电信息的具体确定方式,与用户佩戴腕式可穿戴设备的佩戴位置有关。因此,在接收第一电极采集的第一电信号、第二电极采集的第二电信号、第三电极采集的第三电信号和第四电极采集的第四电信号之前,还可以确定腕式可穿戴设备的佩戴位置,佩戴位置包括第一上肢或第二上肢。之后,根据上述佩戴位置、第一电信号、第二电信号和第三电信号确定第一上肢电信息和第二上肢电信息;根据第一电信号和第四电信号,确定心脏下方身体电信息。该方案中,可以自动识别腕式可穿戴设备佩戴于第一上肢还是第二上肢,以确定具体生成第一上肢电信息和第二上肢电信息的方法,以获取正确的心电图波形。该方案无需更换腕式可穿戴设备至某一侧手臂,或者人为进行设定操作。一方面可以简化测量过程,使用户及时且便捷的测量心脏状态。另一方面,还有利于避免由于用户忘记更换佩戴腕式可穿戴设备的手臂或者设定操作失误,导致测量到的数据错误的问题,以提高腕式可穿戴设备获得的数据的准确性。
30.一种技术方案中,腕式可穿戴设备还可以包括运动检测装置,例如加速传感器或/和陀螺仪。该运动检测装置可以检测用户的上肢运动状态,以获取运动数据。上述方法中,控制电路接收腕式可穿戴设备的运动数据,具体的,上述运动数据可以通过运动检测装置获取。控制电路将上述运动数据与预设的第一运动数据对比,判断运动数据是否与预设的第一运动数据匹配,当运动数据与预设的第一运动数据匹配时,确定腕式可穿戴设备的佩
戴位置为第一上肢;此时,则可以根据第一电信号和第二电信号生成第一上肢电信息,根据第一电信号和第三电信号确定第二上肢电信息。当运动数据与预设的第一运动数据不匹配时,确定腕式可穿戴设备的佩戴位置为第二上肢;此时,则可以根据第一电信号和第二电信号确定第二上肢电信息,根据第一电信号和第三电信号确定第一上肢电信息。
31.该方案中,若运动数据与预设的第一运动数据匹配,则说明腕式可穿戴设备佩戴于用户的第一上肢。则认为第一电极和第二电极与用户第一上肢接触,第三电极与用户的第二上肢接触。因此,可以利用第一电信号和第二电信号确定第一上肢电信息,第一电信号和第三电信号确定第二上肢电信息。若运动数据与预设的第一运动数据不匹配,则说明腕式可穿戴设备佩戴于用户的第二上肢。则认为第一电极和第二电极与用户第二上肢接触,第三电极与用户的第一上肢接触。因此,可以利用第一电信号和第二电信号确定第二上肢电信息,第一电信号和第三电信号确定第一上肢电信息。
32.第三方面,本技术还提供了一种腕式可穿戴设备。该腕式可穿戴设备包括存储器、控制电路、第一电极、第二电极、第三电极和第四电极。其中,第一电极、第二电极、第三电极和第四电极分别与控制电路电连接,以使控制电路能够获取第一电极、第二电极、第三电极和第四电极分别采集得到的电信号。具体的,上述存储器用于存储计算机可读指令,控制电路用于接收所述第一电极采集的第一电信号、所述第二电极采集的第二电信号、所述第三电极采集的第三电信号和所述第四电极采集的第四电信号;之后。根据上述第一电信号、第二电信号、第三电信号和第四电信号,确定第一上肢电信息、第二上肢电信息和心脏下方身体电信息;再根据上述第一上肢电信息、第二上肢电信息和心脏下方身体电信息,生成至少六个导联的心电图波形。该方案中,可以使第一电极作为参考电极,采集的第一电信号作为参考信号,从而可以提升腕式可穿戴设备检测用户心电图的精确性。该方案可以获取较多的数据信息,得到至少六个导联的心电图波形,以丰富腕式可穿戴设备可以监测到的用户的心脏异常情况。
33.一种具体的技术方案中,上述控制电路还用于确定腕式可穿戴设备的佩戴位置,该佩戴位置包括第一上肢或第二上肢。之后,根据上述佩戴位置、第一电信号、第二电信号和第三电信号确定第一上肢电信息和第二上肢电信息;根据第一电信号和第四电信号,确定心脏下方身体电信息。该方案中,可以自动识别腕式可穿戴设备佩戴于第一上肢还是第二上肢,以确定具体生成第一上肢电信息和第二上肢电信息的方法,以获取正确的心电图波形。该方案无需更换腕式可穿戴设备至某一侧手臂,或者人为进行设定操作。一方面可以简化测量过程,使用户及时且便捷的测量心脏状态。另一方面,还有利于避免由于用户忘记更换佩戴腕式可穿戴设备的手臂或者设定操作失误,导致测量到的数据错误的问题,以提高腕式可穿戴设备获得的数据的准确性。
34.一种技术方案中,腕式可穿戴设备还可以包括运动检测装置,例如加速传感器或/和陀螺仪。该运动检测装置可以检测用户的上肢运动状态,以获取运动数据。上述控制电路用于接收腕式可穿戴设备的运动数据,具体的,上述运动数据可以通过运动检测装置获取。之后,控制电路还可以用于将上述运动数据与预设的第一运动数据对比,判断运动数据是否与预设的第一运动数据匹配,当运动数据与预设的第一运动数据匹配时,确定腕式可穿戴设备的佩戴位置为第一上肢;此时,则可以根据第一电信号和第二电信号生成第一上肢电信息,根据第一电信号和第三电信号确定第二上肢电信息。当运动数据与预设的第一运
动数据不匹配时,确定腕式可穿戴设备的佩戴位置为第二上肢;此时,则可以根据第一电信号和第二电信号确定第二上肢电信息,根据第一电信号和第三电信号确定第一上肢电信息。
35.该方案中,若运动数据与预设的第一运动数据匹配,则说明腕式可穿戴设备佩戴于用户的第一上肢。则认为第一电极和第二电极与用户第一上肢接触,第三电极与用户的第二上肢接触。因此,可以利用第一电信号和第二电信号确定第一上肢电信息,第一电信号和第三电信号确定第二上肢电信息。若运动数据与预设的第一运动数据不匹配,则说明腕式可穿戴设备佩戴于用户的第二上肢。则认为第一电极和第二电极与用户第二上肢接触,第三电极与用户的第一上肢接触。因此,可以利用第一电信号和第二电信号确定第二上肢电信息,第一电信号和第三电信号确定第一上肢电信息。
36.第四方面,本技术还提供了一种计算机存储介质,该计算机存储介质存储有计算机可读指令,该计算机可读指令在被控制电路执行时实现上述第二方面中的方法。
附图说明
37.图1为本技术实施例中腕式可穿戴设备的一种结构示意图;
38.图2为本技术实施例中腕式可穿戴设备的使用场景示意图;
39.图3为本技术实施例中腕式可穿戴设备的另一种结构示意图;
40.图4为左脚踝、左膝盖和左腹部的心电图波形对比测试结果示意图;
41.图5为本技术实施例中固定带的一种截面示意图;
42.图6为本技术实施例中固定带的另一种截面示意图;
43.图7为本技术实施例中第二固定部的侧面结构示意图;
44.图8为本技术实施例中腕式可穿戴设备的一种使用状态示意图;
45.图9为本技术实施例中腕式可穿戴设备的另一种使用状态示意图;
46.图10为本技术实施例中腕式可穿戴设备的另一种结构示意图;
47.图11为本技术实施例中腕式可穿戴设备的固定带展开状态示意图;
48.图12为本技术实施例中腕式可穿戴设备的另一种使用状态示意图;
49.图13为本技术实施例中腕式可穿戴设备的另一种结构示意图;
50.图14为本技术实施例中腕式可穿戴设备的另一种使用状态示意图;
51.图15为本技术实施例中腕式可穿戴设备的一种控制方法流程图;
52.图16为本技术实施例中腕式可穿戴设备的另一种控制方法流程图。
53.附图说明:
54.100-腕式可穿戴设备;
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
110-电池;
55.120-控制电路;
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
130-无线通信模块;
56.140-电极;
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
141-第一电极;
57.142-第二电极;
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
143-第三电极;
58.144-第四电极;
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
200-外部设备;
59.1-固定带;
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
11-柔性电传输部件;
60.12-加强部件;
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
13-第一固定部;
61.14-第二固定部;
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
15-第一表面;
62.16-第二表面;
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
2-设备本体;
63.21-带环;
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
3-辅助带。
具体实施方式
64.以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本技术的限制。如在本技术的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
65.在本说明书中描述的参考“一个实施例”或“具体的实施例”等意味着在本技术的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
66.为了方便理解本技术实施例提供的腕式可穿戴设备及腕式可穿戴设备的控制方法,下面先介绍一下其应用场景。
67.随着技术的发展,健康监测功能已经越来越多的应用到腕式可穿戴设备中,而腕式可穿戴设备的健康监测功能也越来越丰富和精确。心脏在除极和复极过程中产生的心电向量,通过容积导电传至身体各部,并产生电位差。将两个电极置于人体的任何两点,并与心电图机连接,就可描记出心电图,这种放置电极并与心电图机连接的线路,称为心电图的导联。电极置于人体的不同位置,可以获得不同的导联。国际上通用的导联体系中共有十二个导联,导联数量越多,可以反映的心脏异常状况也越多。现有技术中,腕式可穿戴设备具有三个电极,只能实现单导联的心电测试,获取一个导联心电图波形,只能用于检测心率,获得房颤和早搏等少数心脏异常信息。此外,由于需要利用电极检测身体较多位置的电信号,以得到电压的多导联心电图波形,现有技术中将多个电极设置于一个检测器,位置较为集中,用户使用时需要保持在较为别扭的姿势,对使用者操作要求较高,不适合身体不便利的人士。为此,本技术提供了一种腕式可穿戴设备及腕式可穿戴设备的控制方法,从而可以使用户便捷的进行心电测试,且可以实现多导联的心电测试。
68.本技术中腕式可穿戴设备及腕式可穿戴设备的控制方法适用于健康监测场景,用户利用腕式可穿戴设备的便携性,可以随时随地捕捉心脏异常时的心电图波形。当用户在病发时或者病发前一段时间身体感觉不适或者异常的时候,可以立即启动腕式可穿戴设备的心电图检测功能,及时获取并保存波形数据,作为进一步诊疗和预防的基础数据。或者,也可以使腕式可穿戴设备的心电图监测功能处于常开状态,也就是说,用户佩戴腕式可穿戴设备时,就会监测和记录用户的心电图波形。
69.图1为本技术实施例中腕式可穿戴设备的一种结构示意图,如图1所示,上述腕式可穿戴设备100包括电池110、控制电路120和至少四个电极140。电池110与上述电极140和控制电路12电连接,用于为上述电极140和控制电路12供电,以实现各个部件的功能。上述电极140与人体接触,以获取对应的电信号。具体的,上述电极140中至少可以包括第一电极141、第二电极142、第三电极143和第四电极144。一种具体的实施例中,第一电极141可以作为参考电极,用于采集参考电信号。第二电极142和第三电极143分别与用户的左侧上肢和右侧上肢接触,用于采集用户左侧上肢电信号和右侧上肢电信号。例如,第二电极142与用户的左侧上肢接触,用于采集用户左侧上肢电信号,第三电极143与用户的右侧上肢接触,
用于采集用户右侧上肢电信号。或者,第二电极142与用户的右侧上肢接触,用于采集用户右侧上肢电信号,第三电极143与用户的左侧上肢接触,用于采集用户左侧上肢电信号。第四电极144与用户的心脏下方身体接触,用于采集用户心脏下方身体电信号。上述控制电路120与各个电极140连接,从而控制电路120可以用于获取上述电极140采集的电信号,并对电信号进行计算和处理,以生成心电图波形。
70.上述腕式可穿戴设备100还可以包括无线通信模块130,该无线通信模块130与控制电路120连接,无线通信模块130与外部设备200通讯,从而将上述心电图波形传输至外部设备200,该外部设备200可以为移动终端的健康app或者健康云平台,从而用户可以获取具体的心电图波形,以便于对用户的心脏状态进行分析。
71.图2为本技术实施例中腕式可穿戴设备的使用场景示意图,如图2所示,实际使用中,用户佩戴腕式可穿戴设备,且可以使用移动终端的健康app。用户通过腕式可穿戴设备采集碎片化的心电图波形,然后利用无线通信模块130将采集到的心电图波形,传递至移动终端的健康app或者健康云平台,当然,传递到移动终端的健康app的心电图波形,也可以传递至健康云平台,在健康云平台储存和计算处理上述心电图波形,再将建议的治疗方案发送给贴近用户的临床的健康医疗服务机构,对用户进行深度的诊断和护理服务。
72.本技术技术方案中的腕式可穿戴设备100包括至少上述四个电极140,则至少可以获取六个导联的心电图波形,从而可以检测较多的心脏异常情况,功能较为丰富。此外,上述腕式可穿戴设备100还可以包括数量更多的电极140,以采集更多的电信号,则可以获取更多导联的心电图波形,能够检测到更多的心脏异常情况。
73.具体的实施例中,腕式可穿戴设备还可以包括显示模组、触控模块/实体按键和马达等,其中,显示模组可以显示腕式可穿戴设备的信息,例如时间和天气等信息,还可以显示腕式可穿戴设备100的工作状态、工作进度和测试结果等信息。上述触控模块或者实体按键可以接收用户操控腕式可穿戴设备的操作信号,例如启动腕式可穿戴设备100等操作信息。马达可以用于根据腕式可穿戴设备的提醒信息发出振动信号。
74.本技术技术方案中的腕式可穿戴设备的具体类型不做限制,例如,可以为智能手表、运动手表、运动手环或者健康手环等,本技术不做限制。
75.图3为本技术实施例中腕式可穿戴设备的另一种结构示意图,请参考图3,具体的实施例中,上述腕式可穿戴设备100还可以包括固定带1和设备本体2,固定带1与设备本体2连接,从而固定带1能够将设备本体2固定佩戴于用户的腕部。本技术技术方案中的腕式可穿戴设备100中的电池110和控制电路120设置于设备本体2,至少第四电极144设置于固定带1。由于第四电极144设置于固定带1,从而便于用户使第四电极144接触身体或者肢体部位,较为方便的获取多导联心电图测试结果,特别对于身体不便的用户。因此,用户可以长期佩戴腕式可穿戴设备,随时检测心脏状态,还可以降低用户心电图检测难度。
76.请继续参考图3,具体的实施例中,第一电极141和第二电极142具体可以设置于腕式可穿戴设备朝向用户腕部的一侧,从而第一电极141和第二电极142可以检测用户腕部的电信号。第三电极143和第四电极144设置于腕式可穿戴设备的侧面或者背离用户腕部的一侧,总之,并不是位于腕式可穿戴设备与用户佩戴该腕式可穿戴设备的接触面,从而便于利用第三电极143和第四电极144接触未佩戴腕式可穿戴设备的肢体,以及心脏下方的身体。具体的,可以至少使第四电极144设置于固定带1,从而便于使第四电极144与心脏下方的身
体接触,以采集上述心脏下方的身体的电信号。上述第一电极141采集第一电信号,第二电极142采集第二电信号,第三电极143采集第三电信号,第四电极144采集第四电信号,根据上述第一电信号、第二电信号、第三电信号和第四电信号可以得到六导联的心电图波形。
77.具体的应用本技术技术方案中的腕式可穿戴设备时,上述心脏下方的身体可以指腹部、膝盖或者脚踝,通常人类心脏位于左侧,因此,上述心脏下方的身体具体指左腹部、左侧膝盖或者左脚踝。在医学临床中,检测病人心电图波形时,对于上述心脏下方的身体的电信号的采集,通常选择左脚踝。本技术发明人针对测量左脚踝、左膝盖和左腹部的心电图波形进行了对比测试,图4为左脚踝、左膝盖和左腹部的心电图波形对比测试结果示意图,如图4所示,左膝盖与左腹部对应的心电图波形与左脚踝对应的心电图波形基本一致,因此,测量左膝盖或者左腹部的心电图波形以判断心脏状态,也是较为准确的。因此,使用本技术技术方案中的腕式可穿戴设备时,用户可以根据实际身体情况,选择上述任一心脏下方的身体部位来进行测量。
78.下面列举具体的实施例,来说明本技术实施例中的腕式可穿戴设备。值得说明的是,本技术技术方案中主要以腕式可穿戴设备包括四个电极140为例,但是仅仅作为具体实施例。其它实施例中可以包括更多的电极140,例如五个电极、六个电极、七个电极、八个电极、九个电极或者十个电极,根据实际情况布局上述各个电极140即可。当电极140的数量越多时,可以测得的导联数量越多。
79.请继续参考图3,一种具体的实施例中,上述腕式可穿戴设备可以包括设备本体2和固定带1,设备本体2即为腕式可穿戴设备主要功能部件集合设置的位置,例如腕式可穿戴设备为智能手表或者运动手表时,表体(或者称为表盘)即为设备本体2,电池、芯片以及显示模组等设置于上述设备本体2。固定带1则相当于表带,用于将设备本体2固定佩戴于用户腕部。本技术技术方案中,电池110、控制电路120以及无线通信模块130,或者陀螺仪以及加速传感器等结构,都可以设置于设备本体2,电池110等部件还可以与其他组件共用同一电池110。图5为本技术实施例中固定带的一种截面示意图,请参考图6,在固定带1内部设置柔性电传输部件11,利用柔性电传输部件11连接位于固定带1的电极140与电池110和控制电路120,从而可以实现信号的传输。
80.请结合图3和图5,本技术技术方案中,上述固定带1内部还设置有加强部件12,加强部件12的弹性模量小于固定带1的弹性模量。具体的,上述加强部件12的具体材质不做限制,例如,可以为尼龙加强部件或者凯夫拉纤维线等。该方案中,加强部件12可以加强固定带1的强度,从而保护柔性电传输部件11,减少柔性电传输部件11出现拉扯损坏的情况。具体的实施例中,上述加强部件12可以为线状,设置于柔性电传输部件11的两侧,如图6所示。图6为本技术实施例中固定带1的另一种截面示意图,如图7所示,另一种实施例中,上述加强部件12还可以为面状,设置于柔性电传输部件11的周侧,本技术对加强部件12的具体结构不做限制。
81.请参考图3,具体的实施例中,上述固定带1包括第一固定部13和第二固定部14,其中,第一固定部13与设备本体2连接形成环状体,该环状体能够套设于用户腕部,以使腕式可穿戴设备能够佩戴于用户腕部。第二固定部14的一端与设备本体2连接,另一端则相对自由,则第二固定部14另一端可以向远离上述环状体方向拉伸一定距离,至少第四电极144设置于上述第二固定部14。具体的,第四电极144可以设置于第二固定部14远离上述设备本体
2方向的一端,从而便于使位于第二固定部14的第四电极144与身体其他部分接触,提高腕式可穿戴设备测量心脏状态时操作的便捷性。
82.图7为本技术实施例中第二固定部的侧面结构示意图,请结合图3和图7,具体的实施例中,可以使第二固定部14设置有第三电极143和第四电极144。第二固定部14为片状结构,包括两侧表面,分别为第一表面15和第二表面16。其中,第一表面15朝向第一固定部13,第二表面16背离第一固定部13。上述第四电极144设置于第一表面15,第三电极143设置于第二表面16,且可以使第三电极143和第四电极144相对设置。也就是说第三电极143和第四电极144在第二固定部14所在的表面的垂直投影,大致重叠或者说至少部分重叠。
83.图8为本技术实施例中腕式可穿戴设备的一种使用状态示意图,如图8所示,图3所示的实施例中的腕式可穿戴设备在使用时,用户可以将腕式可穿戴设备佩戴于第一上肢,用未佩戴腕式可穿戴设备的第二上肢的手拉伸第二固定部14,且按压第三电极143,使第二固定部14的第四电极144与用户心脏下方的身体部位接触。例如,用户用左手佩戴上述腕式可穿戴设备,使用腕式可穿戴设备测量心脏状态时,用户用右手拉伸上述第二固定部14,右手指按压第三电极143,并将第四电极144按压至心脏下方的身体部位。如图8中的(a)为用户利用第四电极144测量左脚踝的电信号时的一种姿态,图8中的(b)为用户利用第四电极144测量左膝盖的电信号时的一种姿态,图8中的(c)为用户利用第四电极144测量左腹部的电信号时的一种姿态,用户在使用本技术实施例中的腕式可穿戴设备检测心脏状态时,选择其中一种姿态即可。
84.请继续参考图3和图7,具体的可以使上述第三电极143和第四电极144位于上述第二固定部14远离设备本体2的端部,通常,上述第三电极143和第四电极144与设备本体2之间的距离越大,越便于用户使位于第二固定部14的第四电极144与身体接触,有利于降低测量难度。但是需要综合考虑腕式可穿戴设备的尺寸,以及用户不进行心脏检测时的佩戴舒适性,上述第二固定部14也不适宜设计的过长。
85.上述固定带1的第一固定部13和第二固定部14可以为分体结构,具体的,除了个别电极140以外的结构,电池110、控制电路120以及无线通信模块130,或者陀螺仪以及加速传感器等结构,都可以设置于设备本体2。此时,使第一固定部13和第二固定部14可以分别与设备本体2连接,第一固定部13主要用于与设备本体2形成环状体,以使腕式可穿戴设备佩戴于用户腕部。当第一固定部13设置有电极140时,可以利用固定带1内部的柔性电传输部件11连接电极140与电池110和控制电路120,具体可以使第一固定部13与设备本体2电气连接,例如利用连接器实现可拆卸的电气连接,或者,直接使第一固定部13与设备本体2固定连接,且电气连接。当第一固定部13未设置电极140时,只需使第一固定部13与设备本体2连接即可,具体连接方式不做限制。上述第二固定部14设置有第三电极143和第四电极144,因此第二固定部14的内部具有柔性电传输部件11,需要使第二固定部14与设备本体2电气连接,例如利用连接器实现可拆卸的电气连接,或者,直接使第一固定部13与设备本体2固定连接,且电气连接。
86.总之,固定带1上设置的电极140利用柔性电传输部件11连接至电池110和控制电路120。上述柔性电传输部件11的具体类型不做限制,例如,可以为柔性电路板或者柔性电缆等。
87.另一种实施例中,请继续参考图3,上述第一固定部13和第二固定部14还可以为一
体结构,便于制作本技术技术方案中的固定带1。此外,使第二固定部14与设备本体2可拆卸连接,还有利于丰富腕式可穿戴设备的使用场景。
88.图9为本技术实施例中腕式可穿戴设备的另一种使用状态示意图。如图9所示,腕式可穿戴设备还可以包括辅助带3。图3所示的实施例中的腕式可穿戴设备在使用时,上述辅助带3还可以将设备本体2和固定带1绑缚于用户心脏下方胸部,该方案中,可以使一体结构的固定带1中第一固定部13的一端与设备本体2电气连接,第二固定部14的一端与设备本体2拆卸,辅助带3与设备本体2和第二固定部14连接形成环状,从而可以将设备本体2和固定带1绑缚于用户心脏下方胸部,使电极140与用户心脏附近贴合。该方案中,腕式可穿戴设备还可以采集用户心脏附近的电信号,与用户在腕部佩戴腕式可穿戴设备检测心脏状态时采集的电信号结合,可以获取更多导联的心电图波形,以更加准确和全面的判断心脏状态。或者,上述辅助带3还可以将设备本体2和固定带1粘贴于用户心脏下方胸部。
89.图10为本技术实施例中腕式可穿戴设备的另一种结构示意图。如图10所示,设置于第二固定部14的第三电极143和第四电极144还可以沿第二固定部14的延伸方向设置。具体的,第三电极143和第四电极144设置于第二固定部14的同一表面,且上述第二固定部14能够在上述两个电极140之间的位置弯折。图10中的(a)为第二固定部14展开状态示意图,此时第三电极143和第四电极144一字排开。图10中的(b)和(c)为第二固定部14折叠状态示意图,此时第三电极143和第四电极144相背设置,此时该腕式可穿戴设备与图3所示实施例中的腕式可穿戴设备相似,也就是第三电极143和第四电极144朝向第二固定部14的两侧,一个可以用于与用户手部接触,另一个与用户心脏下方的身体部位接触,其使用场景可以参考图9所示,使用过程此处不进行赘述。
90.上述第二固定部14能够在上述两个电极140之间的位置弯折后,可以可拆卸固定连接。从而提升用户使用的便捷性。
91.图10所示的实施例中,将固定带1在第三电极143和第四电极144之间的位置弯折之后,其结构和使用过程,与图3所示的实施例中的腕式可穿戴设备基本一致。但是,图10所示的实施例中,固定带1可以展开,则第三电极143和第四电极144位于同一侧表面。将设备本体2和固定带1绑缚于用户心脏下方时,可以使较多的电极140与用户的心脏下方接触,从而可以采集较多的电信号,能够监测的心脏异常情况也较多。
92.图11为本技术实施例中腕式可穿戴设备的固定带展开状态示意图,请结合图10和图11,一种实施例中,设置于第二固定部14的第三电极143和第四电极144具体可以设置于第二固定部14背离第一固定部13的一侧表面。此处指的是腕式可穿戴设备处于佩戴状态下,第二固定部14背离第一固定部13的一侧表面,也就是上述第二表面16。当第一固定部13与第二固定部14为一体结构时,固定带1展开,此时腕式可穿戴设备100的各个电极140可以位于腕式可穿戴设备的同一侧。该腕式可穿戴设备也可以利用辅助带3将设备本体2和固定带1绑缚于用户心脏下方胸部,用于检测用户心脏附近的电信号,其使用场景可以参考图9所示,与前述实施例相似之处不进行赘述。此时可以使腕式可穿戴设备的第二固定部14处于图11所示的状态,也就是第二固定部14处于展开状态.此时,固定带1也处于展开状态,则各个电极140可以位于腕式可穿戴设备的同一侧,使具有电极140的一侧与用户心脏下方胸部贴合。该实施例使腕式可穿戴设备100的电极140均与用户心脏附近贴合,充分利用腕式可穿戴设备100设置的电极140,采集更多的电信号,以获取更多导联的心电图波形,以更加
准确和全面的判断心脏状态。
93.具体布局电极140时,至少有两个电极140需要与用户佩戴腕式可穿戴设备的腕部接触,以上述第一电极141和第二电极142为例,可以使第一电极141和第二电极142设置于设备本体2朝向用户腕部的一侧,也可以使第一电极141和第二电极142设置于第一固定部13朝向用户腕部的一侧。如图3所示,第一电极141和第二电极142设置于设备本体2朝向用户腕部的一侧,以设备本体2为表盘为例,该表盘具有显示面,显示面显示时间等信息,上述设备本体2朝向用户腕部的一侧即为背离上述显示面的一侧。该方案中,电池110和控制电路120等也设置于设备本体2,则第一电极141和第二电极142与上述结构电连接较为可靠,此外,固定带1的结构可以较为简单,有利于提高用户的佩戴舒适性。如图10所示,可以使第一电极141和第二电极142设置于第一固定部13朝向用户腕部的一侧。
94.一种实施例中,请继续参考图10,设备本体2与固定带1可拆卸连接,所有电极140均设置于固定带1。具体的实施例中,上述电池110、控制电路120以及无线通信模块130等结构可以仍设置于设备本体2,此时固定带1可以利用连接器与设备本体2进行电气连接。或者,所有的电极140、电池110、控制电路120以及无线通信模块130等用于监测用户心脏状态的器件都设置于固定带1。此时,固定带1与设备本体2的具体连接方式不做限制。
95.具体的实施例中,如图10所示,第一电极141和第二电极142设置于第一固定部13朝向用户腕部的一侧,第二固定部14与第一固定部13为一体结构,且固定带1与设备本体2可拆卸连接。第三电极143和第四电极144位于第二固定部14的同一侧表面,且固定带1展开之后,第一电极141、第二电极142、第三电极143和第四电极144位于固定带1的同一侧表面。该方案中的可穿戴设备可以也包括辅助带3,除了用户在腕部佩戴腕式可穿戴设备时检测心脏状态以外,还可以配合辅助带3来检测用户心脏附近的心电图波形。
96.图12为本技术实施例中腕式可穿戴设备的另一种使用状态示意图,如图12所示,可以将固定带1与设备本体2拆开,例如将图10和11所示的腕式可穿戴设备的固定带1与设备本体2分离,仅将固定带1利用辅助带3绑缚于用户心脏下方胸部,用于检测用户心脏附近的电信号。当电池110、控制电路120以及无线通信模块130等设置于设备本体2时,可以使辅助带3内设置有电池110、控制电路120和无线通信模块130等,使固定带1与辅助带3电气连接,则可以实现腕式可穿戴设备的检测过程。或者,所有的电极140、电池110、控制电路120以及无线通信模块130等用于监测用户心脏状态的器件都设置于固定带1,则辅助带3只需起到辅助固定的作用。
97.请参考图3和图10,设备本体2相对的两侧中,一侧直接与第一固定部13远离第二固定部14的一端连接,另一侧具有带环21。当然,设备本体2可以与第一固定部13固定连接、可拆卸连接或者电气连接等,本技术不做限制。固定带1的第二固定部14穿过带环21,则使第一固定部13的两端固定于设备本体2,使得的第一固定部13与设备本体2形成环状体,从而能够佩戴于用户的腕部。该方案便于使固定带1与设备本体2连接,且腕式可穿戴设备的结构较为简单。该方案中的固定带1在使用状态下,第一固定部13朝向用户的一侧表面,与第二固定部14背离第一固定部13一侧的表面,在展开后的一体结构的固定带1上,位于同一表面,则便于利用辅助带3来测量人体胸部的电信号,以便于丰富腕式可穿戴设备的使用场景。
98.一种实施例中,将第二固定部14从带环21中取出,使得腕式可穿戴设备展开,利用
辅助带3将腕式可穿戴设备绑缚于用户心脏下方胸部,便于使较多的电极140与用户心脏下方胸部接触,使得腕式可穿戴设备处于图9的使用状态。或者,另一种实施例中,第一固定部13与设备本体2可拆卸连接,电极140均固定在固定带1上,且如图10和图11所示的腕式可穿戴设备,将固定带1展开后,所有的电极140都位于固定带1的同一侧表面,则将固定带1从设备本体2拆卸后,利用辅助带3将固定带1绑缚于用户心脏下方胸部,便于使较多的电极140与用户心脏下方胸部接触,使得腕式可穿戴设备处于图13的使用状态。
99.为了提高用户佩戴腕式可穿戴设备的舒适性,可以使第二固定部14与第一固定部13之间设置固定组件,上述固定组件能够可拆卸固定第二固定部14与设备本体2,则当用户佩戴腕式可穿戴设备时,可以使第二固定部14固定于第一固定部13,从而提升佩戴舒适性。具体的实施例中,上述固定组件包括磁贴组件、暗扣组件、随意贴组件或者固定环,固定组件的具体结构本技术不做限制,只要能够将第二固定部14与第一固定部13固定即可。
100.图13为本技术实施例中腕式可穿戴设备的另一种结构示意图,如图13所示,另一种技术方案中,腕式可穿戴设备包括设备本体2和与该设备本体2连接的固定带1。第一电极141和第二电极142设置于设备本体2朝向用户腕部的一侧的表面,例如表盘的背侧,用于检测参考电信号和佩戴腕式可穿戴设备的一侧的上肢电信号。上述第三电极143设置于设备本体2的侧面或者背离用户腕部的一侧表面,用户可以使另一只手与第三电极143接触,从而检测另一侧的上肢电信号。上述第四电极144设置于固定带1背离用户腕部的一侧表面,用于检测心脏下方的身体的电信号。
101.图14为本技术实施例中腕式可穿戴设备的另一种使用状态示意图,上述图13所示的实施例中的腕式可穿戴设备的使用状态可以参考图14中的(a)~(b)所示。其中,如图14中的(a)为用户利用第四电极144测量左脚踝的电信号时的一种姿态,图14中的(b)为用户利用第四电极144测量左膝盖的电信号时的一种姿态,图14中的(c)为用户利用第四电极144测量左腹部的电信号时的一种姿态,用户在使用本技术实施例中的腕式可穿戴设备检测心脏状态时,选择其中一种姿态即可。
102.本技术还提供了一种腕式可穿戴设备的控制方法,该方法应用于具有四个及以上电极140的腕式可穿戴设备,包括上述任一实施例中的腕式可穿戴设备。图15为本技术实施例中腕式可穿戴设备的一种控制方法流程图,本技术实施例由腕式可穿戴设备的控制电路120执行。
103.请结合图15,上述控制方法具体包括以下步骤:
104.步骤s101、接收第一电极采集的第一电信号、第二电极采集的第二电信号、第三电极采集的第三电信号和第四电极采集的第四电信号。
105.用户在使用腕式可穿戴设备时,可以使各个电极分别与身体对应的位置接触,则每个电极就可以采集到相应的电信号,控制电路则可以接收到各个电极采集到的电信号。例如控制电路可以接收上述第一电极141采集的第一电信号、第二电极142采集的第二电信号、第三电极143采集的第三电信号和第四电极144采集的第四电信号。
106.值得说明的是,在本技术实施例的一种可能的实施方式中,控制电路可以在接收到心脏状态监测指令或者预设的用户操作时,开始接收上述第一电信号、第二电信号、第三电信号和第四电信号,即开始执行步骤s101-s103。例如,用户可以通过外部设备200向控制电路120发送心脏状态监测指令,以触发控制电路120开始接收上述第一电信号、第二电信
号、第三电信号和第四电信号,并执行s102-s103;或者用户也可以对腕式可穿戴设备的触控屏、按钮或者传感器等模块进行预设的操作以触发心脏状态监测指令,从而使控制电路开始接收上述第一电信号、第二电信号、第三电信号和第四电信号,并执行s102-s103。
107.在本技术实施例的另一种可能的实施方式中,控制电路120也可以一直实时接收上述第一电信号、第二电信号、第三电信号和第四电信号,但是不对上述第一电信号、第二电信号、第三电信号和第四电信号进行处理,直到控制电路接收到心脏状态监测指令或者预设的用户操作时,才执行s102-s103。本技术对此不作限定。
108.步骤s102、根据第一电信号、第二电信号、第三电信号和第四电信号,确定第一上肢电信息、第二上肢电信息和心脏下方身体电信息。
109.在计算第一上肢电信息、第二上肢电信息和心脏下方身体电信息时,第一电极可以作为参考电极,则采集的第一电信号可以作为参考信号,从而可以提升腕式可穿戴设备检测用户心电图的精确性。具体来说,可以基于第一信号、第二电信号和第三电信号确定第一上肢电信息和第二上肢电信息,基于第一电信号和第四电信号确定心脏下方身体电信息。实现根据第一信号、第二电信号和第三电信号确定第一上肢电信息和第二上肢电信息时,在不同的佩戴方式中,确定第一上肢电信息和第二上肢电信息的方式也会不同。
110.在第一种可能的实现方式中,如图8所示,腕式可穿戴设备佩戴于用户的第一上肢,第一电极和第二电极与第一上肢接触。第二上肢按压第三电极,第三电极与第二上肢接触,且使得第四电极与用户的心脏下方身体接触。因此,第一电极采集的第一电信号v1为参考电信号,第二电极采集的第二电信号v2为测量用户第一上肢得到的电信号,第三电极采集的第三电信号v3为测量用户第二上肢得到的电信号,第四电极采集的第四电信号v4为测量用户心脏下方身体得到的电信号。以此,控制电路根据第一电信号v1和第二电信号v2计算得到第一上肢电信息va,例如va=v1–v2
/2;根据第一电信号v1和第三电信号v3计算得到第二上肢电信息vb,例如vb=v1 v3/2;根据第一电信号v1和第四电信号v4计算得到心脏下方身体电信息vc,例如vc=v1–v4
/2。
111.在第二种可能的实现方式中,腕式可穿戴设备佩戴于用户的第二上肢,则第一电极和第二电极与第二上肢接触。第一上肢按压第三电极,第三电极与第一上肢接触,且使得第四电极与用户的心脏下方身体接触。因此,第一电极采集的第一电信号v1为参考电信号,第二电极采集的第二电信号v2为测量用户第二上肢得到的电信号,第三电极采集的第三电信号v3为测量用户第一上肢得到的电信号,第四电极采集的第四电信号v4为测量用户心脏下方身体得到的电信号。以此,控制电路根据第一电信号v1和第三电信号v3计算得到第一上肢电信息va为,例如va=v1–v3
/2;根据第一电信号v1和第二电信号v2计算第二上肢电信息vb为,例如vb=v1 v2/2;根据第一电信号v1和第四电信号v4计算得到心脏下方身体电信息vc,例如vc=v1–v4
/2。
112.其中,上述第一上肢和第二上肢分别为用户的左肢和右肢,当第一上肢为左肢时,第二上肢即为右肢;当第一上肢为右肢时,第二上肢即为左肢。
113.可以理解的,在上文中已经有提到,用户可能将腕式可穿戴设备佩戴于第一上肢或第二上肢,在不同的佩戴位置下,控制电路对第一上肢信息和第二上肢信息的计算方法也会有不同。因此,在控制电路执行s102之前,还可以先确定腕式可穿戴设备的佩戴位置,该佩戴位置可以为第一上肢或者第二上肢。
114.在一种可能的实现方式中,例如腕式可穿戴设备包括触控屏或者按钮,控制电路140可以通过腕式可穿戴设备的显示器提示用户进行选择,用户根据显示器界面提示,通过触控屏或者按钮选择当前腕式可穿戴设备的佩戴位置,从而控制电路140根据用户的操作就可以确定佩戴位置。或者,用户可以通过外部设备选择佩戴位置,外部设备将佩戴位置发送给腕式可穿戴设备,从而腕式可穿戴设备也可以确定佩戴位置。
115.在另一种可能的实现方式中,腕式可穿戴设备可以包括运动检测装置,该运动检测装置可以获取佩戴腕式可穿戴设备的上肢的运动数据。其中检测装置可以是陀螺仪,也可以是加速传感器,相应的运动数据可以是运动方向数据,也可以是运动加速度数据或其他反应腕式可穿戴设备运动状态的数据。可以理解的,人体左肢和右肢在运动时存在不同的特点,对应的运动数据也会有所区别,例如摆臂或抬腕的加速度方向等不同。基于此,控制电路可以根据上述运动检测装置获取的运动数据,判断当前腕式可穿戴设备的佩戴位置,以确定计算第一上肢电信息和第二上肢电信息的计算方式。具体来说,可以通过预设反映左肢或/和右肢运动特点的运动数据,将获取到的运动数据与预设的运动数据匹配,以确定当前腕式可穿戴设备的佩戴位置是左肢还是右肢。
116.例如,在一种具体的实施方式中,控制电路可以将上述运动数据与预设的第一运动数据对比,以判断当前腕式可穿戴设备佩戴的位置。该第一运动数据可以根据第一上肢的运动数据设置。当运动数据与预设的第一运动数据匹配时,确定腕式可穿戴设备的佩戴位置为第一上肢,则根据上述第一种可能的实现方式来计算第一上肢电信息和第二上肢电信息。当运动数据与预设的第一运动数据不匹配时,确定腕式可穿戴设备的佩戴位置为第二上肢,则根据上述第二种可能的实现方式来计算第一上肢电信息和第二上肢电信息。
117.具体实现时,对于佩戴位置的检测,控制电路可以在接收到心脏状态监测指令后执行,即控制电路接收到心脏状态监测指令后,获取运动数据,并根据上述运动数据判断当前腕式可穿戴设备的佩戴位置,以确定计算第一上肢电信息和第二上肢电信息的计算方式。也可以在接收到监测指令前已经确定的腕式可穿戴设备的佩戴位置,例如,用户在进行心脏监测前,还执行过其他检测操作,并在操作过程中已经确定过佩戴位置。
118.通过佩戴位置检测,控制电路可以自动识别腕式可穿戴设备佩戴于左侧上肢还是右侧上肢,以确定具体确定第一上肢电信息和第二上肢电信息的方法,从而获取正确的心电图波形。该方案无需更换腕式可穿戴设备至某一侧手臂,也不需要人为进行设定操作。一方面可以简化测量过程,使用户及时且便捷的测量心脏状态。另一方面,还有利于避免由于用户忘记更换佩戴腕式可穿戴设备的手臂或者设定操作失误,导致测量到的数据错误的问题,以提高腕式可穿戴设备获得的数据的准确性。
119.当然,除了上述对佩戴位置的自动检测的实现方法,也可以通过指示用户在监测时必须佩戴至对应的位置,则可以不对佩戴位置进行判断,直接按照预设位置的检测方式(例如第一种可能的实现方式)进行检测。
120.s103,根据第一上肢电信息、第二上肢电信息和心脏下方身体电信息,生成至少六个导联的心电图波形。
121.控制电路可以根据步骤s102确定的第一上肢电信息va、第二上肢电信息vb和心脏下方身体电信息vc,计算得到i导联心电图波形vi为:vi=v
a-vb;ii导联心电图波形v
ii
为:v
ii
=v
c-vb;iii导联心电图波形v
iii
为:v
iii
=v
c-va;iv导联心电图波形v
iv
为:v
iv
=(v
i-v
ii
)/2;v
导联心电图波形vv为:vv=v
i-v
ii
/2;vi导联心电图波形v
vi
为:v
vi
=v
ii-vi/2。因此,本技术实施例中,通过设置四个电极,其中一个电极用于作为参考电极,另外三个电极分别测量左肢、右肢和心脏下方身体的电信号,则可以计算得到六导联心电图波形,从而可以从较多的方面判断心脏状态,及时发现心脏异常情况。
122.生成至少六个导联的心电图波形之后,心电图波形可以通过腕式可穿戴设备的显示器输出,也可以通过与腕式可穿戴设备连接的外部设备的显示器输出,还可以通过无线通信模块上传至云服务器。其中,这里与腕式可穿戴设备连接的外部设备可以是通过有线或无线方式连接的电子设备。
123.图16为本技术实施例中腕式可穿戴设备的另一种控制方法流程图,如图16所示,腕式可穿戴设备的控制方法具体可以包括以下步骤:
124.步骤s201、接收心脏状态监测指令。
125.步骤s202、接收第一电极采集的第一电信号、第二电极采集的第二电信号、第三电极采集的第三电信号和第四电极采集的第四电信号。
126.步骤s203、接收运动检测装置获取的运动数据。
127.步骤s204、确定运动数据是否与预设的第一运动数据匹配;若是,执行步骤s205,若否,执行步骤s206。
128.步骤s205、根据第一电信号和第二电信号确定第一上肢电信息,根据第一电信号和第三电信号确定第二上肢电信息,根据第一电信号和第四电信号确定心脏下方身体电信息。
129.步骤s206、根据第一电信号和第二电信号确定第二上肢电信息,根据第一电信号和第三电信号确定第一上肢电信息,根据第一电信号和第四电信号确定心脏下方身体电信息。
130.步骤s207、根据第一上肢电信息、第二上肢电信息和心脏下方身体电信息,生成至少六个导联的心电图波形。
131.该实施例是图15所示的实施例的一种具体的实现场景,即控制电路接收到心脏状态监测指令之后开始接收第一电信号、第二电信号、第三电信号和第四电信号,然后判断腕式可穿戴设备的佩戴位置,并根据佩戴位置确定第一上肢电信息和第二上肢电信息的计算方法,最终生成至少六个导联的心电图波形。上述各个步骤执行细节可以参考图15所示的实施例中的描述,例如,步骤s205的执行细节参考上文中计算第一上肢电信息、第二上肢电信息的第一种可能的实现方式,步骤s206的执行细节参考上文中计算第一上肢电信息、第二上肢电信息的第二种可能的实现方式。本技术在此不做赘述。
132.本领域普通技术人员可以理解,在本技术的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本技术实施例的实施过程构成任何限定。
133.本技术的各实施方式可以任意进行组合,以实现不同的技术效果。
134.在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计
算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(dsl))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,dvd)、或者半导体介质(例如固态硬盘solid state disk(ssd))等。
135.本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(read-only memory,rom)或随机存储记忆体(random access memory,ram)等。
136.以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献