一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

显示面板和显示装置的制作方法

2022-09-15 05:24:38 来源:中国专利 TAG:


1.本技术涉及显示技术领域,具体涉及一种显示面板和具有该显示面板的显示装置。


背景技术:

2.有机发光二极管(organic light emitting diode,oled)显示面板作为可能代替液晶显示的下一代显示技术,其全彩显示中出现的不同颜色的子像素的串扰问题也得到了广泛的关注。oled显示面板中存在发出光颜色不同的多个子像素,这些子像素的启亮电压存在差异。在此情形下,当前的oled显示面板的制备工艺的精度有限,又会导致子像素的一些膜层之间可能会彼此重叠。如此,在oled显示面板工作时,一些子像素之间会因为膜层重叠而出现电流串扰,导致显示不良。


技术实现要素:

3.本技术的第一方面提供了一种显示面板。该种显示面板包括多个子像素。每个子像素包括依次叠置的阳极、发光层和阴极。发光层包括发光辅助层和发光材料层,且发光辅助层位于阳极和阴极之间,发光材料层位于发光辅助层和阴极之间。至少一个子像素中的发光辅助层和阳极之间设置有间隔层。间隔层的横向导电能力小于同一子像素中发光辅助层的横向导电能力。
4.在上述方案中,通过设置横向导电能力小的间隔层,使得间隔层所在的子像素中的发光辅助层和相邻的子像素中的发光辅助层之间存在高度差,降低了相邻子像素之间的发光辅助层部分膜层重叠的风险或者部分膜层重叠的厚度,从而缓解相邻子像素之间因发光辅助层重叠而导致电流串扰的问题。
5.结合第一方面,在一些实施方式中,间隔层的厚度大于相邻子像素中的发光层的厚度。进一步地,设置有间隔层的子像素中的发光层在任一垂直于阳极的平面上的正投影与相邻子像素中的发光层在该任一垂直于阳极的平面上的正投影不交叠。
6.在上述方案中,对间隔层的厚度进行设计,能够防止出现因工艺精度的原因,造成相邻子像素的发光层和/或发光辅助层之间搭接的情况,改善了相邻不同子像素之间会出现的横向串扰的问题。
7.结合第一方面,在一些实施方式中,在设置有间隔层的子像素中,间隔层的厚度为子像素发出光的半波长的整数倍。例如,进一步地,在设置有间隔层的子像素中,间隔层的厚度与子像素发出光的半波长相等。
8.在上述方案中,将间隔层设置成其对应的子像素的半波长的整数倍,有利于在该子像素中形成微腔结构,增强了该子像素对应的发出光的共振,从而提高了该子像素的发光效率和色域。
9.结合第一方面,在一些实施方式中,所述子像素发出光的波长越小,对应的子像素的发光辅助层的厚度越薄。
10.在上述方案中,通过设置发出不同颜色光的子像素对应的发光辅助层的厚度,使不同子像素发射峰超窄带宽的出射光谱,从而使每个子像素的单色达到更佳的效果,进而提高了显示面板的显示效果。
11.结合第一方面,在一些实施例方式中,设有间隔层的子像素与具有厚度最大的发光辅助层的子像素相邻。
12.在上述方案中,在发光辅助层厚度最大的子像素的相邻的子像素中设置间隔层,能够有效地减少像素中横向电流流动的通道的表面积,减少横向电流的大小进而高效地改善显示面板的电流横向串扰的问题。
13.结合第一方面,在一些实施方式中,子像素包括第一子像素、第二子像素和第三子像素,一个第一子像素、一个第二子像素和一个第三子像素组成一个像素重复单元,且第一子像素、第二子像素、第三子像素发出光的波长依次减小,同一个像素重复单元中,第三子像素的中心点位于第一子像素的中心点与第二子像素的中心点连线的垂直平分线上,且至少一个子像素中设有间隔层。进一步地,第二子像素和第三子像素中均设有间隔层。
14.在上述方案中,基于子像素的阵列排布在至少一个子像素中设置间隔层或者进一步地在第二子像素和/或第三子像素设置间隔层,能防止发光像素中所有的子像素之间的横向串扰的出现和/或相邻的发光像素之间横向串扰的出现,提高了显示面板的显示效果。
15.结合第一方面,在一些实施方式中,在每个子像素中,阳极到阴极的距离为子像素发出光的半波长的整数倍。
16.在上述方案中,第一子像素、第二子像素和第三子像素分别形成对应的微腔,能够对应地提升预设出光颜色不同的子像素中发出光的亮度,还可以使得不同单色光实现共振增强,有效提升了显示装置的发光效率和色域。
17.结合第一方面,在一些实施方式中,间隔层的材料为空穴传输型材料。
18.在上述方案中,间隔层材料的选择,降低了空穴传输层到发光辅助层之间的能级势垒,提高了空穴从空穴传输层向发光辅助层纵向迁移的迁移率,进而提高了显示面板的发光效率。
19.结合第一方面,在一些实施方式中,每个子像素还包括空穴传输层,空穴传输层位于发光辅助层和阳极之间。在设有间隔层的子像素中,间隔层设置在发光辅助层和空穴传输层之间,且间隔层与空穴传输层的材料相同。
20.在上述方案中,间隔层的材料与子像素对应的空穴传输层的材料相同,改善了子像素与相邻子像素之间的横向串扰的问题的同时,还简化了生产工序,节约了生产成本。
21.本技术第二方面提供了一种显示装置。该显示装置包括上述第一方面提供的任意一种显示面板。
附图说明
22.图1是本技术一实施例的显示面板的结构示意图。
23.图2是本技术另一实施例的显示面板的结构示意图。
24.图3是本技术另一实施例的显示面板的结构示意图。
25.图4是本技术一显示面板中多个子像素的阵列分布示意图。
26.图5是本技术一实施例中图4的m1n1的截面图。
27.图6是本技术一实施例中图4的m2n2的截面图。
28.图7是本技术一实施例中图4的m3n3的截面图。
29.图8是本技术另一实施例中图4的m2n2的截面图。
30.图9是本技术另一实施例中图4的m3n3的截面图。
31.图10是本技术另一实施例的显示面板的结构示意图。
具体实施方式
32.下面将结合本技术实施例中的附图,对本技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本技术一部分实施例,而不是全部的实施例。基于本技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本技术保护的范围。
33.在oled显示面板中主要通过红色子像素(red简称r),绿色子像素(green简称g)以及蓝色子像素(bule简称b)三色实现全彩显示。常规的oled中,rgb具有独立的像素开口,不同的子像素之间通过像素界定层隔断,其对应的子像素的发光层和发光辅助层通过fmm进行蒸镀。但是由于fmm蒸镀精度和以及子像素间距等因素,使得子像素的非共通层,例如发光层和发光辅助层,也存在一定层度的搭接现象。同时,由于rgb发光材料的特性所致,通常情况下,b的启亮电压要高于g的启亮电压,g的启亮电压要高于r的启亮电压,在低灰阶状态下rgb子像素之间存在电位差,电流会经由搭接在一起的非共通层在子像素之间传播,即形成子像素b

子像素r和/或子像素b

子像素g和/或子像素g

子像素r的串扰,从而影响显示效果。
34.鉴于此,本技术实施例提供一种显示面板,通过在子像素中设置了间隔层,隔断了相邻的不同子像素之间的电流传播路径,从而改善了显示面板中横向漏电的问题。该显示面板包括多个子像素,且每个子像素包括依次叠置的阳极、发光层和阴极。发光层包括发光辅助层和发光材料层,且发光辅助层位于阳极和阴极之间,发光材料层位于发光辅助层和阴极之间。至少一个子像素中的发光辅助层和阳极之间设置有间隔层。间隔层的横向导电能力小于同一子像素中发光辅助层的横向导电能力。利用在同一子像素中设置横向导电能力小于其发光辅助层的间隔层使该子像素与相邻子像素之间的发光辅助层之间存在高度差,降低了相邻的子像素之间非共通膜层即发光辅助层之间的搭接的概率,甚至防止相邻的子像素之间非共通膜层之间的搭接,从而降低了该显示面板在低灰阶段,电流由启动电压高的子像素流向启动电压低的子像素的概率,进而改善了显示面板出现的横向串扰问题。
35.下面结合附图,对本技术实施例进行举例说明。应当理解,本技术的实现方式可以有多种,不应被解释为限于这里阐述的实施例,这里阐述的实施例仅是为了更加透彻和完整地理解本技术。
36.在本技术至少一个实施例中,如图1所示,显示面板包括多个子像素,多个子像素中出射红绿蓝三色的子像素分别相邻,即子像素g分别与子像素r和子像素b相邻。为了改善相邻的子像素之间存在的横向漏电问题,在子像素g中设置了间隔层51。具体地,子像素r包括阳极1和阴极4、设置在阳极1与阴极4之间的子像素r对应的发光辅助层21以及设置在发光辅助层21和阴极4之间的出射红光的发光材料层31。子像素b包括阳极1和阴极4、设置在
阳极1与阴极4之间的子像素b对应的发光辅助层23以及设置在发光辅助层23和阴极4之间的出射蓝光的发光材料层33。而子像素g不仅包括阳极1和阴极4、设置在阳极1与阴极4之间的子像素g对应的发光辅助层22以及设置在发光辅助层22和阴极4之间的出射绿光的发光材料层32,还包括设置在子像素g对应的发光辅助层22和阳极1之间的间隔层51。该间隔层51使得子像素g中的发光辅助层22与子像素r中的发光辅助层21和子像素b中的发光辅助层23分别存在高度差,降低了相邻子像素中不同的发光辅助层搭接的概率或搭接的部分的膜层的厚度,减少或隔断了子像素g与子像素r之间的电流传播路径以及子像素g与子像素b之间的电流传播路径,从而减少横向电流传播的大小,进而能够改善不同子像素之间即子像素g与子像素r之间和子像素g与子像素b之间出现的横向电流串扰问题。
37.应理解的是,间隔层不仅可以只设置在子像素g中,还可以只设置在子像素b中或子像素r中,或者设置在多个像素中,例如间隔层设置在子像素r中和子像素g中,或者间隔层设置在子像素b中和子像素g中,或者设置在子像素r、子像素g和子像素b三个子像素中。关于间隔层的具体设计方案可以根据显示面板中子像素的阵列排布来选择,从而有效地改善不同子像素之间的横向串扰问题。同时,发光辅助层的设计可以降低间隔层和发光层之间的能级势垒,进而提高子像素的发光效率,例如发光辅助层为电子阻挡层(ebl)。关于发光辅助层的设计也可以根据显示面板的具体需求进行选择设计,在此不做赘述。
38.通过设计间隔层的厚度,能够对不同子像素之间的非共通膜层之间,例如发光辅助层和/或发光材料层,在阳极到阴极方向的高度差产生直接影响,从而影响不同子像素之间的横向电流的大小。在一些实施例中,间隔层的厚度大于相邻子像素中的发光层的厚度。进一步地,设置有间隔层的子像素中的发光层在任一垂直于阳极的平面上的正投影与相邻子像素中的发光层在该任一垂直于阳极的平面上的正投影不交叠。对间隔层的厚度进行设计,间隔层的厚度不能太小也不能太大,才能使设有间隔层的子像素的发光层与其相邻的子像素的发光层在阳极到阴极的方向上有高度差,并且不同子像素对应的发光层在阳极所在平面的正投影不交叠,这就能够降低了出现因蒸镀工艺的精度或子像素之间间距的设计,造成相邻子像素的发光层中的膜层出现搭接而引起横向串扰问题的概率,改善了相邻不同子像素之间的横向串扰问题。
39.示例性地,如图1所示,设置在子像素g中的间隔层51的厚度即间隔层51在阳极1到阴极4方向的长度,大于子像素b中出射蓝色光的发光材料层33和其对应的发光辅助层23的厚度之和,同时还大于子像素r中出射红色光的发光材料层31和其对应的发光辅助层21的厚度之和。由此可见,子像素g中的间隔层51使子像素r中的发光层(包括发光辅助层21和发光材料层31)、子像素g中的发光层(包括发光辅助层22和发光材料层32)和子像素b中的发光层(包括发光辅助层23和发光材料层33)分别在阳极到阴极的方向上形成了高度差,因此,即使在存在fmm工艺精度的问题或者像素间距的问题的情况下,上述不同子像素之间的发光层之间高度差的存在也降低了不同子像素之间的非公用膜层之间出现搭接的概率,进而改善了子像素g与子像素r之间和子像素g与子像素b之间的电流横向串扰问题。进一步地,设置有间隔层的子像素g中的发光辅助层22和发光材料层32在任一垂直于阳极1的平面上的正投影不仅与子像素r中的发光辅助层21和发光材料层31在该任一垂直于阳极1的平面上的正投影不交叠,还与子像素b中的发光辅助层23和发光材料层33在该任一垂直于阳极1的平面上的正投影不交叠。因此,对子像素g中间隔层51的厚度的设计,能够隔断子像素
g与子像素r之间,子像素g与子像素b之间的电流传播路径,改善了相邻的子像素之间出现的横向串扰问题。
40.应理解的是,在其他子像素r和/或子像素b中设置间隔层时,也可以遵循上述原则,并结合显示面板的尺寸和其他的要求,来进行不同的子像素对应的间隔层厚度的设计。
41.除了从使相邻子像素之间的非共通膜层设有高度差的角度设计间隔层来提高显示面板的显示效果外,还可以从其他的角度考虑来设计间隔层以提高显示效果。在一些实施例中,在设置有间隔层的子像素中,间隔层的厚度为子像素发出光的半波长的整数倍。例如,进一步地,在设置有间隔层的子像素中,间隔层的厚度与子像素发出光的半波长相等。将间隔层的厚度设置成其对应的子像素发出光的半波长的整数倍,有利于在该子像素中形成微腔结构,能增强该子像素发出光的共振,从而提高该子像素的发光效率和色域。
42.在介绍完间隔层在不同子像素中设置的位置,以及对其厚度的设置对改善显示面板的横向漏电的问题的影响之后,接下来将会分析间隔层的材料的选择对提高显示面板的性能和性价比方面的影响。在一些实施例中,间隔层的材料为空穴传输型材料。间隔层材料的选择,降低了空穴传输层到发光辅助层之间的能级势垒,提高了空穴从空穴传输层向发光辅助层纵向迁移的迁移率,进而提高了显示面板的发光效率。
43.在至少一个实施例中,每个子像素还包括空穴传输层,空穴传输层位于发光辅助层和阳极之间。在设有间隔层的子像素中,间隔层设置在发光辅助层和空穴传输层之间,且间隔层与空穴传输层的材料相同。例如,图1所示,子像素r、子像素b和子像素r中均设有空穴传输层6。具体地,在子像素r和子像素b中,空穴传输层6分别位于发光辅助层21与阳极1之间或者发光辅助层23与阳极1之间,而在设有间隔层51的子像素g中,空穴传输层6位于间隔层51与阳极1之间,并且该间隔层51与子像素g中的空穴传输层6的材料相同。设置与子像素g中对应的空穴传输层6的材料相同的间隔层51的方案,在不影响空穴纵向传输、改善了相邻子像素之间横向串扰问题的同时,还不需要研发间隔层的制备材料,从而简化了生产工序,节约了生产成本。
44.当然,提高显示面板的显示效果不局限于对间隔层的设计,还可以从其他方面考虑,例如,在至少一个实施例中,如图1、图2和图3所示,在rgb像素中,每个子像素对应的发光材料层31、发光材料层32、发光材料层33与阴极4之间都设有空穴阻挡层7,能提高显示面板的发光效率,进而提高显示效果。
45.应当理解的是,间隔层的材料的选择并不局限于空穴传输层的材料,为了满足显示面板的功能需求,还可以基于空穴传输层的材料进行掺杂或者复合等工艺处理,得到一种具有新功能的材料,并以此具有新功能的材料来制备间隔层。
46.以上均是从子像素角度作为单元来考虑设计间隔层的方案,接下来从发光像素的角度来考虑,如何设计间隔层能够有效地改善显示面板的横向漏电的问题。具体有以下两种情况。
47.第一种情况:在一些实施例中,相邻且预设出光颜色不同的多个子像素构成一个发光像素,至少两个子像素相邻且预设出光颜色不同的子像素位于同一组发光像素中。在同一组发光像素中的至少一个子像素中设置间隔层的设计,隔绝了预发出不同颜色光的子像素之间在低灰阶段电流从启动电压高的子像素流向启动电压低的子像素的电流传播路径,能够有效地改善同一子像素中存在的电流横向串扰的问题。
48.示例性地,如图2所示,显示面板包括相邻的两组rgb像素即第一rgb像素8和第二rgb像素9,每组像素中子像素g分别与子像素r与子像素b相邻,且第一rgb像素8中的子像素b与第二rgb像素9中的子像素r相邻。在第一rgb像素8中,不仅在子像素g中设置了间隔层51,还在子像素b中设置了间隔层52,而在第二rgb像素中仅在子像素g中设置了间隔层51,并且通过对不同子像素对应的间隔层51和间隔层52的厚度设计,使得在第一rgb像素8和第二rgb像素9中,不同子像素的发光层在垂直与阳极1的平面上的正投影不交叠。该设计不仅使在第一rgb像素8和第二rgb像素9中,启动电压高的子像素b到启动电压低的子像素g之间,以及启动电压低的子像素g到启动电压更低的子像素r之间的非共通膜层即发光材料层和发光辅助层,不可能存在搭接问题,从而无法形成电流横向流通的通道,并且还使第一rgb像素8中的子像素b与第二rgb像素9中的启动电压更低的子像素r之间的电流横向流通的通道无法形成,因此,该方案不仅改善了同一像素中不同子像素之间的横向漏电问题,还改善了相邻像素之间的横向漏电问题。
49.应理解的是,在相邻的rgb像素中,例如在第一rgb像素和第二rgb像素中,每个发光像素中的间隔层的设计方案不局限于图2所示的方式,并且每个发光像素中的间隔层的设计方案可以相同,也可以不同,这可以根据显示面板的具体需求来设计。并且,每个像素中设置的间隔层的个数也不局限于上述图2中的方式设置一个或两个,还可以设置三个,这个可以根据显示面板的具体阵列排布来设计。
50.第二种情况:在一些实施例中,相邻且预发出光颜色不同的多个子像素构成一个发光像素,至少两个子像素相邻且发出光颜色不同的子像素位于相邻的两组发光像素中。在相邻的发光像素中的相邻的至少一个子像素中设置了间隔层,使相邻的像素之间非共通膜层无法搭接,即无法形成电流横向流通的通道,也就是说一像素中启动电压高的子像素的电流不能流到相邻的像素中相邻的启动电压低的子像素中,从而解决了相邻像素之间电流横向串扰的问题。
51.示例性地,如图3所示的,显示面板包括至少两组相邻的rgb像素即第一rgb像素8和第二rgb像素9,每组像素中子像素g分别与子像素r与子像素b相邻,且第一rgb像素8中的子像素b与第二rgb像素9中的子像素r相邻,且第一rgb像素8中的子像素b中设有间隔层52,第二rgb像素9中的子像素r中设有间隔层53,除了能够有效地改善相邻的像素之间的横向漏电问题外,还能改善同一像素中子像素之间的横向漏电问题。即,在第二rgb像素9中,子像素r中设有的间隔层53,使子像素r中发光辅助层21不能与相邻子像素g的发光辅助层22和发光材料层32搭接,进而子像素r中的发光材料层31也不能与相邻子像素g的发光辅助层22和发光层32搭接,即隔断了电流从子像素g中流入到子像素r中的通道。在第一rgb像素8中,子像素b中设置的间隔层52隔断了子像素b中的电流流入到相邻的子像素g中的流通通道。此外,为了有效地改善显示面板的横向漏电问题,在每个像素中的子像素g中都设有间隔层51,这样能够分别隔断子像素g到相邻子像素r,以及子像素b到相邻子像素g之间的横向电流通道,进而更进一步地提高了该显示面板的显示效果。
52.在一些实施例中,子像素发出光的波长越小,对应的子像素的发光辅助层的厚度越薄。这能使不同子像素发射峰超窄带宽的出射光谱,进而使每个子像素的单色达到更佳的效果,进而提高了显示面板的显示效果。
53.在一些实施例中,设有间隔层的子像素与具有厚度最大的发光辅助层的子像素相
邻。发光辅助层越厚,其横向导电能力越强,也就是说其提供了更宽的电流通道,因此,在发光辅助层厚度最大的子像素的相邻的子像素中设置间隔层,能够有效地减少像素中横向电流流动的通道的总面积,进而高效地改善显示面板的电流横向串扰的问题。
54.示例性地,如图1或图2所示,在rgb像素中,出射光的波长最大的子像素r其对应的发光辅助层21的厚度最大,而出射光的波长最小的子像素b其对应的发光辅助层23的厚度最小。如图2所示,在与第二rgb像素9中的子像素r相邻的子像素,具体地,第二rgb像素9中的子像素g和第一rgb像素8中的子像素b均可设有间隔层51或间隔层52,这样就在切断了该显示面板中横向电流的流通通道最宽的部分即第二rgb像素9中的子像素r的发光辅助层21,因此可以高效地改善显示面板中的横向串扰问题。
55.在显示面板中,多个子像素之间的阵列排布,对于间隔层的设计效果有直接的影响。在至少一个实施例中,基于以上间隔层的设计对于预设出光颜色不同的子像素的阵列排布如下:子像素包括第一子像素、第二子像素和第三子像素,一个第一子像素、一个第二子像素和一个第三子像素组成一个像素重复单元,且第一子像素、第二子像素、第三子像素发出光的波长依次减小,同一个像素重复单元中,第三子像素的中心点位于第一子像素的中心点与第二子像素的中心点连线的垂直平分线上,且至少一个子像素中设有间隔层。进一步地,第一子像素、第二子像素和第三子像素的面积比值为1:1:2。进一步地,第二子像素和第三子像素中均设有间隔层。根据显示面板的不同需求,在不同的子像素中设置间隔层,能够在不对显示面板的尺寸有较大影响的基础上,有效地改善显示面板出现的横向串扰的问题。
56.示例性地,如图4所示,rgb像素中,第一子像素为子像素r、第二子像素为子像素g、第三子像素为子像素b。具体地,三个子像素的阵列排布为子像素g在子像素r的上方,且子像素r与子像素g的宽度相等,在两个子像素的宽边对齐,即子像素r与子像素g宽边的端点的连线与子像素r与子像素g长边的连线重合,这就使得子像素r的中心点与子像素g的中心点对齐,即两个中心点的连线与子像素r与子像素g的长边的连线平行。进一步地,子像素r的面积:子像素g的面积:子像素b的面积为1:1:2。
57.基于图4所示的显示面板的子像素的阵列排布,在子像素g中和/或子像素b中可以设置间隔层,主要介绍以下两个方案。
58.第一方案:如图5、图6和图7所示,在不同组的rgb像素中包括的所有子像素中,仅在子像素g中设置间隔层51。一方面,如图5所示,在相邻的rgb子像素中即第一rgb像素8和第二rgb像素9中,第一rgb像素8中的子像素g中的间隔层51使该子像素g的发光辅助层22和发光材料层32均与第二rgb像素9中的子像素r的发光层隔开,子像素r的发光层包括其对应的发光辅助层21和发光材料层31,这样这个相邻的第一rgb像素8与第二rgb像素9中的横向电流流通的通道就被断开了,因此改善了相邻的像素中的横向串扰问题。另一方面,如图6和图7所示,在同一rgb像素中,例如在第一rgb像素8或第二rgb像素9中,子像素g中设置的间隔层51,将其发光层(包括发光辅助层22和发光材料层32)与相邻的子像素r中的发光层(包括发光辅助层21和发光材料层31)完全隔开,阻止了子像素g与子像素r中的横向串扰的发生。同时,子像素b的发光辅助层23的厚度最小,其小于子像素r的发光辅助层22的厚度,因此,子像素b的发光层到与子像素g的发光层之间的横向电流通道也被断开。总的来说,就是同一像素中横向电流的流通的通道被子像素g中设置的间隔层51断开了,改善了同一像
素中不同子像素rgb之间的横向串扰问题,同时还改善了相邻像素之间的横向串扰问题。
59.第二方案:如图4、图5、图8和图9所示,在所有的像素包括的子像素中,仅在子像素r中不设置间隔层,即子像素g中设置了间隔层51,子像素b中设置了间隔层52,这不仅能够防止第一rgb像素8中的子像素b中的电流在横向上向相邻第二rgb像素9中的子像素r和子像素g中流动,有效地改善了不同像素之间横向漏电的问题,还使得在同一像素中,例如在第一rgb像素8或第二rgb像素9中,对应的子像素r、子像素g与子像素b之间的横向漏电的通道被隔断,因此改善了所有子像素之间的横向漏电问题,进而更高效地提高了显示面板的显示效果。
60.应理解的是,基于图4的显示面板,其间隔层的方案不局限于上述第一方案和第二方案,可以根据显示面板的生产需求,设置其他的方案,例如,仅在子像素r中设置间隔层或在子像素r、子像素g和子像素b中都设置间隔层。
61.本实施例还从其他方面考虑来提高显示面板的显示效果,在一些实施例中,在每个子像素中,阳极到阴极的距离为子像素发出光的半波长的整数倍。这使每个子像素中分别形成对应的微腔,能够对应地提升预设出光颜色不同的子像素中发出光的亮度,还可以使得不同单色光实现共振增强,有效提升了显示装置的发光效率和色域。
62.示例性地,如图1所示,在rgb像素中,第一子像素为子像素r、第二子像素为子像素g、第三子像素为子像素b,三个子像素对应的微腔结构依据其各自发出光的半波长设置了不同的纵向高度,即三个子像素在阳极1到阴极4方向上的高度不同。具体地,子像素r和子像素b形成了二阶微腔,而在子像素g中,在发光辅助层22和空穴传输层6之间设置的间隔层51的厚度为绿光的半波长整数倍,该间隔层51与子像素g对应的发光辅助层22和发光材料层32形成了三阶微腔。在此设计中,子像素g中设置的间隔层51虽然改变了像素中原有的rgb的微腔结构,但是对其电性影响较小。
63.应理解的是,对于不同子像素之间的微腔结构不局限于上述的方案,可以根据显示面板的实际需求,对不同子像素中在阳极与阴极之间的膜层的厚度进行调整。
64.在至少一个实施例中,如图10所示,该显示面板的还可以进一步包括其他功能层,例如空穴注入层hil、电子注入层eil、电子传输层etl、以及cpl层等。空穴注入层hil位于阳极1和空穴传输层6之间。电子注入层eil位于阴极4和空穴阻挡层7之间。电子传输层etl位于电子注入层eil与空穴阻挡层7之间,进一步地,该电子传输层eil为包含yb的膜层。盖帽(capping layer,cpl)层蒸镀在阴极上,该cpl层可以有效阻挡外部环境中的水和氧,保护oled显示面板不受水氧侵蚀。通过对该显示面板的膜层结构进行设计,提高了该显示面板的可靠性。
65.应理解的是,显示面板的功能层的设计并不局限于上述方案,可以根据显示面板的实际需求,对其功能层进行设计。
66.本实施例还提供了一种显示装置。该显示装置包括上述任意一种显示面板。
67.例如,本技术至少一个实施例提供的显示装置还可以包括触控结构,以具备触控功能。例如,该触控结构可以为触控面板或者触控层,触控面板可以通过贴合的方式设置在显示面板上,例如设置为显示面板的出光侧。例如,触控层可以直接在显示面板(例如其包括的封装层)上制备,以有利于显示装置(此处触控层和显示面板可以合称为触控显示面板或者触控显示屏)的轻薄化设计。
68.例如,本技术的实施例中的显示装置可以为电视、数码相机、手机、手表、平板电脑、笔记本电脑、导航仪等任何具有显示功能的产品或者部件。
69.以上所述,仅为本技术的具体实施方式,但本技术的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本技术揭露的技术范围内,可想到变化或替换,都应涵盖在本技术的保护范围之内。因此,本技术的保护范围应以权利要求的保护范围为准。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献