一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于多智能体的拖拉机电气系统故障诊断方法

2022-09-03 16:37:09 来源:中国专利 TAG:


1.本发明涉及故障诊断领域,具体涉及一种基于多智能体的拖拉机电气系统故障诊断方法。


背景技术:

2.传统的拖拉机电气系统发生故障时,需要专业的维修人员到达发生故障的拖拉机现场用专业的仪器设备对拖拉机进行维修诊断。调查发现,当拖拉机发生故障后,查找拖拉机发生故障的原因需要耗时占总维修时间的70%,而排除故障仅需要耗时为30%。同时,传统的维修需要的专业的维修人员,这导致维修费用一直高居不下。因此,建立一种拖拉机的智能故障诊断方法就显得尤为重要。国专利公开号为cn112631261a的文献中提出了一种大功率拖拉机远程故障诊断系统及方法。故障诊断模型以bp神经网络为主体,采用了粒子群优化算法对bp神经网络的权值、阈值进行优化,同时采用多种群协同进化算法对粒子群算法进行进一步优化,使多种群之间进行信息共享,防止陷入局部最小值,增强了粒子群算法的全局搜索能力,有效提高了故障诊断模型的诊断精度。但是,该专利没有考虑到对拖拉机故障诊断的预判性,具有一定的时滞性,往往会进一步扩大拖拉机故障的危害。
3.用新型内容
4.本发明要解决的技术问题是提供一种基于多智能体的拖拉机电气系统故障诊断方法,该故障诊断方法不仅能在早期检测出故障信号,提前对故障做出反应,减小系统故障危害,而且能够区别不同故障和辨别故障大小及时变特性的能力,有利于对故障的评估和维修。
5.为解决上述技术问题,本发明提供一种基于多智能体的拖拉机电气系统故障诊断方法,多智能体含有协调智能体、状态监测智能体、系统管理智能体、故障诊断智能体和故障输出智能体;当拖拉机电气系统发生故障时,系统管理智能体最初收到状态监测智能体的诊断请求后,迅速定位相应的子系统,同时对故障诊断进行任务的管理、分配和协调,状态检测智能体负责从各个监控节点获取必需的信息,将这些信息发送给故障诊断智能体,给具体的故障诊断提供原始证据,还收集拖拉机机身上电压和电流传感器的信息并处理,形成报警信号,故障诊断智能体以bdi模型为基础,采用模糊神经网络完成电气系统的故障诊断,在诊断时,用户通过拖拉机驾驶室内的故障诊断用户界面,向故障诊断智能体发出诊断请求,同时将观察到的故障现象以及利用传感器测得的电流i和电压u等参数提交到状态监测智能体,形成多智能体启动初始证据,故障输出智能体用于存放信息的全局数据库,记录各智能体所需要的信息和各智能体产生的决策结论,并提供给其他智能体共享,同时记录诊断结果,当故障诊断智能体需要数据时,从状态监测智能体读取数据,当诊断结束后,将诊断结果发送至故障输出智能体,引入协调智能体,使得多智能体系统在遇到通讯中断、重连以及通讯时延状况时,系统仍然能够保持同步,以提高整个控制系统的灵活性、适应性和鲁棒性,具体步骤如下:
6.步骤1:当拖拉机启动运行时,状态监测智能体对拖拉机电气系统进行在线实时监
控;
7.步骤2:当状态监测智能体发出预警或报警的信号时,用户通过拖拉机驾驶舱内的故障诊断用户界面向故障诊断智能体发出诊断请求;
8.步骤3:用户观察到的故障现象提交至状态监测智能体中,同时,状态监测智能体通过传感器对数据进行采集,将采集故障状态时的电流i和电压u一起发送至故障诊断智能体系统中,形成故障诊断的原始证据;
9.步骤4:根据状态监测智能体中所收集的电气故障数据,系统管理智能体快速地定位至相应的电气系统子系统,接着,系统管理智能体对电气系统子系统进行故障诊断任务管理与协调,与故障诊断智能体完成信息的对接;
10.步骤5:故障诊断智能体通过系统管理智能体对子系统的定位,准确地实施故障诊断,并通过状态监测智能体得到诊断的原始数据,完成拖拉机电气系统的故障诊断,具体的电气系统诊断过程如下:
11.步骤5.1:故障诊断智能体从状态监测智能体中得到故障征兆电流集i和电压集u,构造故障征兆集i和u:
12.i={i1,i2,

,im}
13.u={u1,u2,

,um}
14.其中,is(s=1,2,

,m)和us(s=1,2,

,m)表示故障发生的电流和电压征兆;
15.步骤5.2:求出故障征兆电流集i和电压集u的模糊向量:
[0016][0017][0018]
其中,和分别是故障发生的电流和电压征兆is和us的隶属度;
[0019]
步骤5.3:将故障征兆电流集i和电压集u的模糊向量步骤5.3:将故障征兆电流集i和电压集u的模糊向量存放于信念库中;
[0020]
步骤5.4:从故障输出智能体中得到造成故障原因集y,如保险丝熔断、起动开关断路、线路短路和短路,构造故障原因集y:
[0021]
y={y1,y2,

,yn}
[0022]
其中,y
t
(t=1,2,

,n)表示造成拖拉机电气系统故障的原因;
[0023]
步骤5.5:确定故障原因集y的模糊向量:
[0024][0025]
其中,是故障原因y
t
的隶属度;
[0026]
步骤5.6:将故障原因集y的模糊向量存放于愿望库中,
[0027]
步骤5.7:建立故障征兆向量与故障原因向量之间的模糊矩阵,该矩阵是模糊神经网络的连接权值矩阵:
[0028][0029]
该矩阵中的各个连接权值也表示了故障现象到故障原因的一个模糊关系,即c
st
表述故障征兆的第s种特征对应第t种故障原因的映射值;
[0030]
步骤5.8:在愿望推理器中引入模糊神经网络,把规则和推理转换成神经网络的映射处理;将信念库中故障征兆电流集i和电压集u的模糊向量射处理;将信念库中故障征兆电流集i和电压集u的模糊向量作为模糊神经网络的输入层。根据经验公式p2=2p 1,其中p2为隐含层神经元个数p为输入的神经元个数,故选择5个,隐含层神经元过多或过少都不利于故障诊断精度的提高,将故障原因集的模糊向量作为模糊神经网络的输出层;
[0031]
步骤5.9:建立故障诊断模型:
[0032][0033]
其中,为特性函数符号,在拖拉机电气故障诊断模型中取:
[0034][0035]
步骤5.10:在拖拉机电气系统模糊神经网络的故障诊断中,该模糊矩阵是神经网络通过对故障诊断样本的学习而获得的,假设有x组学习样本,每组学习样本包含了故障征兆模糊向量和和故障原因集的模糊向量对上述的c
st
赋初值:令c
st
=1,对x=1;
[0036]
步骤5.11:给定输入和输出输入各组故障征兆和故障原因模糊向量对,分别作为模糊神经网络的输入和输出模式,输入模式为输出模式为
[0037]
步骤5.12:计算理论上的实际输出,
[0038][0039]
其中,表征训练时第x个学习样本对第t个分量的实际输出。和表征输入模式的第s个分量,c
st
为i和u中第s个节点到y中第t个节点的连接权值;
[0040]
步骤5.13:调权,令则
[0041][0042]
其中,η为比例因子,满足0《η≤1;
[0043]
步骤5.14:验证是否对所有s,t都存在c
st
(z 1)=c
st
(z),如果存在,则进行步骤
20,否则返回步骤17;
[0044]
步骤5.15:令x=x 1,从步骤16重复进行,直到所有组学习样本结束,通过在实际运用中的不断学习,可以得到模糊故障诊断中修正后的模糊矩阵c
st
,从而提高系统诊断的准确性和可靠性;
[0045]
步骤5.16:愿望推理器根据愿望库中知识,不断训练模糊神经网络,从而提高整个系统诊断结果的精度,经过反复地训练学习,不断更新愿望库中的知识;
[0046]
步骤5.17:最终,愿望推理器将故障诊断结果发送至意图库中,并存储;
[0047]
步骤5.18:故障诊断智能体将诊断结果发送至故障输出智能体;
[0048]
步骤6:基于sae j1939协议,故障输出智能体将电气系统故障诊断结果发送至用户界面,至此,拖拉机电气系统故障诊断结束。
[0049]
本发明的有益效果:
[0050]
本发明基于多智能体的拖拉机电气系统故障诊断方法,通过多智能体诊断系统早期检测出故障信号,提前对故障做出反应,减小系统故障危害;通过多智能体诊断系统具有的区别不同故障和辨别故障大小及时变特性的能力,有利于对故障的评估和维修;同时,通过对模糊神经网络的训练,有效地提高故障诊断的精度和时效性。
附图说明
[0051]
图1是基于多智能体的拖拉机电气系统故障诊断方法结构框图;
[0052]
图2是以bdi模型为基础的故障诊断智能体;
[0053]
图3为拖拉机电气系统故障诊断流程图;
[0054]
图4为模糊神经网络结构示意图。
具体实施方式
[0055]
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
[0056]
在本发明的描述中,需要说明的是,术语“上”、“下”、“内”、“外”“前端”、“后端”、“两端”、“一端”、“另一端”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
[0057]
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“设置有”、“连接”等,应做广义理解,例如“连接”,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
[0058]
一种基于多智能体的拖拉机电气系统故障诊断方法,拖拉机的电气系统主要由电源系统、启动系统、仪表报警部分、照明信号系统、辅助电气部分和电液控制系统组成。拖拉机的电源系统主要由发电机、蓄电池、调节器以及充电装置组成,是电气系统能够正常运行的出发点;拖拉机的启动系统主要由启动机、点火开关、继电器和预热器等四部分组成;拖
拉机的仪表报警部分主要由传感器和仪表组成,主要功能是将拖拉机在运行过程中相关部件的工作状态反馈给驾驶员;拖拉机的照明信号系统主要为危险报警灯和远近光灯等组成的信号灯及照明灯,是拖拉机电气系统中主要的用电部分;拖拉机的辅助电气系统主要负责为驾驶舱提供舒适的乘坐环境;拖拉机的电液控制系统极大提高了拖拉机的动力性、经济性和舒适性。
[0059]
如图1所示,多智能体含有协调智能体、状态监测智能体、系统管理智能体、故障诊断智能体和故障输出智能体。系统管理智能体是拖拉机电气系统故障诊断运行的基础,主要负责故障诊断系统的任务管理、分配和协调。当拖拉机电气系统发出报警信号或者发生故障时,可以快速定位到故障出现对应的子系统,从而极大程度上缩短了故障诊断的时间。故障诊断智能体是寻找拖拉机电气系统“病因”的智能体。故障诊断智能体是以bdi模型为基础,如图2所示。故障诊断智能体具体主要由信念库、愿望库、意图库、信念产生器以及愿望推理器构成。信念库是用于存放故障诊断指标;愿望库是用于存放故障原因;意图库是用于确定故障诊断结果;信念产生器是用来生成故障诊断指标;愿望推理器是用来生成故障映射关系。当故障诊断智能体工作时,首先从状态检测智能体中获取拖拉机电气系统启动时的原始数据,发送至信念产生器。信念产生器生成用于故障诊断的指标,并存放于信念库中。愿望推理器通过信念库和愿望库中的故障诊断指标和故障原因生成故障诊断映射关系。通过采用训练过的模糊神经网络,将最终确定的诊断结果发送至意图库。意图库将信息整合后,向故障输出智能体发送故障诊断结果。故障输出智能体是基于协议sae j1939将故障诊断智能体中的诊断结果发送至用户界面。引入协调智能体,使得多智能体系统在遇到通讯中断、重连以及通讯时延等状况时,系统仍然能够保持同步,以提高整个控制系统的灵活性、适应性和鲁棒性。每一个智能体之间信息都是共享的。通过将先前的诊断结果存放在故障诊断智能体的意图库中,再通过每一次的故障诊断后,将诊断结果发送至意图库,从而不断地完善意图库
[0060]
当拖拉机电气系统发生故障时,系统管理智能体最初收到状态监测智能体的诊断请求后,迅速定位相应的子系统,同时对故障诊断进行任务的管理、分配和协调,状态检测智能体负责从各个监控节点获取必需的信息,将这些信息发送给故障诊断智能体,给具体的故障诊断提供原始证据,还收集拖拉机机身上电压和电流传感器的信息并处理,形成报警信号。故障诊断智能体以bdi模型为基础,采用模糊神经网络完成电气系统的故障诊断。在诊断时,用户通过拖拉机驾驶室内的故障诊断用户界面,向故障诊断智能体发出诊断请求,同时将观察到的故障现象以及利用传感器测得的电流i和电压u等参数提交到状态监测智能体,形成多智能体启动初始证据。故障输出智能体用于存放信息的全局数据库,记录各智能体所需要的信息和各智能体产生的决策结论,并提供给其他智能体共享,同时记录诊断结果,当故障诊断智能体需要数据时,从状态监测智能体读取数据。当诊断结束后,将诊断结果发送至故障输出智能体,引入协调智能体,使得多智能体系统在遇到通讯中断、重连以及通讯时延状况时,系统仍然能够保持同步,以提高整个控制系统的灵活性、适应性和鲁棒性。
[0061]
一种基于多智能体的拖拉机电气系统故障诊断方法,具体步骤如下:
[0062]
步骤1:当拖拉机启动运行时,状态监测智能体对拖拉机电气系统进行在线实时监控;
[0063]
步骤2:当状态监测智能体发出预警或报警的信号时,用户通过拖拉机驾驶舱内的故障诊断用户界面向故障诊断智能体发出诊断请求;
[0064]
步骤3:用户观察到的故障现象提交至状态监测智能体中,同时,状态监测智能体通过传感器对数据进行采集,将采集故障状态时的电流i和电压u一起发送至故障诊断智能体系统中,形成故障诊断的原始证据;
[0065]
步骤4:根据状态监测智能体中所收集的电气故障数据,系统管理智能体快速地定位至相应的电气系统子系统,接着,系统管理智能体对电气系统子系统进行故障诊断任务管理与协调,与故障诊断智能体完成信息的对接;
[0066]
步骤5:故障诊断智能体通过系统管理智能体对子系统的定位,准确地实施故障诊断,并通过状态监测智能体得到诊断的原始数据,完成拖拉机电气系统的故障诊断,具体的电气系统诊断过程如下:
[0067]
步骤5.1:故障诊断智能体从状态监测智能体中得到故障征兆电流集i和电压集u,构造故障征兆集i和u:
[0068]
i={i1,i2,

,im}
[0069]
u={u1,u2,

,um}
[0070]
其中,is(s=1,2,

,m)和us(s=1,2,

,m)表示故障发生的电流和电压征兆;
[0071]
步骤5.2:求出故障征兆电流集i和电压集u的模糊向量:
[0072][0073][0074]
其中,和分别是故障发生的电流和电压征兆is和us的隶属度;
[0075]
步骤5.3:将故障征兆电流集i和电压集u的模糊向量步骤5.3:将故障征兆电流集i和电压集u的模糊向量存放于信念库中;
[0076]
步骤5.4:从故障输出智能体中得到造成故障原因集y,如保险丝熔断、起动开关断路、线路短路和短路,构造故障原因集y:
[0077]
y={y1,y2,

,yn}
[0078]
其中,y
t
(t=1,2,

,n)表示造成拖拉机电气系统故障的原因;
[0079]
步骤5.5:确定故障原因集y的模糊向量:
[0080][0081]
其中,是故障原因y
t
的隶属度;
[0082]
步骤5.6:将故障原因集y的模糊向量存放于愿望库中,
[0083]
步骤5.7:建立故障征兆向量与故障原因向量之间的模糊矩阵,该矩阵是模糊神经网络的连接权值矩阵:
[0084][0085]
该矩阵中的各个连接权值也表示了故障现象到故障原因的一个模糊关系,即c
st

述故障征兆的第s种特征对应第t种故障原因的映射值;
[0086]
步骤5.8:在愿望推理器中引入模糊神经网络,把规则和推理转换成神经网络的映射处理;将信念库中故障征兆电流集i和电压集u的模糊向量理;将信念库中故障征兆电流集i和电压集u的模糊向量作为模糊神经网络的输入层。根据经验公式p2=2p 1,其中p2为隐含层神经元个数p为输入的神经元个数,故选择5个,隐含层神经元过多或过少都不利于故障诊断精度的提高,将故障原因集的模糊向量作为模糊神经网络的输出层;
[0087]
步骤5.9:建立故障诊断模型:
[0088][0089]
其中,为特性函数符号,在拖拉机电气故障诊断模型中取:
[0090][0091]
步骤5.10:在拖拉机电气系统模糊神经网络的故障诊断中,该模糊矩阵是神经网络通过对故障诊断样本的学习而获得的,假设有x组学习样本,每组学习样本包含了故障征兆模糊向量和和故障原因集的模糊向量对上述的c
st
赋初值:令c
st
=1,对
[0092]
步骤5.11:给定输入和输出输入各组故障征兆和故障原因模糊向量对,分别作为模糊神经网络的输入和输出模式,输入模式为输出模式为
[0093]
步骤5.12:计算理论上的实际输出,
[0094][0095]
其中,表征训练时第x个学习样本对第t个分量的实际输出。和表征输入模式的第s个分量,c
st
为i和u中第s个节点到y中第t个节点的连接权值;
[0096]
步骤5.13:调权,令则
[0097][0098]
其中,η为比例因子,满足0《η≤1;
[0099]
步骤5.14:验证是否对所有s,t都存在c
st
(z 1)=c
st
(z),如果存在,则进行步骤20,否则返回步骤17;
[0100]
步骤5.15:令x=x 1,从步骤16重复进行,直到所有组学习样本结束,通过在实际运用中的不断学习,可以得到模糊故障诊断中修正后的模糊矩阵c
st
,从而提高系统诊断的准确性和可靠性;
[0101]
步骤5.16:愿望推理器根据愿望库中知识,不断训练模糊神经网络,从而提高整个系统诊断结果的精度,经过反复地训练学习,不断更新愿望库中的知识;
[0102]
步骤5.17:最终,愿望推理器将故障诊断结果发送至意图库中,并存储;
[0103]
步骤5.18:故障诊断智能体将诊断结果发送至故障输出智能体;
[0104]
步骤6:基于sae j1939协议,故障输出智能体将电气系统故障诊断结果发送至用户界面,至此,拖拉机电气系统故障诊断结束。
[0105]
上述一种基于多智能体的拖拉机电气系统故障诊断方法,通过多智能体诊断系统早期检测出故障信号,提前对故障做出反应,减小系统故障危害;通过多智能体诊断系统具有的区别不同故障和辨别故障大小及时变特性的能力,有利于对故障的评估和维修;同时,通过对模糊神经网络的训练,有效地提高故障诊断的精度和时效性。
[0106]
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献