一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

用于确保核证减排量的蓄热式热氧化(RTO)型煤矿甲烷气体综合处理系统的制作方法

2022-08-17 05:54:12 来源:中国专利 TAG:

用于确保核证减排量的蓄热式热氧化(rto)型煤矿甲烷气体综合处理系统
技术领域
1.本发明涉及一种通过将经由排气风扇延长到煤矿的坑道外部的低浓度甲烷气体排出用排气管道以及经由排气泵延长到煤矿的坑道外部的高浓度甲烷气体排出用气体排出管连接到混合罐,在相应的混合罐的内部将低浓度甲烷气体以及高浓度甲烷气体混合成适合于燃烧式氧化处理的适当浓度的甲烷气体之后,利用送风风扇将储藏在所述混合罐中的甲烷气体供应到在对挥发性有机化合物等有害气体进行大量处理时所使用的公知的蓄热式热氧化(rto,regenerative thermal oxidation)装置进行处理的用于确保核证减排量的蓄热式热氧化(rto)型煤矿甲烷气体综合处理系统(overall processing system of colliery methane gas using an rto for the security of thecer)。


背景技术:

2.通常来讲,核证减排量(cer:certified emission reduction)是指可以在一定期间内排出温室气体的权利,而核证减排量交易制度相当于通过京都议定书引入的三个制度之一,具体是指在具有温室气体减排义务的国家的温室气体排出量低于被分配的排出量的情况下,允许其将剩余的温室气体排出权限(核证减排量)销售给其他国家的制度。
3.通过如上所述的核证减排量交易制度,特定国家可以通过最大限度地降低温室气体的排出量而将所确保的核证减排量销售给其他国家并借此获得经济收益,而降低温室气体的排出量所需要的设备或投资成本相对较高的国家可以以相对低廉的费用从其他国家购买核证减排量,而且通过采用如上所述的方式在环境问题与市场原则之间建立起关联,可以在全球范围内构建促进温室气体减排的坚实基础。
4.立足于如上所述的核证减排量交易制度,在煤矿的坑道内产生的甲烷(ch4)气体不仅会诱发与二氧化碳(co2)相比高达21倍的温室效果,而且如果将开采一吨(ton)煤炭时所产生的的甲烷气体换算成纯甲烷气体,也会达到10~40nm3(标准m3:1大气压下体积达到1m3的气体容量单位)的大规模级别,因此在煤矿的坑道内产生的甲烷气体被排放到大气中时所导致的环境污染时需要在国家层面上进行重点管理的重要课题。
5.如何对如上所述的从煤矿的坑道中以包含甲烷的状态排出的排出气体进行有效地应用以及处理而不是直接排放到大气中,不仅仅是在国家层面上用于防止环境污染的重要课题,在如确保核证减排量等经济效益方面的贡献度也非常高,因此提出了将从煤矿的坑道中以包含甲烷的状态排出的排出气体作为燃料使用的处理方案。
6.作为代表性的一实例,在大韩民国注册专利第10-1399224号(公告日期:2014年05月27日)中,公开了一种将沿着为了对坑道内部进行换气而与排气风扇一起安装的排气管道排出到坑道外部的不足1wt%的低浓度甲烷气体(vam:ventilation air methane,通风空气甲烷)以及从为了保障执行爆破作业以及开采作业时的安全而在煤炭层的内部以一定的深度钻孔加工形成的岩心孔沿着配备有排气泵(真空泵)的气体排出管排出到坑道外部的20~50wt%的高浓度甲烷气体(cmm:coal mine methane,煤矿甲烷)作为发电机用柴油
式燃气引擎的燃料使用并借此生产电力的方法。
7.但是,因为在如上所述的现有技术中适用的是将从煤矿的坑道以包含甲烷的状态排出的排出气体作为燃料注入到柴油式燃气引擎的燃烧室的方式,因此在使用相当于汽车排气量水准的小型燃气引擎时,具有在以1吨煤炭为基准排出大约10~40nm3左右的大量甲烷气体的现场基本上无法快速且综合地对齐进行处理的问题,而且即使是在使用如船舶用柴油引擎等大型燃气引擎的情况下,也具有在现场的实际处理量只能达到煤矿内的甲烷气体整体排出量的大约20~30%左右的问题。
8.如上所述,因为即使是在使用如船舶用柴油引擎等大型燃气引擎的情况下,在现场也只能对煤矿内的甲烷气体整体排出量的大约20~30%左右进行处理,因此需要在将剩余的甲烷气体高压压缩储藏到单独的储藏罐之后在日后另行处理或搬运到煤矿现场之外的其他设施中进行处理,而在没有配备如上所述的附属设备或系统的情况下,只能将剩余的甲烷气体在不经过单独处理的情况下直接排放到大气中,此外,燃气引擎运行时所发出的噪音(爆炸音以及机械音)会导致现场作业条件的大幅下降,而且从燃气引擎排出的燃烧气体还会诱发二次环境污染。
9.尤其是,如船舶用柴油引擎等非常昂贵的大型燃气引擎需要根据甲烷气体的燃料特性单独制作,而且还需要配备如润滑油供应装置等与相应的燃气引擎相关的其他多种复杂的周边设施以及用于对剩余的甲烷气体进行储藏的大容量的高压罐,因此考虑到通过对在煤矿中产生的甲烷气体进行处理而确保的核证减排量以及将甲烷气体作为燃料使用的发电(电力生产)等经济效益,利用燃气引擎的甲烷气体的处理方式具有非常不合理且不经济的问题。


技术实现要素:

10.本发明旨在解决如上所述的现有问题,其主要的技术课题在于提供一种通过将经由排气风扇延长到煤矿的坑道外部的低浓度甲烷气体排出用排气管道以及经由排气泵延长到煤矿的坑道外部的高浓度甲烷气体排出用气体排出管连接到混合罐,在相应的混合罐的内部将低浓度甲烷气体以及高浓度甲烷气体混合成适合于燃烧式氧化处理的适当浓度的甲烷气体,然后利用送风风扇将储藏在所述混合罐中的甲烷气体供应到在对挥发性有机化合物等有害气体进行大量处理时所使用的公知的蓄热式热氧化(rto)装置,从而与将在煤矿的坑道内产生的甲烷气体作为发电机用柴油式燃气引擎的燃料使用的现有方式相比,可以在几乎不生成二次污染物质的情况下在现场实时地对低浓度甲烷气体以及高浓度甲烷气体综合快速地进行大量处理,借此可以非小规模地在整个国家层面上确保核证减排量,而且以相同的处理容量为基准更加经济、实用且环保的煤矿甲烷气体处理系统。
11.与此同时,本发明的另一技术课题在于提供一种通过从所述气体排出管分支形成燃料回收管并将其连接到燃料罐,并将从所述燃料罐经由燃料泵延长的燃料供应管连接到蓄热式热氧化(rto)装置燃烧室的燃烧器,在所述气体排出管以及燃料回收管中安装根据从混合罐的气体浓度传感器输入的测定值利用控制器进行控制的流量调节器,从而在储藏在混合罐中的甲烷气体的浓度高于设定值的情况下将高浓度甲烷气体中的一部分诱导到燃料罐中并用于蓄热式热氧化(rto)装置的燃烧器运行,借此可以将储藏在混合罐中的甲烷气体的浓度以及在蓄热式热氧化(rto)装置中的处理效率始终维持在较高的水准,同时
还可以通过高浓度甲烷气体的合理分配以及利用而降低蓄热式热氧化(rto)装置运行时所需要的能量(燃料),而且通过在所述排气管道以及燃料供应管中同样安装流量调节器的同时在所述燃料罐一侧安装压力传感器以及气体压缩器,可以更加精确且细密地执行甲烷气体的浓度调节以及燃烧器用燃料供应。
12.另一方面,本发明的最终技术课题在于提供一种通过将在对甲烷气体进行处理的过程中从蓄热式热氧化(rto)装置排出的高温的清洁气体供应到蒸汽锅炉而生成高压蒸汽,并将其供应到通过涡轮轴与发电机连接的蒸汽涡轮机中而实现追加的电力生产,而且通过在蓄热式热氧化(rto)装置的洁净气体排出管上安装排放气体用混合罐的同时利用气体诱导管将相应的混合罐连接到蓄热式热氧化(tro)装置的燃烧室,并在所述气体诱导管中安装根据从排放气体用混合罐的温度传感器输入的测定值利用控制器进行控制的流量调节器,可以将供应到蒸汽锅炉的排放气体的温度维持在450~600℃的较高水准,从而进一步提升在蒸汽锅炉中的蒸汽生程度以及在发电机中的电力生产量,而且还可以将通过蒸汽涡轮机排出的蒸汽的废热作为烧水或采暖等用途进行回收,从而可以快速且综合地对大量甲烷气体进行现场处理、追加生产大量电力并对蒸汽废热进行再利用的针对煤矿甲烷气体的处理进行优化的系统。
13.作为用于解决如上所述的技术课题的手段,本发明的特征在于:在排气风扇工作时通过安装在煤矿的坑道内的排气管道排出到坑道外部的低浓度甲烷气体以及在排气泵工作时通过安装在所述坑道内的气体排出管排出到坑道外部的高浓度甲烷气体的处理系统中,所述处理系统,包括:甲烷气体用混合罐,连接安装有经由排气风扇延长到坑道外部的排气管道以及经由排气泵延长到坑道外部的气体排出管;以及,公知的蓄热式热氧化(rto)装置,从所述混合罐延长的气体供应管经由送风风扇被连接安装到气体分配室;所述蓄热式热氧化(rto)装置,是一种在装置外壳的内侧下部空间提供气体分配室,在相当于所述气体分配室的上部的装置外壳的中央一侧内部空间划分形成至少三个以上的内置有蓄热材料的蓄热室,而且相当于所述各个蓄热室上部的装置外壳的内部空间构成燃烧室的蓄热燃烧式氧化处理装置,在所述气体分配室的内部,安装有用于交替地将从气体供应管经由蓄热材料流入到燃烧室的甲烷气体、从燃烧室经由蓄热材料排出到排出管的洁净气体以及经由吹扫管供应到蓄热材料的吹扫空气的流动路径分配到各个蓄热室的气体分配器,在所述排出管以及吹扫管中分别安装有排出风扇以及吹扫风扇,而且在所述燃烧室中安装有燃烧器。
14.作为更较佳的实施方式,本发明的特征在于:在所述甲烷气体用混合罐中,安装有用于对甲烷气体的浓度进行检测的气体浓度传感器,所述气体浓度传感器通过线缆与控制器连接安装,从相当于越过所述排气泵出口的位置上的气体排出管分支形成配备有流量调节器的燃料回收管,在相当于越过所述燃料回收管的分支点的位置上的气体排出管部分同样安装燃料调节器,所述燃料回收管与燃料罐连接安装,从所述燃料罐经由燃料泵延长的燃料供应管与蓄热式热氧化(rto)装置的燃烧器连接安装,所述气体排出管以及燃料回收管的流量调节器通过线缆分别与控制器连接安装,在所述排气管道以及燃料供应管中也分别安装有通过线缆与控制器连接的流量调节器,在相当于所述燃料罐的入口一侧的燃料回收管中安装有气体压缩器,在所述燃料罐中安装有压力传感器,所述气体压缩器以及压力传感器通过线缆与控制器连接安装。
15.作为追加事项,本发明的特征在于:从所述蓄热式热氧化(rto)装置的气体分配室经由排出风扇延长的排出管与蒸汽锅炉连接安装,从所述蒸汽锅炉延长的蒸汽排出管与蒸汽涡轮机连接安装,在所述蒸汽锅炉中追加连接安装有常温水供应管以及排气管,所述蒸汽涡轮机的涡轮轴与发电机连接安装,在相当于所述蓄热式热氧化(rto)装置的气体分配室以及排出风扇之间的排出管上安装有排放气体用混合罐,从相应混合罐经由排出风扇延长的排出管与蒸汽锅炉连接安装,从所述蓄热式热氧化(rto)装置的燃烧室延长安装有用于对燃烧气体的排出进行诱导的气体诱导管,所述气体诱导管与排放气体用混合罐连接安装,在所述排放气体用混合罐以及气体诱导管中分别安装有温度传感器以及流量调节器,所述温度传感器以及流量调节器分别通过线缆与控制器连接安装。
16.通过如上所述的本发明,可以提供一种通过在将从煤矿的坑道内排出的低浓度甲烷气体以及高浓度甲烷气体在混合罐中进行混合之后再将其供应到在对有害气体进行大量处理时所使用的蓄热式热氧化(rto)装置,可以在几乎不生成二次污染物质的情况下在现场实时地对低浓度甲烷气体以及高浓度甲烷气体综合快速地进行大量处理,借此可以非小规模地在整个国家层面上确保核证减排量,而且以相同的处理容量为基准更加经济、实用且环保的煤矿甲烷气体处理系统。
17.与此同时,可以在储藏在所述混合罐中的甲烷气体的浓度高于设定值的情况下将高浓度甲烷气体中的一部分诱导到燃料罐中并用于蓄热式热氧化(rto)装置的燃烧器运行,借此可以将储藏在混合罐中的甲烷气体的浓度以及在蓄热式热氧化(rto)装置中的处理效率始终维持在较高的水准,同时还可以通过高浓度甲烷气体的合理分配以及利用而降低蓄热式热氧化(rto)装置运行时所需要的能量(燃料),而且通过在所述排气管道以及燃料供应管中同样安装流量调节器的同时在所述燃料罐一侧安装压力传感器以及气体压缩器,可以更加精确且细密地执行甲烷气体的浓度调节以及燃烧器用燃料供应。
18.另一方面,可以提供一种利用经由所述蓄热式热氧化(rto)装置排出的洁净气体的废热驱动蒸汽锅炉以及发电机的运行并借此实现追加的电力生产,并通过将相应的排出气体与从其他混合罐的蓄热式热氧化(rto)装置的燃烧室诱导的气体进行适当混合,可以将供应到蒸汽锅炉的排放气体的温度维持在450~600℃的较高水准,从而最大限度地确保基于蒸汽生程度电力生产量,而且还可以将在电力生产中使用的蒸汽的废热作为烧水或采暖等用途进行回收,最终可以快速且综合地对大量甲烷气体进行现场处理、追加生产大量电力并对蒸汽废热进行再利用的针对煤矿甲烷气体的处理进行优化的系统。
附图说明
19.图1是对适用本发明的蓄热式热氧化(rto)式煤矿甲烷气体综合处理系统进行图示的管路图。
20.图2是对将从本发明的处理系统排出的洁净排放气体适用于发电设备的状态进行图示的管路图。
21.图3是对从本发明的处理系统排出的洁净排放气体的另一种废热回收方式进行图示的管路图。
22.附图标记说明
23.1:煤矿
24.2:坑道
25.3:排气管道
26.4:吸气口
27.5:悬吊支架
28.6:岩心孔
29.7:气体排出管
30.8:排气风扇
31.9:排气泵
32.10:处理系统
33.11、40:混合罐
34.12:控制器
35.13:气体浓度传感器
36.14:流量调节器
37.15:回流阻断器
38.16:燃料回收管
39.17:气体压缩器
40.18:压力传感器
41.19:线缆
42.20:燃料罐
43.21:气体供应管
44.22:送风风扇
45.23:燃料供应管
46.24:燃料泵
47.25:吹扫管
48.26:吹扫风扇
49.27:燃烧器
50.28:排出管
51.29:排出风扇
52.30:蓄热式热氧化(rto)装置
53.31:装置外壳
54.32:气体分配室
55.33:气体分配器
56.34:多孔板
57.35:分隔板
58.36:蓄热室
59.37:蓄热材料
60.38:燃烧室
61.39:气体诱导管
62.41:温度传感器
63.42:蒸汽锅炉
64.43:常温水供应管
65.44:蒸汽排出管
66.45:蒸汽涡轮机
67.46:涡轮轴
68.47:发电机
69.48:电力转换器
70.49:排气管
71.50:烟囱
具体实施方式
72.接下来,将参阅附图对用于达成如上所述的目的的本发明进行详细的说明。
73.适用本发明的煤矿甲烷气体综合处理系统,如图1所示,用于对在排气风扇8工作时通过安装在煤矿1的坑道2内的排气管道3排出到坑道2外部的低浓度甲烷气体以及在排气泵(真空泵)9工作时通过安装在坑道2内的气体排出管7排出到坑道2外部的高浓度甲烷气体进行统一处理,将经由排气风扇8延长到坑道2外部的排气管道3以及经由排气泵9延长到坑道2外部的气体排出管7与甲烷气体用混合罐11连接,将从所述混合罐11经由送风风扇22延长的气体供应管21连接到公知的蓄热式热氧化(rto)装置。
74.所述排气管道3如在现有技术相关内容中进行的说明,为了换气目的沿着坑道2进行安装,从而提供可供不足1wt%的低浓度甲烷气体(vam:通风空气甲烷)排出到坑道2外部的通道,通常是通过悬吊支架5等将相隔一定距离提供吸气口4的排气管道3悬吊配置在天花板上,而所述气体排出管7是从为了保障执行爆破作业以及开采作业时的安全而在煤炭层的内部以一定的深度钻孔加工形成的岩心孔延长安装到坑2道外部,从而提供可供20~50wt%的高浓度甲烷气体(cmm:煤矿甲烷)排出到坑道2外部的通道。
75.虽然在附图中是对所述气体排出管7沿着排气管道3的内部空间延长到坑道2外部的情况进行了图示,但是也可以将所述气体排出管7作为独立于排气管道3的管线沿着坑道2的天花板或地面或墙面延长到坑道2外部,而且为了顺利地完成高浓度甲烷气体的吸入动作,插入到所述岩心孔6内部的气体排出管7部分使用在管体的整个面形成有多个气体吸入孔(未图示)的多孔管体为宜,而延长到岩心孔6外部的气体排出管7部分使用一般的管体形状为宜。
76.借此,在将从所述排气管道3经由排气风扇8排出的低浓度甲烷气体以及从所述气体排出管7经由排气泵9排出的高浓度甲烷气体在混合罐11内部进行混合时,可以得到适合于燃烧式氧化处理的甲烷浓度不足1.2wt%的混合气体,这是因为即使是在从气体排出管7排出的甲烷气体的浓度维持在20~50wt%的较高水准的情况下,其排气量本身与从排气管道3排出的排气量相比为极少量,而且在必要时还可以通过在所述混合罐11的内部安装之字形隔板或旋转式搅拌翼等而更加快速且均匀地对低浓度甲烷气体以及高浓度甲烷气体进行混合。
77.与此同时,所述蓄热式热氧化(rto)装置,是一种在装置外壳31的内侧下部空间提供气体分配室32,在相当于所述气体分配室32的上部的装置外壳31的中央一侧内部空间通
过分隔板35划分形成至少三个以上的内置有被如多孔板34或网孔网等支撑的蓄热材料37的蓄热室36,而且相当于所述各个蓄热室36上部的装置外壳31的内部空间构成燃烧室38的公知的蓄热燃烧式氧化处理装置,在本发明中,从所述混合罐11经由送风风扇22延长的气体供应管21将与配置在蓄热式热氧化(rto)装置30的装置外壳31下部的气体分配室32连接安装。
78.作为所述蓄热式热氧化(rto)装置30的代表性实例,可以以本技术人于2009年通过专利申请第50609号较早提出申请并获得第10-0918880号专利注册的回转式蓄热燃烧以及氧化处理装置、本技术人于2016年通过专利申请第91472号较早提出申请并获得第10-1714027号专利注册的凸轮驱动式蓄热燃烧氧化处理装置、本技术人于2017年通过专利申请第101840号较早提出申请并获得第10-1785486号专利注册的气缸驱动式蓄热燃烧氧化处理装置以及本技术人于2018年通过专利申请第153522号较早提出申请并被公开(第10-2020-0066873号)的普及型蓄热燃烧氧化处理装置为例。
79.需要注意的是,不仅仅是如上所述的本技术人较早提交申请的蓄热式热氧化(rto)装置30,可以对有害气体进行大量处理的任何类型的蓄热式热氧化(rto)装置30都可以适用于本发明,在所述蓄热式热氧化装置30的气体分配室32的内部,安装有用于交替地将从气体供应管21经由蓄热材料37流入到燃烧室38的甲烷气体(混合气体)、从燃烧室38经由蓄热材料37排出到排出管28的洁净气体以及经由吹扫管25供应到蓄热材料37的吹扫空气的流动路径分配到各个蓄热室36的气体分配器33。
80.关于如上所述的气体分配室32以及安装在其内部的气体分配器33,可以适用在由本技术人较早提出申请的内容中所述的如旋转式分配盘、阀门式分配器或气缸分配器等多种类型的分配结构,所述排出管28提供从蓄热式热氧化(rto)装置30的燃烧室38经由蓄热材料37的洁净气体通过气体分配室32排出到外部的路径,所述吹扫管25提供经由气体分配室32向蓄热材料37的下部供应外部空气的路径,在所述排出管28以及吹扫管25中分别安装有排出风扇29以及吹扫风扇26,而且在所述燃烧室38中安装有燃烧器27。
81.借此,在将从煤矿1的坑道2排出的低浓度甲烷气体以及高浓度甲烷气体在混合罐11中进行混合之后,将相应的混合气体经由蓄热式热氧化(rto)装置30的气体分配室32以及蓄热材料37流入到燃烧室38时,混合气体将通过从燃烧器27喷射出来的火焰在燃烧室38的内部得到氧化以及焚烧处理而转化成洁净气体,相应的洁净气体将在经由蓄热材料37有道道气体分配室32之后沿着排出管29排出到外部,通过如上所述的方式,可以在几乎不生成二次污染物质的情况下在现场实时地对低浓度甲烷气体以及高浓度甲烷气体综合快速地进行大量处理。
82.作为更较佳的实施方式,在所述甲烷气体用混合罐11中,安装用于对甲烷气体的浓度进行检测的气体浓度传感器13,所述气体浓度传感器13通过线缆19与控制器12连接,从相当于越过所述排气泵9出口的位置上的气体排出管7分支形成配备有流量调节器14的燃料回收管16,在相当于越过所述燃料回收管16的分支点的位置上的气体排出管7部分同样安装燃料调节器14,所述燃料回收管16与燃料罐20连接,从所述燃料罐20经由燃料泵24延长的燃料供应管23与蓄热式热氧化(rto)装置30的燃烧器27连接,所述气体排出管7以及燃料回收管6的流量调节器14通过线缆19分别与控制器12连接。
83.通过适用如上所述的方式,在因为发生如通过排气管道3排出的低浓度甲烷气体
的排出量急剧减少和/或通过气体排出管7排出的高浓度甲烷气体的排出量急剧增加等多种突发状况而导致储藏在混合罐11中的甲烷气体的浓度高于设定值(1.2wt%)时,可以利用混合罐11的气体浓度传感器13对其进行检测并关闭气体排出管7的流量调节器14或减小其开放量,或者开放燃料回收管16的流量调节器,从而将通过气体排出管7排出的高浓度甲烷气体的一部分或全部诱导到燃料罐20。
84.通过如上所述的方式,不仅可以将储藏在混合罐11中的甲烷气体的浓度以及在蓄热式热氧化(rto)装置30中的甲烷气体处理效率稳定地维持在较高的水准,还可以在必要时利用燃料泵24以及燃料供应管23将被诱导以及储藏在燃料罐20中的高浓度甲烷气体供应到蓄热式热氧化(rto)装置30的燃烧器27,从而将高浓度甲烷气体作为蓄热式热氧化(rto)装置30用燃烧器27的燃料使用,而通过如上所述的高浓度甲烷气体的合理分配以及利用,可以确保煤矿甲烷气体的高效处理并降低蓄热式热氧化(rto)装置运行时所需要的能量(燃料)。
85.与此同时,通过在所述排气管道3以及燃料供应管23中同样分别安装通过线缆19与控制器12连接的流量调节器14,可以对通过混合罐11流入的低浓度甲烷气体的流入量以及通过燃烧器27供应的高浓度甲烷气体的供应量进行追加控制,从而可以更加精确且细密地执行混合罐11内部的甲烷气体的浓度调节以及燃烧器27用燃料供应,安装在所述排气管道3中的流量调节器14为自动阻尼方式为宜,而安装在所述气体排出管7和燃料回收管16以及燃料供应管23中的流量调节器14为自动阀门方式为宜。
86.换言之,所述流量调节器14根据安装相应器具的管道或管路的类型以及尺寸选择适用阻尼方式或阀门方式中可以最可靠地执行其固有功能的方式,对于在附图中与所述流量调节器14一起适用的回流阻断器15,同样根据安装相应器具的管道或管路的类型以及尺寸选择适用止回阻尼方式或止回阀方式中的适当的方式为宜,而这同样适用于在后续内容中提及的流量调节器14或回流阻断器15。
87.此外,储藏在所述燃料罐20内部的高浓度甲烷气体的储藏压力越高,就越可以实现通过燃烧器27的燃料高速喷射以及强力火焰,为此,在相当于所述燃料罐20的入口一侧的燃料回收管16中安装气体压缩器17的同时在所述燃料罐20中安装压力传感器18,所述气体压缩器17以及压力传感器18通过线缆与控制器12连接安装,所述燃料罐20制作成可对高压气体进行储藏的耐压罐为宜。
88.通过适用如上所述的方式,可以利用压力传感器18对经由燃料回收管16储藏到燃料罐20内部的高浓度甲烷气体的储藏压力进行测定并利用控制器12对气体压缩器17的工作进行控制,从而使得相应测定值维持在控制器12中预先设定的压力范围之内,所述燃料供应管23以及流量调节器14同样可以根据从压力传感器18输入到控制器12的测定值对其开闭动作进行控制,在必要时也可以在所述燃料供应管23的流量调节器14的出口一侧安装回流阻断器15。
89.此外,当假定在所述燃料罐20以及燃料供应管23中均安装有气体压缩器17和流量调节器14以及回流阻断器15时,所述燃料泵24也可以不单独安装在燃料供应管23上,而是利用送风式燃料供应风扇替代加压式燃料泵24,作为所述燃烧器27可以利用甲烷气体专用的气体燃烧器替代在蓄热式热氧化(rto)装置30中使用的现有的气体燃烧器,也可以将现有的气体燃烧器改造成可以与甲烷气体燃料一起使用,或者可以将甲烷气体专用的气体燃
烧器与现有的气体燃烧器一起进行安装。
90.图2中所图示的是将在所述蓄热式热氧化(rto)装置30中对甲烷气体进行处理时通过排出管28排出的洁净气体适用于蒸汽发电设备的状态,从所述蓄热式热氧化(rto)装置30的气体分配室32经由排出风扇29延长的排出管28与蒸汽锅炉42连接安装,从所述蒸汽锅炉42延长的蒸汽排出管44与蒸汽涡轮机45连接安装,在所述蒸汽锅炉42中追加连接安装常温水供应管43以及排气管49,所述蒸汽涡轮机45的涡轮轴46与发电机47连接安装,在所述发电机47中安装有用于将在涡轮轴46高速旋转时生产出的电力转换成可使用电力的电力转换器48。
91.作为更较佳的实施方式,在相当于所述蓄热式热氧化(rto)装置30的气体分配室32以及排出风扇29之间的排出管28上安装有排放气体用混合罐40,从相应混合罐40经由排出风扇29延长的排出管28与蒸汽锅炉42连接安装,从所述蓄热式热氧化(rto)装置30的燃烧室38延长形成用于对燃烧气体的排出进行诱导的气体诱导管39,所述气体诱导管39与排放气体用混合罐40连接安装,所述排放气体用混合罐40采用适用保温材料的隔热罐为宜,而且可以追加安装在上述的甲烷气体用混合罐11中进行说明的隔板或搅拌翼等。
92.通过适用如上所述的方式,可以利用经由蓄热式热氧化(rto)装置30排出的洁净气体的废热驱动蒸汽锅炉42以及发电机47运行,从而在通过对煤矿甲烷气体进行处理而确保核证减排量的同时通过电力生产获得追加经济效益,而且可以利用所述排放气体用混合罐40对从蓄热式热氧化(rto)装置30的燃烧室38诱导的高温的燃烧气体以及经由蓄热式热氧化(tro)装置30最终排出的洁净气体进行适当混合,从而将供应到蒸汽锅炉42的排放气体的温度维持在450~600℃的较高水准并借此最大限度地确保基于蒸汽生程度电力生产量。
93.为此,可以在所述混合罐40以及气体诱导管39中分别安装温度传感器41以及流量调节器14,并在所述气体诱导管39的流量调节器14出口一侧安装回流阻断器15,进而将所述温度传感器41以及流量调节器14通过控制器12分别与线缆19连接安装,从而以从混合罐40的温度传感器输入到控制器12中的测定值为基础利用控制器12对安装在气体诱导管39上的流量调节器14的工作进行控制,借此对通过混合罐40的高温燃烧气体的流入量进行适当调整并将储藏在混合罐40中的排放气体的温度适中维持在450~600℃的水准。
94.此外,通过供应到蒸汽锅炉42而将常温水转化成高温、高压蒸汽时所使用的排放气体经由从蒸汽锅炉42延长的排气管49以及烟囱50最终排放到大气中,而通过供应到蒸汽涡轮机45而生产电力时所使用的蒸汽仍然包含较高温度(80~100℃)的废热,因此为了将如上所述的蒸汽的废热应用于如烧水或采暖等用途,经由蒸汽涡轮机45延长的蒸汽排出管44与烧水热交换器、采暖热交换器或其他废热回收器连接安装,从而使得经由相应热交换器之后的蒸汽转换成冷凝水并最终排出到外部。
95.通过采用如上所述的方式,可以提供一种可以快速且综合地对大量甲烷气体进行现场处理、追加生产大量电力并对蒸汽废热进行再利用的针对煤矿1甲烷气体的处理进行优化的系统,而且如图3所示,可以将从蓄热式热氧化(rto)装置30排出的洁净气体直接供应到烧水热交换器、采暖热交换器或其他废热回收器,而且也可以利用在上述内容中进行说明的混合罐40将温度较高的状态的排放气体直接供应到烧水热交换器、采暖热交换器或其他废热回收器。
96.通过如上所述构成的本发明,可以提供一种通过在将从煤矿1的坑道2内排出的低浓度甲烷气体以及高浓度甲烷气体在混合罐11中进行混合之后再将其供应到在对有害气体进行大量处理时所使用的蓄热式热氧化(rto)装置30,可以在几乎不生成二次污染物质的情况下在现场实时地对低浓度甲烷气体以及高浓度甲烷气体综合快速地进行大量处理,借此可以非小规模地在整个国家层面上确保核证减排量,而且以相同的处理容量为基准更加经济、实用且环保的煤矿甲烷气体处理系统10。
97.与此同时,可以在储藏在所述混合罐11中的甲烷气体的浓度高于设定值的情况下将高浓度甲烷气体中的一部分诱导到燃料罐20中并用于蓄热式热氧化(rto)装置30的燃烧器27运行,借此可以将储藏在混合罐11中的甲烷气体的浓度以及在蓄热式热氧化(rto)装置30中的处理效率始终维持在较高的水准,同时还可以通过高浓度甲烷气体的合理分配以及利用而降低蓄热式热氧化(rto)装置30运行时所需要的能量(燃料),而且通过在所述排气管道3以及燃料供应管23中同样安装流量调节器14的同时在所述燃料罐20一侧安装压力传感器18以及气体压缩器17,可以更加精确且细密地执行甲烷气体的浓度调节以及燃烧器27用燃料供应。
98.另一方面,可以提供一种利用经由所述蓄热式热氧化(rto)装置30排出的洁净气体的废热驱动蒸汽锅炉42以及发电机47的运行并借此实现追加的电力生产,并通过将相应的排出气体与从其他混合罐40的蓄热式热氧化(rto)装置30的燃烧室38诱导的气体进行适当混合,可以将供应到蒸汽锅炉42的排放气体的温度维持在450~600℃的较高水准,从而最大限度地确保基于蒸汽生程度电力生产量,而且还可以将在电力生产中使用的蒸汽的废热作为烧水或采暖等用途进行回收,从而可以快速且综合地对大量甲烷气体进行现场处理、追加生产大量电力并对蒸汽废热进行再利用的针对煤矿1甲烷气体的处理进行优化的系统。
99.最后需要说明的是,在附图以及以此为基础进行的说明中,是以利用本发明处理系统10对从煤矿1的坑道2内产生的甲烷气体进行处理的情况为例进行了说明,但是除煤矿1之外的产生大量甲烷气体的其他设施,例如在污水终端处理场的污泥储藏槽或垃圾掩埋处理厂等处产生的甲烷气体进行处理时,也可以使用以蓄热式热氧化(rto)装置30位基础的本发明的甲烷气体处理系统10,而这也包含在本发明的技术思想范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献