一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

化学钝化层保护的金属锌负极及其制备方法与应用

2022-07-30 23:07:52 来源:中国专利 TAG:


1.本发明属于电池材料制备技术领域,尤其涉及一种化学钝化层保护的金属锌负极及其制备方法与应用。


背景技术:

2.人类社会的发展伴随着对能源需求的不断提高,传统化石燃料对环境造成的巨大污染促使人们将目光转移到风能、太阳能、潮汐能等新型可再生能源上,然而,这些可再生能源的区域性、不连续性与不可控性极大地限制了其可利用程度,因此,需要发展一种能源储存系统,有效地对这些间歇性能源进行储存与转化。其中,锂离子电池由于具有高输出电压和高能量密度,已被广泛应用于便携式电子设备和电动汽车领域。然而,锂资源的匮乏和有机电解液易燃的特性很大程度上降低了锂离子电池在新型大规模储能系统中的竞争性。
3.与有机电解液相比,水系电解液具有安全、离子电导率高(~1s cm-1
)和成本低廉等优势,被视为新一代大规模储能系统的有力竞争者。在当前各类水系金属电池中,金属锌由于具有较低的氧化还原电位(-0.763v vs.标准氢电极)、高的理论比容量(819mah g-1
)和丰富的储量(约占地壳中的75ppm),从诸多水系金属电池体系中脱颖而出,成为新一代大规模储能系统的有力竞争者之一。
4.水系锌离子电池的能量储存与转化是通过zn
2
在正负极之间的迁移来实现的,其中,金属锌负极在循环过程中会发生如枝晶生长,腐蚀(析氢)等副反应,这些问题导致了锌的不可逆消耗,降低了其沉积/溶解效率,同时也会使得整个电池的使用寿命大大降低。因此,开发具有抗腐蚀能力和均匀锌沉积的高度稳定可逆的锌负极是提高锌离子电池使用寿命,发展高性能水系锌离子电池的前提。


技术实现要素:

5.本发明要解决的技术问题是提供一种工艺简单、成本低廉且效果良好的化学钝化层保护的金属锌负极及其制备方法与应用。
6.为解决上述技术问题,本发明采用以下技术方案:
7.化学钝化层保护的金属锌负极,化学钝化层是通过化学钝化法在锌金属负极表面原位生成;化学钝化法所用钝化液的活性成分为钒酸盐、硅酸盐、钛酸盐中的一种或几种,溶剂为水。
8.上述化学钝化层保护的金属锌负极的制备方法,将锌箔浸泡于钝化液中。
9.锌箔的厚度为10~200μm。
10.浸泡的时间为5~60min,温度为20~80℃。
11.浸泡的时间为15min。
12.钝化液的浓度为5~30g l-1
、ph值为1~6。
13.ph值采用无机酸来调节。
14.无机酸为盐酸、硝酸、硫酸、磷酸中的一种或几种。
15.上述化学钝化层保护的金属锌负极用于装配水系锌离子电池。
16.针对目前水系锌离子电池锌负极存在的问题,发明人设计制作了一种化学钝化层保护的金属锌负极,化学钝化层是通过化学钝化法在锌金属负极表面原位生成;化学钝化法所用钝化液的活性成分为钒酸盐、硅酸盐、钛酸盐中的一种或几种,溶剂为水。发明人还建立了相应制备方法。该法通过简单溶液浸泡的方法,在锌金属负极表面原位生成一层与锌基底紧密结合的钝化层。据此,发明人还研制了相应水系锌离子电池,由于钝化层分布均匀,可以有效地隔绝水和氧气,具有防腐蚀的特性,抑制锌负极在充放电循环中的析氢副反应;同时,锌负极能够诱导锌的均匀沉积,抑制枝晶的生长,显著提升锌负极的循环性能,提高锌负极的循环稳定性。总之,本发明锌金属负极的生产工艺简单、原料成本低廉,所得电池产品效果良好,适合于大规模生产。
附图说明
17.图1是实施例1中修饰锌负极的sem图。
18.图2是实施例2中修饰锌负极的sem图。
19.图3是实施例3中修饰锌负极的sem图。
20.图4是应用实施例1修饰锌负极装配的锌|锌对称电池在电流密度是1ma cm-2
,沉积面容量是1mah cm-2
时的时间-电压曲线。
21.图5是应用实施例2修饰锌负极装配的锌|锌对称电池在电流密度是1ma cm-2
,沉积面容量是1mah cm-2
时的时间-电压曲线。
22.图6是应用实施例3修饰锌负极装配的锌|锌对称电池在电流密度是1ma cm-2
,沉积面容量是1mah cm-2
时的时间-电压曲线。
23.图7是普通锌负极循环后的sem图。
24.图8是实施例2中修饰锌负极循环后的sem图。
25.图9是实施例2中修饰锌负极与普通锌负极在浓度是2mol l-1
的znso4溶液中的lsv曲线。
具体实施方式
26.实施例1
27.1)将商业锌箔(10
×
10cm,100μm)依次用去离子水和无水乙醇各超声清洗15分钟,清洗完毕后置于真空干燥箱中60℃真空干燥。
28.2)称取10g nasio3,加入500ml去离子水,在温度为40℃下水浴搅拌30min使其充分溶解,通过滴加1mol l-1
hno3调节钝化液ph值,使其ph值为3;
29.3)将干燥好的锌箔置于在钝化液中,维持水浴温度为40℃,浸泡5min后取出,分别用去离子水与无水乙醇清洗锌箔表面,清洗完毕后置于真空干燥箱中60℃真空干燥。
30.4)将干燥所得修饰锌箔在切片机上冲孔为直径12mm的电极圆片,组装锌|锌对称电池,在电流密度为1ma
·
cm-2
,沉积面容量为1mah
·
cm-2
的条件下进行循环充放电测试。其中,采用的电解液为2mol
·
l-1
的znso4溶液,隔膜为玻璃纤维隔膜。
31.如图1所示,本实施例所得修饰锌负极中可以清楚看到钝化层的存在,但由于浸泡时间较短的原因,该钝化层未能完全覆盖基底锌的表面,仍有大部分锌基底暴露在外。
32.如图4所示,由于钝化层的存在,本实施例所得修饰锌负极的循环稳定性得到一定程度的提高,但由于钝化层未能完全覆盖锌负极表面,修饰锌负极组装的锌|锌对称电池在稳定运行400h后便发生了短路。
33.实施例2
34.其余条件均与实施例1相同,将锌箔的浸泡时间改为15min。
35.如图2所示,本实施例所得修饰锌负极随着浸泡时间一定程度的延长,钝化层变得连续,均匀,完全覆盖住了锌基底。
36.如图5所示,由于成膜质量的提高,本实施例所得修饰锌负极能够稳定运行1100h。
37.如图7和图8所示,本实施例中修饰锌负极循环后的sem图与普通锌负极循环后的sem图比较可知,相比于普通锌负极,由于成膜质量的提高,循环过后的锌负极没有枝晶产生,展现出平整,紧凑的表面。
38.如图9所示,由于涂层的存在,本实施例所得修饰锌负极的析氢电位相比于普通锌负极得到了提高,说明其抗腐蚀能力得到提高。
39.实施例3
40.其余条件均与实施例1相同,将锌箔的浸泡时间改为30min。
41.如图3所示,本实施例所得修饰锌负极由于成膜时间过长,部分钝化层开始积聚并发生脱落,暴露了其下的锌基底。
42.如图6所示,由于钝化层的脱落,本实施例所得修饰锌负极的循环寿命降低,在运行400h后便发生了短路。
43.综上所述,与现有技术相比,本发明的有益效果在于:
44.(1)本发明在金属锌负极表面原位构筑了一层化学钝化层,厚度均匀,膜层连续,能够有效地包覆锌负极,隔绝水和氧气,抑制析氢副反应的发生,提高电极耐蚀性;
45.(2)本发明采用的化学钝化方法可以通过控制钝化液的浓度、ph值、浸泡温度和浸泡时间控制钝化层的质量,该方法简单,可操作性强;
46.(3)该钝化层通过化学钝化的方法原位生长在锌负极表面,与锌基底的结合力强,在循环过程中不易脱落;
47.(4)该钝化层能够调节电极表面zn
2
的浓度,引导zn
2
均匀地沉积,极大地提高了锌负极的循环稳定性。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献