一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

暗场数字全息显微镜和相关联的量测方法与流程

2022-07-30 04:51:38 来源:中国专利 TAG:

暗场数字全息显微镜和相关联的量测方法
1.相关申请的交叉引用
2.本技术要求于2019年12月17日递交的欧洲申请19216970.4和于2020年4月1日递交的欧洲申请20167524.6的优先权,以及这些申请的全部内容通过引用而被合并入本文中。
技术领域
3.本发明涉及暗场数字全息显微术且特别涉及高速暗场数字全息显微术,以及涉及集成电路的制造中的量测应用。


背景技术:

4.光刻设备是被构造成将期望的图案施加至衬底上的机器。光刻设备可以用于(例如)集成电路(ic)制造中。光刻设备可以例如将图案形成装置(例如,掩模)处的图案(通常也称为“设计布局”或“设计”)投影至设置于衬底(例如,晶片)上的辐射敏感材料(抗蚀剂)层上。
5.为了将图案投影至衬底上,光刻设备可以使用电磁辐射。这种辐射的波长确定可以在衬底上形成的特征的最小大小。当前使用的典型波长是365nm(i线)、248nm、193nm和13.5nm。相比于使用例如具有193nm的波长的辐射的光刻设备,使用具有介于4nm至20nm的范围内的波长(例如6.7nm或13.5nm)的极紫外(euv)辐射的光刻设备可以用于在衬底上形成较小特征。
6.低k1光刻可以用以处理尺寸小于光刻设备的典型分辨率限值的特征。在这样的过程中,可以将分辨率公式表达为cd=k1×
λ/na,其中λ是所使用的辐射的波长,na是光刻设备中的投影光学器件的数值孔径,cd是“临界尺寸”(通常是所印制的最小特征大小,但在这种情况下是半间距)且k1是经验分辨率因子。通常,k1越小,则越难以在衬底上再现类似于由电路设计者规划的形状和尺寸以便实现特定电功能性和性能的图案。为了克服这些困难,可以将复杂的精调谐步骤应用于光刻投影设备和/或设计布局。这些步骤包括例如但不限于na的优化、自定义照射方案、使用相移图案形成装置、设计布局的各种优化,诸如设计布局中的光学邻近效应校正(opc,有时也被称为“光学和过程校正”),或通常被定义为“分辨率增强技术”(ret)的其它方法。替代地,用于控制光刻设备的稳定性的严格控制回路可以用以改善在低k1下的图案的再现。
7.在制造过程期间,需要检查制造结构和/或测量制造结构的特性。适合的检查和量测设备是本领域中已知的。已知量测设备中的一种为散射仪和例如暗场散射仪。
8.专利申请公布us2016/0161864a1、专利申请公布us2010/0328655a1和专利申请公布us2006/0066855a1论述了光刻设备的实施例和散射仪的实施例。所引用的文献以引用的方式而被合并入本文中。
9.诸如上述量测装置之类的暗场显微镜且更一般地具有关于具有受限的照射和检测的角度范围的问题,这是由于要求在照射路径与检测路径之间共用总角度范围(对应于
角分辨光瞳内的区)。这种情形限制照射和/或检测中的有效数值孔径(na)。已通过实施有序采集方案来解决了照射和检测两者的增大的有效na的问题。因此,测量速度是不期望地低的。
10.期望提供一种具有至少所述检测光学器件的增大的有效na的暗场显微镜,以便通过捕获较大范围的衍射角上的衍射光来改善分辨率。


技术实现要素:

11.在本发明的第一方面中,提供一种被配置成确定结构的所关注的特性的暗场数字全息显微镜,所述暗场数字全息显微镜包括:照射装置,所述照射装置被配置成至少提供:第一束对,所述第一束对包括第一照射辐射束和第一参考辐射束;和第二束对,所述第二束对包括第二照射辐射束和第二参考辐射束;和成像分支,所述成像分支能够操作以至少检测由所述结构散射的第一散射辐射以及检测由所述结构散射的第二散射辐射,所述第一散射辐射由所述结构受所述第一照射辐射束照射而产生,所述第二散射辐射由所述结构受所述第二照射辐射束照射而产生,所述成像分支具有大于0.1的检测na;其中所述照射装置被配置使得:所述第一照射辐射束和所述第一参考辐射束是至少部分地时间相干的和至少部分地空间相干的;所述第二照射辐射束和所述第二参考辐射束是至少部分地时间相干的和至少部分地空间相干的;以及所述照射装置被配置成在所述第一束对与所述第二束对之间强加空间非相干性和/或时间非相干性。
12.在本发明的第二方面中,提供一种确定由光刻过程形成于衬底上的目标的所关注的特性的方法,所述方法包括:利用第一照射辐射束照射所述目标且捕获已从所述目标散射的所得到的第一散射辐射;利用第二照射辐射束照射所述目标且捕获已从所述目标散射的所得到的第二散射辐射;在包括所述第一照射束和所述参考束的第一束对与包括所述第二照射束和所述第二参考束的第二束对之间强加空间非相干性和/或时间非相干性,使得:所述第一束对的束是至少部分地空间相干的和至少部分地时间相干的,所述第二束对的束是至少部分地空间相干的和至少部分地时间相干的,以及所述第一束对的任何束对于所述第二束对的任何束是空间非相干的和/或时间非相干的;以及同时地生成由所述第一散射辐射与所述第一参考辐射束的干涉而产生的第一干涉图案、以及由所述第二散射辐射与所述第二参考束的干涉而产生的第二干涉图案。
附图说明
13.现将参考随附示意性附图仅借助于示例来描述本发明的实施例,在随附示意性附图中:
[0014]-图1描绘光刻设备的示意性概略图;
[0015]-图2描绘光刻单元的示意性概略图;
[0016]-图3描绘整体光刻的示意性表示,其表示用以优化半导体制造的三种关键技术之间的协作;
[0017]-图4描绘用作量测装置的散射测量设备的示意性概略图,所述散射测量设备可以包括根据本发明的实施例的暗场数字全息显微镜;
[0018]-图5描绘水平传感器设备的示意性概略图,所述水平传感器设备可以包括根据本
发明的实施例的暗场数字全息显微镜;
[0019]-图6描绘对准传感器设备的示意性概略图,所述对准传感器设备可以包括根据本发明的实施例的暗场数字全息显微镜;
[0020]-图7示意性地描绘以并行采集方案操作的基于衍射的暗场量测装置的示例;
[0021]-图8示意性地描绘以连续采集方案操作的基于衍射的暗场量测装置的不同示例;
[0022]-图9示意性地描绘以连续采集方案操作的暗场数字全息显微镜的示例;
[0023]-图10示意性地描绘根据实施例的以并行采集方案操作的暗场数字全息显微镜(df-dhm);
[0024]-图11示意性地描绘根据实施例的能够提供多个辐射束的照射装置;
[0025]-图12示意性地描绘根据不同实施例的能够提供多个辐射束的照射装置;
[0026]-图13描绘空间频域中的傅里叶变换图像;
[0027]-图14描绘根据另一不同实施例的用于确定复合场的振幅和相位的方法的流程图;和
[0028]-图15描绘用于控制暗场数字全息显微镜的计算机系统的框图。
具体实施方式
[0029]
在本文献中,术语“辐射”和“束”用以涵盖所有类型的电磁辐射,包括紫外辐射(例如,具有为365nm、248nm、193nm、157nm或126nm的波长)和极紫外辐射(euv,例如具有在约5nm至100nm的范围内的波长)。
[0030]
如本文中所采用的术语“掩模版”、“掩模”或“图案形成装置”可以广义地解释为是指可以用于向传入辐射束赋予被图案化的横截面的通用图案形成装置,被图案化的横截面对应于待在衬底的目标部分中产生的图案。术语“光阀”也可以用于这种情境下。除经典掩模(透射或反射、二元、相移、混合式等)以外,其它这样的图案形成装置的示例包括可编程反射镜阵列和可编程lcd阵列。
[0031]
图1示意性地描绘光刻设备la。光刻设备la包括:照射系统(也称为照射器)il,所述照射系统被配置成调节辐射束b(例如,uv辐射、duv辐射或euv辐射);掩模支撑件(例如,掩模台)mt,所述掩模支撑件被构造成支撑图案形成装置(例如,掩模)ma和连接至被配置成根据某些参数来准确地定位图案形成装置ma的第一定位器pm;衬底支撑件(例如,晶片台)wt,所述衬底支撑件被构造成保持衬底(例如,涂覆有抗蚀剂的晶片)w和连接至被配置成根据某些参数来准确地定位衬底支撑件的第二定位器pw;和投影系统(例如,折射型投影透镜系统)ps,所述投影系统被配置成将由图案形成装置ma赋予至辐射束b的图案投影至衬底w的目标部分c(例如,包括一个或更多个管芯)上。
[0032]
在操作中,照射系统il例如经由束传递系统bd从辐射源so接收辐射束。照射系统il可以包括用于引导、成形即整形和/或控制辐射的各种类型的光学部件,诸如折射型、反射型、磁性型、电磁型、静电型和/或其它类型的光学部件,或其任何组合。照射器il可以用以调节辐射束b,以在图案形成装置ma的平面处在其横截面中具有期望的空间和角强度分布。
[0033]
本文中所使用的术语“投影系统”ps应被广义地解释为涵盖适于所使用的曝光辐射或适于诸如浸没液体的使用或真空的使用之类的其它因素的各种类型的投影系统,包括
折射型、反射型、反射折射型、变形型、磁性型、电磁型和静电型光学系统,或其任何组合。可以认为本文中对术语“投影透镜”的任何使用都与更上位的术语“投影系统”ps同义。
[0034]
光刻设备la可以属于一种类型,其中衬底的至少一部分可以由具有相对高折射率的液体(例如,水)覆盖,以便填充投影系统ps与衬底w之间的空间
‑‑
这也称为浸没光刻术。在以引用的方式并入本文中的us6952253中给出关于浸没技术的更多信息。
[0035]
光刻设备la也可以属于具有两个或更多个衬底支撑件wt(又名“双平台”)的类型。在这样的“多平台”机器中,可以并行地使用衬底支撑件wt,和/或可以对位于衬底支撑件wt中的一个衬底支撑件上的衬底w进行准备衬底w的后续曝光的步骤,同时将另一衬底支撑件wt上的另一衬底w用于在另一衬底w上曝光图案。
[0036]
除衬底支撑件wt以外,光刻设备la也可以包括测量平台。测量平台被布置成保持传感器和/或清洁装置。传感器可以被布置成测量投影系统ps的性质或辐射束b的性质。测量平台可以保持多个传感器。清洁装置可以被布置成清洁光刻设备的部分,例如投影系统ps的部分或提供浸没液体的系统的部分。测量平台可以在衬底支撑件wt远离投影系统ps时在投影系统ps下方移动。
[0037]
在操作中,辐射束b入射到被保持在掩模支撑件mt上的图案形成装置(例如,掩模)ma上,以及通过存在于图案形成装置ma上的图案(设计布局)而被图案化。横穿掩模ma后,辐射束b通过投影系统ps,投影系统ps将束聚焦在衬底w的目标部分c上。借助于第二定位器pw和位置测量系统if,衬底支撑件wt可以准确地移动,例如,以便在聚焦和对准位置处在辐射束b的路径中定位不同的目标部分c。类似地,第一定位器pm和可能的另一位置传感器(其未在图1中被明确地描绘的)可以用以相对于辐射束b的路径来准确地定位图案形成装置ma。可以使用掩模对准标记m1、m2和衬底对准标记p1、p2来对准图案形成装置ma与衬底w。虽然如所图示的衬底对准标记p1、p2占据专用目标部分,但所述衬底对准标记可以位于目标部分之间的空间中。当衬底对准标记p1、p2位于目标部分c之间时被称为划线对准标记。
[0038]
如图2中示出,光刻设备la可以形成光刻单元lc(有时也被称为光刻元或(光刻)簇)的部分,所述光刻单元常常也包括用以对衬底w执行曝光前过程和曝光后过程的设备。常规地,这些包括沉积抗蚀剂层的旋涂器sc、显影曝光后的抗蚀剂的显影器de、例如用于调节衬底w的温度(例如用于调节抗蚀剂层中的溶剂)的激冷板ch和焙烤板bk。衬底输送装置或机器人ro从输入/输出端口i/o1、i/o2拾取衬底w、在不同过程设备之间移动衬底w且将衬底w传递至光刻设备la的进料台lb。光刻单元中通常也统称为轨道或涂覆显影系统的装置通常处于轨道控制单元或涂覆显影系统控制单元tcu的控制下,所述轨道控制单元tcu自身可以通过管理控制系统scs控制,所述管理控制系统scs也可以例如经由光刻控制单元lacu控制光刻设备la。
[0039]
为了正确且一致地曝光由光刻设备la曝光的衬底w,期望检查衬底以测量被图案化的结构的性质,诸如后续层之间的重叠误差、线厚度、临界尺寸(cd)等。出于这种目的,检查工具(未示出)可以被包括在光刻单元lc中。如果检测到误差,则可以对后续衬底的曝光或对待对衬底w执行的其它处理步骤例如进行调整,尤其在同一批量或批次的其它衬底w仍待曝光或处理之前进行检查的情况下。
[0040]
也可以被称为量测设备的检查设备用于确定衬底w的性质,以及尤其确定不同衬底w的性质如何变化或与同一衬底w的不同层相关的性质在不同层间如何变化。检查设备替
代地构造成识别衬底w上的缺陷,以及可以例如为光刻单元lc的部分,或可以集成至光刻设备la中,或甚至可以是单独的装置。检查设备可以测量关于潜像(曝光之后在抗蚀剂层中的图像)的性质,或关于半潜像(曝光后焙烤步骤peb之后在抗蚀剂层中的图像)的一个或更多个性质,或关于显影后的抗蚀剂图像(其中抗蚀剂的曝光部分或未曝光部分已被移除)的一个或更多个性质,或甚至关于蚀刻后的图像(在诸如蚀刻的图案转印步骤之后)的一个或更多个性质。
[0041]
通常,光刻设备la中的图案化过程为处理中的最重要步骤之一,所述步骤需要衬底w上的结构的尺寸设置和放置的高准确度。为了确保这种高准确度,可以将三个系统组合于图3中示意性地描绘的所谓“整体”控制环境中。这些系统中的一个系统是光刻设备la,所述光刻设备(虚拟地)连接至量测工具mt(第二系统)且连接至计算机系统cl(第三系统)。这种“整体”环境的关键在于优化这三个系统之间的协作以增强总体过程窗口且提供严格控制回路,以确保由光刻设备la执行的图案化保持在过程窗口内。过程窗口限定过程参数(例如剂量、焦距、重叠)的范围,在所述范围内,特定制造过程产生所限定的结果(例如,功能性半导体器件)
‑‑
通常在所述所限定的范围内,允许光刻过程或图案化过程中的过程参数发生变化。
[0042]
计算机系统cl可以使用待图案化的设计布局(的部分)以预测使用哪种分辨率增强技术,以及执行计算光刻模拟和计算以确定哪种掩模布局和光刻设备设置实现图案化过程的最大总体过程窗口(在图3中通过第一标尺sc1中的双箭头描绘)。通常,分辨率增强技术被布置成匹配光刻设备la的图案化可能性。计算机系统cl也可以用以检测光刻设备la当前正在过程窗口内的何处操作(例如,使用来自量测工具mt的输入)以预测是否可能存在由于例如次优处理的缺陷(由第二标尺sc2中指向“0”的箭头描绘在图3中)。
[0043]
量测工具mt可以将输入提供至计算机系统cl以实现准确模拟和预测,以及可以将反馈提供至光刻设备la以识别例如在光刻设备la的校准状态下的可能漂移(在图3中由第三标尺sc3中的多个箭头描绘)。
[0044]
在光刻过程中,期望频繁对所产生的结构进行测量,例如用于过程控制和验证。用以进行这样的测量的工具通常被称为量测工具mt。用于进行这些测量的不同类型量测工具mt是已知的,包括扫描电子显微镜或各种形式散射仪量测工具mt。散射仪是多功能仪器,其允许通过在光瞳或与散射仪的物镜的光瞳共轭的平面中具有传感器来测量光刻过程的参数(测量通常被称为基于光瞳的测量),或通过在像平面或与像平面共轭的平面中具有传感器来测量光刻过程的参数,在该情况下测量通常称为基于图像或场的测量。这些散射仪和相关测量技术在以全文引用而被并入本文中的专利申请us20100328655、us2011102753a1、us20120044470a、us20110249244、us20110026032或ep1,628,164a中被进一步描述。前述散射仪可以使用来自软x射线和可见光至近ir波长范围的光来测量光栅。
[0045]
在第一实施例中,散射仪mt是角分辨散射仪。在这样的散射仪中,重构方法可以应用于所测量信号以重构或计算光栅的性质。这种重构可例如由模拟散射辐射与目标结构的数学模型的交互且比较模拟结果与测量的那些结果引起。调整数学模型的参数,直到所模拟的交互产生与从真实目标观测到的衍射图案类似的衍射图案。
[0046]
在第二实施例中,散射仪mt是光谱散射仪mt。在这样的光谱散射仪mt中,由辐射源发射的辐射被引导至目标上且来自目标的反射或散射辐射被引导至光谱仪检测器上,所述
光谱仪检测器测量镜面反射辐射的光谱(即,作为波长的函数的强度的测量值)。根据这种数据,可以例如通过严格耦合波分析和非线性回归或通过与模拟光谱库比较来重构产生所检测的光谱的目标的结构或轮廓。
[0047]
在第三实施例中,散射仪mt是椭圆偏振测量散射仪。椭圆偏振测量散射仪允许通过针对每个偏振状态测量散射辐射来确定光刻过程的参数。这种量测设备通过在量测设备的照射区段中使用例如适当偏振滤波器来发射偏振光(诸如线偏振光、圆偏振光或椭圆偏振光)。适于量测设备的源也可提供偏振辐射。现有椭圆偏振测量散射仪的各实施例描述于以全文引用的方式并入本文中的美国专利申请11/451,599、11/708,678、12/256,780、12/486,449、12/920,968、12/922,587、13/000,229、13/033,135、13/533,110和13/891,410中。
[0048]
图4中描绘量测设备,诸如散射仪。所述量测设备包括将辐射投影至衬底w上的宽带(白光)辐射投影仪2。将反射或散射辐射传递至分光计检测器4,所述分光计检测器4测量镜面反射辐射的光谱6(即作为波长的函数的强度的测量值)。根据这种数据,可以由处理单元pu(例如,通过严格耦合波分析和非线性回归,或通过与如图3的底部处所示出的模拟光谱库的比较)来重构产生所检测的光谱的结构或轮廓8。通常,对于重构,结构的一般形式是已知的,以及根据用于制造结构的过程的知识来假定一些参数,从而仅留下结构的几个参数以待根据散射测量数据来确定。这样的散射仪可以被配置成正入射散射仪或斜入射散射仪。
[0049]
经由对量测目标的测量而得到的光刻参数的整体测量品质至少部分地由用以测量此光刻参数的测量选配方案来确定。术语“衬底测量选配方案”可以包括测量自身的一个或更多个参数、所测量的一个或更多个图案的一个或更多个参数,或两者。例如,如果用于衬底测量选配方案中的测量是基于衍射的光学测量,则测量的参数中的一个或更多个可以包括辐射的波长、辐射的偏振、辐射的相对于衬底的入射角、辐射的相对于衬底上的图案的取向等。用以选择测量选配方案的准则之一可例如是测量参数之一对于处理变化的灵敏度。在以全文引用方式并入本文中的美国专利申请us2016-0161863和已公布的美国专利申请us 2016/0370717a1中描述更多示例。
[0050]
用于ic制造中的另一类型的量测工具是形貌测量系统、水平传感器或高度传感器。这样的工具可以被集成于所述光刻设备中,用于测量衬底(或晶片)的顶部表面的形貌。可以根据指示作为所述衬底上的位置的函数的所述衬底的高度的这些测量结果而产生所述衬底的形貌图(也称为高度图)。这种高度图随后可以用以在将所述图案转印于所述衬底上期间校正所述衬底的位置,以便在所述衬底上的恰当聚焦位置中提供所述图案形成装置的空间图像。将理解,“高度”在这种情境下指代相对于衬底大致在平面外的尺寸(也称为z轴)。典型地,水平或高度传感器在固定部位(相对于其自身光学系统)处执行测量,以及所述衬底与水平或高度传感器的光学系统之间的相对运动引起跨越整个所述衬底的多个部位处的高度测量值。
[0051]
如本领域中已知的水平或高度传感器ls的示例示意性地在图5中示出,所述图仅图示操作原理。在这个示例中,所述水平传感器包括光学系统,所述光学系统包括投影单元lsp和检测单元lsd。所述投影单元lsp包括提供由投影单元lsp的投影光栅pgr赋予的辐射束lsb的辐射源lso。所述辐射源lso可以是例如窄带或宽带光源(诸如超连续光谱光源),偏振的或非偏振的、脉冲的或连续的光源(诸如偏振的或非偏振的激光束)。所述辐射源lso可
以包括具有不同颜色、或波长范围的多个辐射源,诸如多个led。所述水平传感器ls的辐射源lso不限于可见光辐射,但可以另外地或替代地涵盖uv和/或ir辐射和适于从衬底的表面反射的任何波长范围。
[0052]
所述投影光栅pgr是包括周期性结构的周期性光栅,所述周期性结构产生具有周期性变化强度的辐射束be1。具有周期性变化强度的辐射束be1被引导朝向衬底w上的测量部位mlo,所述辐射束be1具有介于0度与90度之间(通常介于70度与80度之间)的相对于与入射衬底部表面垂直的轴线(z轴)的入射角ang。在测量部位mlo处,经图案化的辐射束be1由所述衬底w反射(由箭头be2指示)且被引导朝向所述检测单元lsd。
[0053]
为确定所述测量部位mlo处的高度水平,所述水平传感器还包括检测系统,所述检测系统包括检测光栅dgr、检测器det和用于处理所述检测器det的输出信号的处理单元(未示出)。所述检测光栅dgr可以与所述投影光栅pgr相同。所述检测器det产生检测器输出信号,所述检测器输出信号指示所接收的光,例如指示所接收的光的强度(诸如光检测器),或表示所接收的强度的空间分布(诸如相机)。所述检测器det可以包括一个或更多个检测器类型的任何组合。
[0054]
借助于三角测量技术,可以确定所述测量部位mlo处的高度水平。所检测的高度水平通常与如由所述检测器det所测量的信号强度有关,所述信号强度具有尤其取决于(倾斜)入射角ang以及所述投影光栅pgr的设计的周期性。
[0055]
所述投影单元lsp和/或所述检测单元lsd还可以包括沿介于所述投影光栅pgr与所述检测光栅dgr之间的经图案化的辐射束的路径(未示出)的其他光学元件,诸如透镜和/或反射镜。
[0056]
在实施例中,可以省略所述检测光栅dgr,以及可以将所述检测器det放置于所述检测光栅dgr所位于的位置处。这种配置提供对于所述投影光栅pgr的图像的较为直接的检测。
[0057]
为了有效地覆盖所述衬底w的表面,水平传感器ls可以被配置成将测量束be1的阵列投影至所述衬底w的表面上,由此产生覆盖较大测量范围的测量区域mlo或斑的阵列。
[0058]
例如在以引用的方式而被合并的us7265364和us7646471中披露了通用类型的各种高度传感器。在以引用的方式而被合并的us2010233600a1中披露了使用uv辐射而不是可见或红外辐射的高度传感器。在以引用的方式而被合并的wo2016102127a1中,描述使用多元件检测器来检测和识别光栅图像的位置而无需检测光栅的紧凑型高度传感器。
[0059]
用于ic制造中的另一类型的量测工具是对准传感器。因此,所述光刻设备的性能的关键方面是相对于(由相同设备或不同光刻设备)布设于先前层中的特征恰当地且准确地放置所施加的图案的能力。为此目的,所述衬底具备一组或更多组标记或目标。每个标记是可以稍后使用位置传感器(典型地光学位置传感器)测量其位置的结构。所述位置传感器可以被称为“对准传感器”且标记可以被称为“对准标记”。
[0060]
光刻设备可以包括一个或更多个(例如,多个)对准传感器,可以由所述一个或更多个对准传感器准确地测量被设置在衬底上的对准标记的位置。对准(或位置)传感器可以使用光学现象(诸如衍射和干涉)以根据形成在所述衬底上的对准标记获得位置信息。用于当前光刻设备中的对准传感器的示例基于如us6961116中所描述的自参考干涉仪。已开发出所述位置传感器的各种增强和修改,例如如在us2015261097a1中所披露的。所有这些公
布的内容以引用的方式而被合并入本文中。
[0061]
图6是诸如(例如)在us6961116中所描述且以引用方式而被合并的已知对准传感器as的实施例的示意性框图。辐射源rso提供具有一个或更多个波长的辐射束rb,所述辐射束由转向光学器件转向至标记(诸如位于衬底w上的标记am)上而作为照射斑sp。在这个示例中,所述转向光学器件包括斑反射镜sm和物镜ol。照射所述标记am的照射斑sp的直径可以略小于所述标记自身的宽度。
[0062]
由所述对准标记am衍射的辐射(在这个示例中经由所述物镜ol)被准直成信息承载束ib。术语“衍射”旨在包括来自所述标记的零阶衍射(其可以被称为反射)。例如上文所提及的us6961116中所披露的类型的自参考干涉仪sri以自身与束ib干涉,其后所述束由光检测器pd接收。可以包括额外的光学器件(未示出)以在由所述辐射源rso产生多于一个波长的情况下提供多个单独的束。所述光检测器可以是单个元件,或其根据需要可以包括一定数目的像素。所述光检测器可以包括传感器阵列。
[0063]
在这个示例中包括所述斑反射镜sm的所述转向光学器件也可以用以阻挡从所述标记反射的零阶辐射,以使得所述信息承载束ib仅包括来自所述标记am的较高阶衍射辐射(这对于测量不是必需的,但改善了信噪比)。
[0064]
强度信号si被供应至处理单元pu。通过块sri中的光学处理与单元pu中的计算处理的组合,输出了所述衬底上的相对于参考框架的x位置和y位置的值。
[0065]
所图示的类型的单个测量仅将所述标记的位置固定于与所述标记的一个间距相对应的某一范围内。结合这种测量来使用较粗略的测量技术,以识别正弦波的哪个周期是包含所标记的位置的周期。可以在不同波长下重复以较粗略的和/或较精细的水平进行的同一过程,以用于提高准确度和/或用于对所述标记的稳健的即鲁棒的检测,而与制成所述标记的材料、和供所述标记被设置在上方和/或下方的材料无关。可以用光学的方式复用和解复用所述波长以便同时地处理所述波长,和/或可以通过分时或分频而复用所述波长。
[0066]
在这个示例中,对准传感器和斑sp保持静止,而所述衬底w运动。因此,所述对准传感器可以用刚性的方式且准确地安装至参考框架,而同时在与衬底w的运动方向相反的方向上有效地扫描所述标记am。在这样的运动中,通过将所述衬底w安装在衬底支撑件上且通过衬底定位系统控制所述衬底支撑件的运动来控制所述衬底w。衬底支撑件位置传感器(例如,干涉仪)测量所述衬底支撑件的位置(未示出)。在实施例中,一个或更多个(对准)标记被设置在所述衬底支撑件上。对被设置于所述衬底支撑件上的所述标记的位置的测量允许校准如由所述位置传感器所确定的所述衬底支撑件的位置(例如,相对于所述对准系统被连接至的框架)。对被设置于所述衬底上的所述对准标记的位置的测量允许确定所述衬底的相对于所述衬底支撑件的位置。
[0067]
为了监控所述光刻过程,测量经图案化的衬底的参数。参数可以包括例如被形成在所述经图案化的衬底中或上的连续层之间的重叠误差。可以对产品衬底和/或对专用量测目标执行这种测量。存在用于进行在所述光刻过程中所形成的显微结构的测量的各种技术,包括使用扫描电子显微镜和各种专门工具。快速且非侵入性形式的专用检查工具是散射仪,在所述散射仪中将辐射束引导至所述衬底的表面上的目标上,以及测量散射或反射束的性质。
[0068]
已知散射仪的示例包括us2006033921a1和us2010201963a1中所描述的类型的角
分辨散射仪。由这样的散射仪所使用的目标是相对大的(例如,40μm乘40μm)光栅,以及测量束产生比光栅更小的斑(即,所述光栅是欠填充的)。除了通过重构进行对特征形状的测量以外,也可以使用这种设备来测量基于衍射的重叠,如公开专利申请us2006066855a1中所描述的。使用衍射阶的暗场成像进行的基于衍射的重叠量测能够实现对较小目标的重叠测量。可以在国际专利申请wo 2009/078708和wo 2009/106279中找到暗场成像量测的示例,所述国际专利申请的文献的全文由此以引用的方式而被合并。已公开专利公布us20110027704a、us20110043791a、us2011102753a1、us20120044470a、us20120123581a、us20130258310a、us20130271740a和wo2013178422a1中已描述所述技术的进一步开发。这些目标可以小于照射斑且可以由晶片上的产品结构围绕。可以使用复合光栅目标来在一个图像中测量多个光栅。所有这些申请的内容也以引用的方式而被合并入本文中。
[0069]
诸如上述量测装置之类的暗场显微镜且更一般地具有关于针对由目标所衍射的光的检测和/或对目标的照射的有限角度范围的问题,这是因为可以要求在照射路径与检测路径之间共用总角度范围(对应于在角分辨光瞳内的区)。这种情形限制照射和检测中的有效na。
[0070]
在基于衍射的暗场量测装置中,辐射束被引导至量测目标上,以及所述散射辐射的一个或更多个性质被测量,以便确定所述目标的所关注的性质。所述散射辐射的性质可以包括例如处于(例如,根据波长)单个散射角处的强度、或根据散射角的处于一个或更多个波长的强度。
[0071]
暗场量测中对于目标的测量可以包括例如测量第1衍射阶的第一强度i
1
和第-1衍射阶的第二强度(i-1
),以及计算强度不对称性(a=i
1-i-1
),所述强度不对称性指示所述目标上的不对称性。所述量测目标可以包括一个或更多个光栅结构,可以从这样的强度不对称性测量值推断出来自所述一个或更多个光栅结构的所关注的参数,例如,所述目标被设计成使得所述目标中的不对称性随着所关注的参数发生变化。例如,在重叠量测中,目标可以包括由至少一对重叠子光栅所形成的至少一个复合光栅,所述对重叠子光栅在半导体器件的不同层中被图案化。所述目标的不对称性将因此取决于两个层的对准且因此取决于重叠。其它目标可以形成有基于在曝光期间所使用的聚焦设置以不同变化程度来曝光的结构;对其进行的测量使得所述聚焦设置能够被反向推断(再次经由强度不对称性)。
[0072]
图7和图8示意性地图示基于衍射的暗场量测装置的两个示例。请注意,为了简单起见,两个图仅示出部件中的足以用于描述两个装置的工作原理的目的的一些部件。
[0073]
如图7中所图示的,第一照射辐射束ib1可以从装置的一侧倾斜地入射到衬底wa的重叠目标上。基于光栅的重叠目标可以将第一照射束衍射成一定数目的衍射阶。因为所述装置被配置用于暗场成像,则所述零衍射阶可以由光学部件阻挡,或被配置成完全落在物镜ob的数值孔径外。至少一个非零衍射阶,例如正的第一衍射阶( 1
st df)可以由物镜ob收集。在物镜ob的光瞳平面处,第一楔状物wg1可以用以重新引导衍射辐射以沿循所需的束路径。最终,成像透镜可以用以将衍射阶(例如正的第一衍射阶( 1
st df))聚焦于图像传感器is上,使得第一图像im1形成于第一部位处。
[0074]
类似地,第二照射辐射束ib2可以从系统的对侧倾斜地入射至所述衬底wa的同一重叠目标ot上。所述第二照射束ib2的入射角可以与所述第一照射束ib1的入射角相同。至少一个非零衍射阶,例如负的第一衍射阶(-1
st df)可以由物镜ob收集,以及随后由第二楔
状物wg2重新引导。负的第一衍射阶(-1
st df)接着可以由成像透镜il聚焦于所述图像传感器is上,使得第二图像im2形成于第二部位处。
[0075]
以并行采集方案来操作图7的示例。由照射束ib1、ib2两者来同时照射所述重叠目标。相对应地,所述重叠目标的两个空间分离的图像im1、im2被同时采集。这样的并行采集方案允许快速测量速度且因此允许高吞吐量。然而,必须由两个衍射阶,例如所述正的第一衍射阶( 1
st df)和所述负的第一衍射阶(-1
st df)来共用所述物镜ob的光瞳平面。将光瞳划分成互斥的照射光瞳和检测光瞳的结果是,在照射na中以及在检测na中存在随之而来的减小。虽然存在照射na与检测na之间的折衷的某种灵活性,但最终不可能在单个光瞳内具有如通常期望般大的照射na、检测na两者。这种情形导致针对每个对应的照射束且针对所述正的第一衍射阶( 1
st df)和所述负的第一衍射阶(-1
st df)束的有限角度范围,这种情形继而限制可允许的光栅间距大小和/或照射波长的范围,以及因此强加用于设计这样的量测系统的严格要求。
[0076]
图8示意地图示另一示例性暗场量测装置(或图7的装置的不同操作模式)。主要差异是,图8的量测装置以连续采集方案来操作。在连续采集方案中,仅由一个照射束在任何时刻从一个方向照射量测目标ot,以及由此在任何时间点处形成和采集所述目标的仅一个图像。参考图8,在第一时间实例t=t1处,第一照射束ib1可以被接通,以及从所述量测装置的一侧倾斜地引导至衬底wa的重叠目标ot上。在与重叠目标的光栅的相互作用之后,可以产生多个衍射阶。非零衍射阶中的至少一个,例如所述正的第一衍射阶( 1
st df)可以由物镜ob收集,以及随后由成像透镜il聚焦于图像传感器is上。
[0077]
在所述重叠光栅的第一图像im1被采集之后,在第二时间实例t=t2处,第一照射束ib1被关断,以及第二照射束ib2被接通。第二照射辐射束ib2可以从量测装置的相对侧直接倾斜地入射至同一重叠目标上。所产生的衍射阶中的至少一个衍射阶,例如所述负的第一衍射阶(-1
st df)可以由物镜ob收集,以及随后被聚焦于所述图像传感器is上以形成所述重叠目标的第二图像im2。应注意,图像im1和im2两者可以被形成在所述图像传感器上的共同位置处。
[0078]
利用这种时间复用采集方案,使得物镜ob的完整na可用于检测所述衍射束即所述正的第一衍射阶( 1
st df)和所述负的第一衍射阶(-1
st df)。物镜na的无限制意味着有关设计参数(诸如光栅间距大小、照射波长和照射角)的更广范围被允许,以及可以获得系统设计中的较大灵活性。然而,需要多个图像采集的事实意味着,测量速度被减小且因此影响系统吞吐量。
[0079]
此外,(例如)重叠误差的准确确定依赖于对两个所采集图像im1、im2之间的最小相对强度差(或强度不对称性)的准确测量。典型的相对强度差是所采集的图像(例如im1或im2)中的一个图像的强度的约10-4
量级。这种小的强度差可以易于通过照射辐射的任何强度和/或波长波动而显得相形见绌。因此,需要照射束以在连续图像采集期间保持稳定。这种情形可以通过使用提供期望的强度和波长稳定性的稳定光源来实现。替代地,另外的硬件和软件,诸如例如强度/波长监控装置和对应的反馈控制回路应被合并入所述量测装置中,使得照射束的强度和/或波长波动被主动地监控以及受良好补偿。在一些情况下,强度监控装置可以用以主动地追踪照射束的强度。从强度监控装置所产生的信号可以用以(例如,以电子方式)校正照射束的强度波动。所有这些方案向整个系统增加复杂度和成本。
[0080]
可以通过使用数字全息显微法(特别是暗场数字全息显微法)来解决前述问题中的一些或所有问题。数字全息显微法是将全息与显微法组合的成像技术。不同于记录物体的投影图像的其它显微法方法,数字全息显微法记录由通过对三维(3d)物体进行照射所获得的物体辐射与参考辐射之间的干涉所形成的全息图,所述参考辐射与所述物体辐射相干。可以使用例如电荷耦合装置(ccd)或互补金属氧化物半导体(cmos)来捕获图像。因为所述物体辐射是从所述物体散射的辐射,则由所述物体来调制或整形所述物体辐射的波前。所述散射辐射可以包括反射辐射、衍射辐射或透射辐射。因此,物体辐射的波前承载受辐射物体的信息,例如3d形状信息。基于全息图的所捕获的图像,则可以通过使用计算机重构算法来以数值方式重构物体的图像。基于全息图的量测优于基于强度的量测的重要优势如在图7和图8中所描述般在于,基于全息图的量测允许获得物体的强度信息和相位信息两者。利用另外的相位信息,则能够以更好的准确性来确定物体的特性。
[0081]
以引用方式而被合并入本文中的国际专利申请wo2019197117a1披露了基于暗场数字全息显微镜(df-dhm)来确定制造于衬底上的结构的特性(例如重叠)的方法和量测设备。出于描述的目的,在图9中复制了国际专利申请wo2019197117a1的图3。图9示意地图示被专门调适用于光刻过程量测中的所披露的df-dhm。
[0082]
与示出于图7和图8中的前述示例相比,图9中的df-dhm还包括参考光学单元16、18,所述参考光学单元用以提供另外的两个参考辐射束51、52(所述参考辐射)。这样的两个参考辐射束51、52分别与散射辐射束31、32(所述物体辐射)的两个对应部分41、42配对。两个散射参考束对被用以连续地形成两个干涉图案。借助于调整每个束对内的两个散射参考束之间的相对光学路径-长度差(opd)来提供相干控制。然而,相干控制不可用于两个束对之间。
[0083]
由于使用单个光源和不充分的相干控制,则所有四个辐射束,即散射辐射31的第一部分41、第一参考辐射51、散射辐射32的第二部分42、以及第二参考辐射52是相互相干的。如果这四个相互相干辐射束被允许同时到达传感器6的同一位置,即以并行采集方案来操作,则包括有所需的包含信息的图案以及不期望的促成伪影的图案在内的多个图案将会彼此交叠。可以由例如第一散射辐射31的部分41与第二散射辐射32的部分42之间的干涉来形成不期望的干涉图案。由于完全分离叠加的干涉图案是在技术上具有挑战性的且耗时的,因此对于这种布置,并行采集是不切实际的。
[0084]
类似于图8的示例,在图9的示例中使用连续采集方案允许物镜的完整na可以用于照射和检测两者。然而,系统由于连续采集而遭受低测量速度的相同问题。因此,期望具有能够执行并行采集以使得可以同时获得高测量速度和高设计灵活性的df-dhm。
[0085]
图10示意地图示根据实施例的暗场数字全息显微镜(df-dhm)1000的成像分支。暗场数字全息显微镜(df-dhm)包括成像分支和照射分支。在这种实施例中,由两个照射辐射束,即,第一照射辐射束1010和第二照射辐射束1020来照射包括位于衬底1050上的结构的量测目标1060。在实施例中,这样的两个照射束1010、1020可以同时地照射所述量测目标1060。
[0086]
在实施例中,所述第一照射束1010可以相对于光轴oa在第一方向上以第一入射角入射到所述量测目标1060上。第二照射束1020可以相对于光轴oa在第二方向上以第二入射角入射到所述量测目标1060上。所述第一照射束1010的第一入射角和所述第二照射束1020
的第二入射角可以大致相同。每个照射束的入射角可以例如在70度至90度的范围内,在50度与90度的范围内,在30度至90度的范围内,在10度至90度的范围内。对所述量测目标1060的照射可能导致辐射从所述目标散射。在实施例中,所述第一照射束1010可以以对应于第一方向的第一方位角入射到量测目标1060上。第二照射束1020可以以对应于第二方向的第二方位角入射到量测目标1060上。所述第一照射束1010的第一方位角和所述第二照射束1020的第二方位角可以是不同的;例如间隔开180度的相对置角度即相反角度。
[0087]
取决于所述量测目标1060的结构,所述散射辐射可以包括反射辐射、衍射辐射或透射辐射。在这种实施例中,所述量测目标可以是基于衍射的重叠目标;以及每个照射束可以对应于包括至少一个非零衍射阶的散射束。每个散射束承载受照射的量测目标的信息。例如,第一照射束1010可以对应于包括所述正的第一衍射阶( 1
st df)的第一散射束1011;第二照射束1020可以对应于包括所述负的第一衍射阶(-1
st df)的第二散射束1021。零衍射阶和其它不期望的衍射阶可以要么由束阻挡元件(未示出)阻挡,或者被配置成完全落在物镜1070的na之外。因此,可以用暗场模式来操作df-dhm。应注意,在一些实施例中,一个或更多个光学元件(例如透镜组合)可以用以实现物镜1070的相同光学效果。
[0088]
由于量测目标1060的较小大小,则成像分支可以具有净的正放大率(例如,大于10
×
(即大于10倍)、大于20
×
(即大于20倍),或大于或等于30
×
(即大于或等于30倍))。
[0089]
散射束1011、1021两者可以由物镜1070收集,以及随后被重新聚焦至图像传感器1080上。应注意,所述成像分支的物镜1070可以是仅用于所述检测路径(如所示出)中且不用于照射(例如,将照射聚焦于所述量测目标1060上)的成像物镜。如此,照射并不必需穿过与散射光所穿过物镜相同的物镜。在其它实施例中,可以在成像分支与照射分支之间共用物镜以收集所述散射辐射且将照射聚焦于所述量测目标1060上。
[0090]
期望的是收集尽可能多的散射/衍射光,以及如此则高na检测路径或成像分支是期望的。例如,在这方面,高na可以大于0.1、大于0.2、大于0.3或大于0.4。在其它实施例中,高na可以指代0.8或更大的na。
[0091]
物镜1070可以包括多个透镜,和/或df-dhm 1000可以包括具有两个或更多个透镜(例如与图9的示例性df-dhg类似的成像透镜和物镜)的透镜系统,由此限定物镜的介于两个透镜之间的光瞳平面以及位于所述成像透镜的焦点处的像平面。在这种实施例中,第一散射束1011的一部分1012和第二散射束1021的一部分1022同时地入射到图像传感器1080的共同位置处。同时,两种参考辐射束,即第一参考束1030和第二参考束1040入射到所述图像传感器1080的同一位置上。这样的四个束可以被分组成两对散射辐射和参考辐射。例如,第一散射参考束对可以包括第一散射束1011的部分1012和第一参考束1030。同样,第二散射参考束对的部分1022可以包括第二散射束1021和第二参考束1040。这两个散射参考束对可以随后形成两个干涉图案(全息图像),这两个干涉图案至少部分地在空间域中交叠。
[0092]
在实施例中,为了分离两个至少部分地空间交叠的干涉图案(例如,空间频域中),所述第一参考束1030可以具有相对于光轴oa的第一入射角,以及所述第二参考束1040可以具有相对于光轴oa的第二入射角;第一入射角和第二入射是不同的。替代地或另外,第一参考束1030可以具有相对于光轴oa的第一方位角,以及第二参考束1040可以具有相对于光轴oa的第二方位角;第一方位角与第二方位角是不同的。
[0093]
为了产生干涉图案,每个散射参考束对的两个束应是至少部分地彼此相干的以达
到足以形成干涉图案的程度。应注意,每个散射辐射束可以具有相对于其对应的照射辐射的相位偏移。例如,在图像传感器1080的像平面处,这样的相位偏移可以包括由于从量测目标1060至图像传感器1080的光学路径长度即光程(opd)且通过与所述量测目标的相互作用而产生的贡献。如上文所描述,有必要控制所述第一散射参考束对与所述第二散射参考束对之间的相干性,使得一对束的每个束与另一对的任何束非是相干的。换句话说,干涉应仅发生于同一束对内的束之间且在不同束对之间被抑制。以这种方式,仅期望的干涉图案(例如,由相应的散射参考束对所形成的两个干涉图案)以叠加方式被形成在图像传感器1080上,因而避免了分离或移除不期望的干涉图案的问题。
[0094]
更特别地,同一束对内的束之间的相干性应是时间的和空间的相干性。这些束之间的相互相干函数取决于空间和时间。典型的逼近或近似是对这种函数进行因式分解成空间分量和时间分量。然而,当束正在按照一些角度行进(例如,离轴系统中)时,这种逼近不再是理想的。应存在充分的相干性,使得物体束和参考束在相机上干涉。对于时间和空间相干的简化,这种情形意味着在相机上,每个点具有与源相距的相同光程即相同光学路径长度(例如,在“时间相干性”长度内)。对于受限空间相干性,参考束的每个点也应映射至所述物体束的对应点(这种情形可以意味着物体和参考臂应在相机上得到分束器的图像)。在使用单模光纤的情形下,空间相干性可以是非常大的。
[0095]
除了与(同一束对的)参考束在空间上和在时间上相干之外,每个对象束在重叠目标的完整区域上可以是平滑的(例如,被均一地照射)。
[0096]
在实施例中,可以由包括照射装置的照射分支来提供用于图10的df-dhm中的两个照射束1010、1020和两个参考束1030、1040。图11示意地图示根据实施例的照射装置。如图11中示出,光源1110可以发射至少部分地相干的主辐射束1111。主辐射束1111可以包括范围介于软x射线和可见至近ir的波长。主辐射束1111可以由第一分束器1120拆分成两个束,即第一辐射束1112和第二辐射束1114。在这种实施例中,第一分束器1120可以包括50/50拆分比率,以及由此第一辐射束1112和第二辐射束1114可以具有大致相同的功率水平。随后,两个束1112、1114可以分别沿循两个不同束路径。
[0097]
在束路径1112、1114中的一个(在这里所示出的示例中为第二束路径,虽然这在很大程度上是任意的)中,第二辐射束1114(或第一束1112)可以经受延迟。在这里所示出的示例中,经由非相干延迟布置(诸如包括棱镜1132的可调光学延迟线ad1)来实施所述延迟。可调光学延迟线ad1、或更通常地所述延迟可以用以控制第一束路径中的束与第二束路径中的束之间的opd(或相干性)。可以进行这种操作以确保这些束不是相干的,使得第一束对不与第二束对干涉。替代这种延迟线,可能有意地在束路径1112、1114之间引入“硬”路径差。
[0098]
在实施例中,可调光学延迟线ad1可以是可操作的,使得两个路径之间的时间延迟可以被维持得尽可能短,以便在两个束中具有类似强度波动,而同时仍强加非相干性。
[0099]
在第一束路径中,第一辐射束1112可以进入第二分束器1122,所述第二分束器可以将第一辐射束1112拆分成另外两个束,即第一照射束1010和第一参考束1030。取决于所述第二分束器1122的拆分比率,第一照射束1010和第一参考束1030可以具有不同功率。第二分束器1122的拆分比可以是90/10、80/20、70/30、60/40或50/50。在这种实施例中,第一照射束1010的功率可以高于第一参考束1030的功率。两个束1010、1030中的每个束可以随后由反射元件1140反射入光学延迟线。固定的或可调的每个光学延迟线可以包括反射型光
学元件以溯源反射即逆向反射(retro-reflect)入射辐射。反射型光学元件可以是直角棱镜1130或1131。在一些实施例中,反射型光学元件可以是一对反射镜。在这种实施例中,第一照射束1010可以穿过包括棱镜1131的固定光学延迟线,同时第一参考束1030可以穿过包括棱镜1130的可调光学延迟线ad2。在不同实施例中,第一照射束1010可以穿过包括棱镜1130的可调光学延迟线,而第一参考束1030可以穿过包括棱镜1131的固定光学延迟线。在这两个情境中的任一个中,两个束1010、1030之间的相对opd可以是可调的。两个束1010、1030形成第一对输出束。应注意,这仅是用于启用束1010、1030之间的opd的调整的可调路径长度布置的一个示例。可以替代地使用用于实现这种情形的任何其它合适的布置。
[0100]
第二辐射束1114可以由第三分束器1124拆分成两个束,例如第二照射束1020和第二参考束1040。取决于第三分束器1124的拆分比率,这两个束可以具有不同功率。在这种实施例中,第三分束器1124的拆分比率可以与第二分束器1122的拆分比率相同,使得第一照射束1010和第二照射束1020可以具有大致相同的功率水平,以及第一参考束1020和第二参考束1040可以具有大致相同的功率水平。在这种实施例中,第二照射束1020的功率可以高于第二参考束1040的功率。两个束1020、1040随后可以分别由反射元件1142反射入两个光学延迟线,一个光学延迟线是固定的且另一光学延迟线是可调的。在这种实施例中,第二照射束1020可以穿过包括棱镜1133的固定光学延迟线,而第二参考束1040可以穿过包括棱镜1134的光学延迟线ad3。在不同实施例中,第二照射束1020可以穿过包括1134的可调光学延迟线,而第二参考束1040可以穿过包括1133的固定光学延迟线。在这两个情境中的任一个情境中,两个束1020、1040之间的相对opd可以是可调的。两个束1020、1040形成第二对输出束。应注意,这仅是可以用于启用对于束1020、1040之间的光学路径长度的调整的可调路径长度布置的一个示例。可以替代地使用用于实现这种情形的任何其它合适的布置。
[0101]
在离开/退出它们的相应的光学延迟线之后,四个辐射束,即第一照射束1010、第一参考束1030、第二照射束1020和第二参考束1040可以离开/退出照射装置1100,以及可以在df-dhm中(例如图10的df-dhm的对应束中)用作照射束和参考束。在实施例中,在离开/退出照射装置1100之前,这些四个束中的一些或全部可以分别传递穿过另外的光学元件(诸如束整形元件、光学控向反射镜、光学偏振元件和光学功率控制元件),使得可以独立地控制每个束的束参数、传播方向、偏振状态和/或光学功率。束参数可以包括束形状、束直径和、束发散度。在实施例中,第一对输出束和第二对输出束中任一对的两个束可以具有不同功率水平。第一对输出束的一个束可以具有与第二对输出束的一个束大致相同的功率水平。
[0102]
从图11的照射器退出/离开的辐射束的传播方向确定束的相对于图10的df-dhm的光轴oa的入射角和方位角。在图10的顶部上示出笛卡尔参考坐标系的方向。束的入射角指代在x-z平面中的介于显微镜的光轴(虚线)或z轴与入射束或其在x-z平面中的投影之间的角度。束的方位角指代介于x轴与入射束或其在x-y平面中的投影之间的角度。
[0103]
对应地,可以使用光学延迟线ad2来调整第一照射束1010与第一参考束1030之间的相对opd,而同时可以使用第三光学延迟线ad3来调整第二照射束1020与第二参考束1040之间的相对opd。只要相对opd引发的相位延迟足以覆盖每个照射辐射束与其相关联的散射辐射束之间的相位偏移,则可以独立地控制或优化每个散射束辐射(例如第一散射束1011或第二散射束1021)与它的配对参考束辐射(例如第一参考束1030或第二参考束1040)之间
的相干性。此外,可调光学延迟线ad1可以用以有意地添加两个照射参考束对或两个散射参考束对(例如,包括第一散射束1011的部分1012与第一参考束1030的第一散射参考束对;包括第二散射束1021的部分1022与第二参考束1040的第二散射参考束对)之间的充分相位延迟,使得一个束对的任何束与其它束对中的任何束为非相干的。以这种方式,由图像传感器1080上的两个散射参考束对来分别形成仅两个所需的干涉图案。
[0104]
图12示意地图示根据不同实施例的照射装置1200。图12的照射装置类似于图11的照射装置。主要差异是,在图12的实施例中,三个分束器1220、1222、1224与图11的实施例中的它们的相应的对应物相比可以具有不同拆分比率。使用不同拆分比率的结果可以是,从装置输出的四个辐射束1010、1020、1030、1040中的一些或全部与它们的在图11的实施例中的相应的定位对应物相比可以具有不同功率。例如,在这种实施例中,从顶部分支(从分束器1222)输出的两个束1010、1020具有相互类似的功率,以及类似地对于从底部分支(从分束器1224)输出的两个束1030、1040具有相互类似的功率,其中成对束1010、1020的功率不同于成对1030、1040的功率。如此,在这种实施例中,第一照射束1010和第二照射束1020可以经由分束器1222被输出为一对,以及第一参考束1030和第二参考束1040可以经由分束器1224被输出为一对。
[0105]
如此,图11示出一种布置,其中第一输出分支(经由分束器1122)包括第一束对分支(例如, 1衍射阶照射和 1参考束),以及第二输出分支(经由分束器1124)包括第二束对分支(例如,-1衍射阶照射和-1参考束)。相比而言,在图12中,第一输出分支是照射分支(例如, 1衍射阶和1阶衍射照射束)且第二输出分支是参考分支(例如, 1衍射阶和1阶衍射参考束)。
[0106]
不管不同束组合,三个可调光学延迟线ad1

、ad2

、ad3

可以提供对所有四个束的充分相干(或opd)控制,使得仅所需的干涉图案被形成于图10的图像传感器1080上。在实施例中,参考臂的延迟线ad3

与照射臂的延迟线ad2

相比可以是显著较长的(数十mm)。
[0107]
在图11的布置中,因此,可调光学延迟线ad1可以实施非相干延迟布置,其可操作以对于第一分支或第二分支中的一个分支施加相对于第一分支或第二分支中的另一个分支的延迟;以及可调光学延迟线ad2、ad3实施用于每个束对内的束的相干匹配的相干匹配装置。相比而言,在图12的布置中,可以经由可调光学延迟线ad1与可调光学延迟线ad2、ad3之间的共同优化来一起实施相干匹配装置和非相干延迟布置。应注意,在后一情况下,如果棱镜1131而不是棱镜1130是可调的,或如果棱镜1133而不是棱镜1134是可调的,则优化将是不同的。
[0108]
由所述量测设备的处理单元1090确定所述量测目标1060的结构的特性。所述处理单元1090使用由所述图像传感器1080记录的第一干涉图案和第二干涉图案来确定所述量测目标1060的结构的特性。在实施例中,处理单元1090被联接至图像传感器1080以接收信号,所述信号包括关于由传感器1090所记录的第一干涉图案和第二干涉图案的信息。在实施例中,处理单元1090校正df-dhm 1000的物镜1070的像差。在实施例中,利用辐射同时地及时(并行)执行对第一干涉图案和第二干涉图案的测量,以及处理单元1090被配置成同时地及时(并行)使用所述测量以确定量测目标1060在衬底1050上的结构的特性。
[0109]
在实施例中,处理单元1090使用第一干涉图案来计算与第一散射辐射1011的部分1012相关联的辐射在传感器1080处的复合场(“复合”这里意味着振幅信息与相位信息两者
存在)。类似地,处理单元1090使用第二干涉图案来计算与第二散射辐射1021的部分1022相关联的在传感器1080处的复合场。根据通过将参考辐射与从物体散射的辐射发生干涉而形成的干涉图案而进行的对复合辐射场的这种计算统称为全息。可以在例如由此以引用的方式而被合并的us2016/0061750a1中找到关于如何在用于光刻的量测的情境中执行这样的计算的进一步细节。
[0110]
如果df-dhm 1000的光学特性是已知的,则可能的是以数学方式和计算方式反向传播所计算的复合场中的每个复合场以获得在量测目标1060处的第一散射辐射1011和第二散射辐射1021的对应复合场。
[0111]
已知所述复合场提供额外的信息,用于相对于替代模式确定所述衬底1050上的量测目标1060的特性,在所述替代模式中,相位和振幅信息两者都是不可用的。例如,在2018年2月27日提交的欧洲专利申请ep18158745.2中,已披露了如何使用散射辐射的相位信息来确定在所述衬底上的不同层的结构之间的重叠误差(所述结构的待确定的特性的示例)。欧洲专利申请ep18158745.2由此以引用的方式而被合并。
[0112]
在实施例中,通过比较第一干涉图案与第二干涉图案来确定量测目标1060的所述结构的特性。在实施例中,基于第一干涉图案与第二干涉图案之间的差来确定所述结构的特性。第一干涉图案与第二干涉图案之间的差可以例如包含关于量测目标1060的结构中的不对称性的信息。获得关于所述量测目标1060的所述结构的不对称性的信息可以提供关于重叠的信息。在实施例中,从所计算出的复合场获得的相位信息被用以获得重叠信息,如在2018年2月27日提交的ep18158745.2中所描述的。重叠描述所述量测目标1060中的不同图案(诸如在不同时间形成的、使用不同过程而形成的、和/或形成于不同层中的图案)之间的不想要的未对准。在其它实施例中,所述量测目标1060的结构的正在被确定的特性可以包括指示用于光刻过程中以制造所述量测目标1060的结构的辐射的聚焦中的误差的误差。在另一其它实施例中,量测目标1060的结构的正在被确定的特性可以包括指示用于光刻过程中以制造所述量测目标1060的所述结构的辐射的辐射剂量的误差的误差。
[0113]
重要的是使对并非来源于量测目标1060的结构的第一干涉图案与第二干涉图案之间的差的贡献(例如前述的不想要的干涉图案)最小化。经由使用三个可调光学延迟线ad1、ad2、ad3,则实际上通过对四个辐射束(即,第一散射束1011、第一参考束1030、第二散射束1021、第二参考束1040)施加充分的相干控制来有效地抑制那些贡献。
[0114]
为了准确地计算两个复合场,两个干涉图案应与背景杂散光和/或残余零衍射阶完全地分离。此外,为了从每个干涉图案提取目标信息,两个重叠干涉图案也应被分离。也可以使用空间频率复用来实现多个重叠干涉图案的完全分离。已在以引用方式并入本文中的美国专利申请us20180011022a1中详细描述这样的方法。
[0115]
利用空间频率复用,处理单元1090使包括多个重叠干涉图案的所记录的图像经受二维(2d)傅里叶变换以获得傅里叶变换图像。所得到的傅里叶变换图像的横向轴线和纵向轴线分别对应于空间频率坐标系(fx,fy)中的两个轴线,即fx和fy。在所得到的傅里叶变换图像中,存在多个空间频谱,所述频谱中的每个频谱对应于所记录的图像的一部分。
[0116]
图13图示了空间频域中的示例性2d傅里叶图像,其通过使包括两个重叠干涉图案的所记录的图像经受2d傅里叶变换来获得。如图13中示出,2d傅里叶图像包括五个空间频谱:包括零阶傅里叶分量的基本空间频谱1301、与利用所述第一散射辐射束1011的部分
1012而形成的所述第一干涉图案相对应的第一高阶空间频谱1311、与利用所述第二散射辐射束1021的部分1022而形成的所述第二干涉图案相对应的第二高阶空间频谱1312、与所述第一高阶空间频谱1311共轭的第一共轭空间频谱1321、与所述第二高阶空间频谱1312共轭的第二共轭空间频谱1322。
[0117]
基本频谱的中心是空间频率坐标的原点o。所述基本频谱的位置是固定的。然而,可以通过例如改变每个参考束的入射角和/或方位角而相对于所述基本频谱来调整高阶频谱的位置和它们的共轭频谱。每个高阶空间频谱的中心与基本空间频谱的中心之间的径向距离涉及散射束1011或1021的部分1012或1022的光轴与参考束1030或1040的光轴之间的角度。该角度越大,则将与高阶空间频谱相距得更远(相对于基本空间频谱)。因此,通过提供散射束的一部分的轴线与参考束的轴线之间的足够大的角度,高阶空间频谱1311或1312可以与基础空间频谱1301完全地分离开。然而,参考束的角度不可能任意地高,因为散射束1011或1021的部分1012或1022的光轴与参考束1030或1040的光轴之间的角度的增大导致全息图条纹的条纹间距的减少。最终,由图像传感器1080的像素间距限制该角度。必须由传感器像素来充分地采样全息图(或干涉图案)中的条纹。全息图中的最大频率必须满足采样的奈奎斯特准则。
[0118]
此外,每个参考束的方位角对空间频谱相对于原点o的圆周位置有影响。高阶空间频谱的圆周位置由高阶空间频谱与空间频率轴线fx之间的角度来表示。例如,第一高阶空间频谱的圆周位置由角度1331表示。因此,高阶空间光谱1311、1312可以通过确保两个参考束的方位角之间的差足够大而完全彼此分离。
[0119]
一旦被分离,则处理单元1090从傅里叶图像提取每个高阶空间频谱,以及随后使所提取的高阶空间频谱经受傅里叶逆变换。应注意,由于两个参考辐射束直接由照射器1100提供,则可以通过计算或通过测量来确定图像传感器1080处的参考辐射的信息(诸如强度分布)。基于傅里叶逆变换的结果和参考辐射的信息,可以获得成对散射辐射的复合场,所述复合场的细节在下文描述。最终,两个散射辐射束的复合场用以确定量测目标1060的结构的特性和/或校正df-dhm 1000的物镜1070的光学像差。
[0120]
继续参考图13,现有方法仅使用2d傅里叶图像1300中的高阶空间频谱或边频带(sb)1311或1312用于确定散射束1011或1021的部分1012或1022的复合场的振幅与相位。被包含在基础空间频谱或中央频带(cb)1301中的信息在确定过程中被完全丢弃。如此,现有方法易于受噪声限制,例如低信噪比,由此导致吞吐量的减小。根据本发明实施例的不同方面,提供一种通过提供用于确定散射辐射的在图像传感器处的复合场的振幅与相位的较好且较准确的方式来改进现有方法的方法。通过考虑被包含在cb 1301和sb 1311或1312两者中的信息来实现这种情形。
[0121]
应注意,针对图13的傅里叶图像的另一术语常常被称为全息图的傅里叶表示。通过经由(2d)傅里叶变换将全息图变换成其傅里叶表示或空间频域中的傅里叶频谱来获得图13的四个图像。
[0122]
图14示出根据实施例的用于确定复合场的振幅与相位的方法的流程图(例如,所述方法可以由处理单元1090或以其它方式执行)。参考图14,在步骤1401处,可以在照射物体或目标之后产生全息图(或干涉图案),以及随后经由傅里叶变换将所述全息图(或干涉图案)变换成其傅里叶表示或空间频域中的傅里叶频谱。这种傅里叶表示具有如下有利性
质:在用于全息图中的参考波的倾斜角足够大,从而考虑sb的空间频率内容即空间频率成分的情况下,cb和相应的sb被在空间上分离开。应进一步注意,在图13中,sb成对显现,其中一对包括sb 1311和1321,以及另一对包括sb 1312和1322。每sb对,两个sb承载相同信息,这是由于这两个sb是彼此的复数共轭,使得每sb对选择一个sb是足够的。在步骤1402处,可以选择傅里叶表示中的cb,以及将所述cb随后用以经由对所选cb的傅里叶变换来计算像平面中的对应分量。在步骤1403处,可以在傅里叶表示中选择一个或更多个单独的sb,以及所选sb中的每个sb可以用以经由对所选的sb的傅里叶逆变换来计算像平面中的对应分量;在步骤1404处,可以基于像平面中的所计算的cb和sb分量来确定复合场的振幅和/或相位。下文描述所述方法的实施的细节。
[0123]
应注意,图14的实施例仅是非限制性示例,其它实施例可以包括由特定要求所确定的更多或更少步骤。例如,一些实施例可以另外包括照射物体或目标的步骤,以及可以使用该步骤作为第一步骤;一些其它实施例可以将步骤1402和1403组合成单个步骤,使得对cb的傅里叶逆变换和对sb的傅里叶逆变换可以被并行地执行、而不是循序地及时执行。
[0124]
在单个干涉图案足够的情况下,照射-参考束对中的由照射装置1100或1200所提供的一个可以用以照射所述目标1060。随后,在步骤1401处,将来自物体或目标的散射辐射与从照射-参考束对所提供的参考辐射一起形成所需的单个干涉图案。这种单个干涉图案可以经由傅里叶变换而被变换为空间频域中的2d傅里叶表示。在这样的情况下,2d傅里叶表示(未示出)可以包括一个cb以及一对彼此共轭的sb。散射参考束对的相应的束的相互倾斜角可以被布置成使得所得到的cb和sb在空间频域中不交叠。接着,在步骤1402处,可以选择傅里叶表示中的cb且将所述cb用以经由傅里叶逆变换来计算它的在像平面中的对应分量(即,如下文所描述的cb
exp
(r))。之后,在步骤1403处,可以选择傅里叶表示中相互共轭sb中的一个sb,以及将所述sb用以经由傅里叶逆变换来计算它的像平面中的对应分量(即,如下文所描述的sb
exp
(r))。最终,在步骤1404处,可以基于所计算的信息(即,如下文所描述的cb
exp
(r)和sb
exp
(r))来确定来自物体或目标的散射辐射的复合场的振幅与相位。由以下数学描述来进一步解释步骤1404。
[0125]
在以下数学描述中,傅里叶逆变换被单独地应用于cb和sb,并且分别由实值函数cb(r)和复值函数sb(r)来指明像平面中的对应分量,其中r是像平面中的2d坐标。应注意,cb包含散射束的自相关以及参考束的自相关两者。参考束的功率由下式给出:|φ
ref
(r)|2。
[0126]
[1]
[0127]
像平面中的复值场由φ
p
(r)指明,φ
p
(r)等于样本场φ(r)(从样本/目标所散射的场)与由p(r)表示的成像光学器件(例如,物镜1070)的点扩散函数的卷积,即:
[0128]
φ
p
(r)=φ(r)*p(r)。
[0129]
[2]
[0130]
像平面中的复值场φ
p
(r)可以用振幅a(r)和相位表达为:
[0131]
全息图h(r)或干涉图案被建模为:
[0132][0133]
其中k指明参考波的波向量,以及s指明参考波的振幅|φ
ref
(r)|,即s=|φ
ref
(r)|。
[0134]
复值场的振幅与相位的估计的最小二乘函数可被限定为:
[0135]
s2=∫dr(h
mod
(r)-h
exp
(r))2,
[0136]
[5]
[0137]
可以基于parseval理论以及cb和sb在傅里叶表示中被良好分离的事实来方便地重写以上最小二乘函数。在合并来自cb和能够与cb分离的两个共轭sb的相应贡献之后,以上方程可以被更明确地表达为:
[0138][0139]
其中cb
exp
(r)和sb
exp
(r)分别指明如根据以实验方式测量的全息图而导出的像平面中的cb和sb分量,以及建模的cb和sb分量,即
[0140]
cb
mod
(r)和sb
mod
(r)被表达为:
[0141]
cb
mod
(r)=s2 (1-s)2a(r)2,
[0142]
[7]
[0143]

[0144][0145]
为简单起见,cb
exp
(r)和sb
exp
(r)将被称为以实验方式测量的cb和sb分量。
[0146]
经由相应的s2的导数,即方程[6]而获得针对振幅a(r)和相位的参数拟合:
[0147][0148][0149]
s2的后一导数,即方程[10]产生(对于r的特定值):
[0150][0151]
从上式可以将复合场的相位估计为:
[0152][0153]
由于可以仅根据边频带测量相位因此相位的估计值不依赖于参考束的振幅|φ
ref
(r)|或因子s。然而,对于边频带中的最优信噪比,s的值可以被选择为s=0.5。
[0154]
s2的前一导数,即方程[9]产生(对于像平面r中位置的任何值):
[0155][0156]
以上关系可以被简化为(忽略显式r依赖性):
[0157][0158]
在此关系中,首项涉及cb,以及第二项涉及sb。对于以下推理线,则可以单独地获得针对这两个项中每个项的振幅的分辨率,这种情形在cb处作为针对振幅的相应估计值而产生:
[0159][0160]
且在sb处:
[0161][0162]
其中^指示估计值。
[0163]
利用这样的两个表达式,即方程[15]和[16],则相对于a从s2的导数所产生的方程[14]可以被简化为:
[0164][0165]
可以易于使用标准数学方法[17]根据以上三次方程来求解在任何图像部位r处振幅a的真实分辨率(正的、且实值的)。可以进一步导出针对真实分辨率的一些关注的性质。根据事实a》0且0《s《1,两个方案可被视为如下项中的任一个:
[0166][0167]
或反之亦然:
[0168][0169]
不同地表达,这也暗示如下任一个:
[0170][0171]
或反之亦然:
[0172][0173]
在需要两个(重叠的)干涉图案的情形(诸如关于图10的实施例而描述的操作)中,由照射装置1100或1200所提供的照射-参考束对两者可以用以照射所述目标1060。如上文所描述,可以分别由两对散射参考束来形成所述两个(重叠的)干涉图案。因此,处理单元将需要确定两个复合场的振幅与相位,每个复合场对应于一个散射束。在一些实施例中,处理单元1070也可以采用上述四个步骤(即,图14的1401至1404)以完成所述确定过程。然而,这时,2d傅里叶表示可以包括两个相应的cb在彼此顶部上的叠加,和两对相互共轭且良好地分离的sb(或总计四个sb),诸如例如图13的示例傅里叶表示。每对相互共轭的sb包含两个干涉图案中的一个干涉图案的信息。例如,第一对相互共轭的sb包含由第一对散射参考束所形成的第一干涉图案的信息;而第二对相互共轭的sb包含关于由第二对散射参考束所形成的第二干涉图案的信息。两个散射参考束对可以被布置成使得所得到的cb和sb在空间频域中并不交叠或重叠。
[0174]
在对干涉图案的捕获图像进行傅里叶变换至空间频域的步骤1401之后,在步骤1402处,选择了傅里叶表示中的包括两个重叠的相应cb的中心区域,且将所述中心区域用以计算它的对应分量,即经由傅里叶逆变换在像平面中的cb
exp
(r)。应注意,为易于标记,cb
exp
(r)这里表示两个相应的散射参考束对的叠加cb。相同表示法将用于此分量的建模版
本。随后,在步骤1403处,选择傅里叶表示中的每对sb中的一个sb,且将所述sb用以经由傅里叶逆变换来计算它的在像平面中的对应分量。因此,可以获得具有即指数“1”和“2”的两个像平面分量sb
1,exp
(r)和sb
2,exp
(r),其中这些索引指代两个不同干涉图案(或复合场)。最终,在步骤1404处,可以基于所计算的信息,例如cb
exp
(r)、sb
1,exp
(r)和sb
2,exp
(r),来确定两个复合场的振幅与相位。进一步由以下数学描述来解释步骤1404,所述数学描述是针对所述情况下的单个全息图或干涉图案的前述数学描述(方程[1]至[21])的扩展。
[0175]
在以下数学描述内容中,傅里叶逆变换分别被应用至图13的cb(例如1301)和傅里叶图像中的两个所选sb中的每个(例如图13的1311和1312),以便获得像平面中的对应分量。这样的像平面分量分别由实值函数cb(r)和复值函数sb1(r)和sb2(r)表示,其中r是像平面中的2d坐标,且索引“1”和“2”指代两个不同干涉图案(或复合场)。在不丧失一般性情况下,假定相同拆分比率s用于两个分立的全息图,则复用全息图h(r)被建模为两个单独的全息图或干涉图案的非相干叠加(其中索引“1”和“2”指代两个单独的全息图):
[0176]
以上复用全息图的傅里叶变换包含傅里叶表示中的单个cb(其源于两个相应的散射参考束对的两个分立的cb和两个单独的sb,这两个分立的cb和两个单独的sb被建模如下:
[0177]
cb
mod
(r)=s2 (1-s)2a1(r)2 s2 (1-s)2a2(r)2,[23]
[0178]

[0179][0180][0181]
待针对复用全息图被最小化的最小二乘函数是:
[0182][0183]
针对相位和的优化涉及求取s2的相对于每个相位函数或的导数且因此对于非复用(单个)全息图的情况是相同的,这是由于相位仅在相应的
sb中是能够检测到的(并且在针对两个相应的散射参考束发生重叠的cb中则不是)。这种情形意味着,关于单独的全息图的相位将导出即得到相同分辨率(这是由于它们的边频带在复用全息图的傅里叶空间中被分离):
[0184][0185]

[0186][0187]
类似地,针对振幅a1(r)和a2(r)的优化涉及求取s2的相对于每个振幅函数a1(r)或a2(r)的导数,以及在a1(r)和a2(r)中产生以下两个方程:
[0188]8][0189][0190]
应用关系式和以上两个方程[29]和[30]可以被重写为:
[0191][0192][0193]
可以经由各种策略来求解以上方程组即联立方程。在不丧失一般性情况下,一个特定策略在这里被描述为实施方式的一个示例。通过使两个方程[31]和[32]相除,获得两个振幅的比率:
[0194][0195]
应用方程[33]至方程[31]以便移除a2(r),则可以获得具有唯一未知参数a1(r)的方程(省略了显式r依赖性):
[0196][0197]
其中ε是小的正值,其避免sb信号中的功率小的区中的噪声放大。可以易于根据三次方程[34]求解出被包含在复用全息图中在特定图像部位r处的第一全息图的(正的和实值的)振幅a1的真实解。可以随后从比率的关系式,即方程[33]导出被包含在复用全息图中的第二全息图的振幅a2的值。
[0198]
应注意,前述实施例还可以针对具有多对照射和参考辐射束的df-dhm而被进一步概括或泛化。在一些实施例中,多个照射辐射束中的每个照射辐射束可以包括不同方位角和/或不同入射角。同样,多个参考束中的每个参考束可以包括不同方位角和/或不同入射角。例如,在实施例中,除了主要位于x-z平面中的两个照射辐射束1010、1020之外,主要位于y-z平面中的另两个照射辐射束(未示出)可以用以照射所述目标1060。两个另外的参考辐射束也可以用以分别与两个另外的照射辐射束进行配对。这种情形可能导致四个至少部分空间交叠的干涉图案,所述干涉图案中的每个干涉图案可以对应于一对照射和参考辐射束。通过恰当地配置每个另外的参考辐射束的方位角和/或入射角,则所述四个至少部分空间交叠的干涉图案可以是在空间频域中能够分离的。以这种方式,可以获得关于所述目标的结构的更多信息(例如所述目标的结构中的y轴不对称性)。
[0199]
在一些实施例中,所述照射装置可以提供多对照射辐射束和参考辐射束。所述照射装置也可以提供辐射束之间的充分的相干性控制,使得仅所需的干涉图案将被形成于图像传感器上。所述多对照射辐射束和参考辐射束可能导致形成多个相互非相干的、在空间上交叠的干涉图案。因此,复用全息图h(r)可以被建模为多个单独的全息图或干涉图案的非相干叠加。针对两个重叠的全息图的情况的方程[22]可以接着进一步被扩展以包括所有单独的全息图的振幅和相位函数。因此,当形成n个全息图时,全息图索引即指数应从“1,2”扩展至“1,2,3
……
和n”。应注意,如图14中所图示的确定过程应同样适用于任何数目的重叠全息图,例如两个以上重叠全息图。
[0200]
也应注意到,用于确定一个或更多个复合场的振幅与相位的方法的不同实施例(例如图14的实施例)可以与图10至图12的实施例相组合而使用或与图10至图12的实施例无关地使用。当独立地即彼此无关地使用时,其它类型的df-dhm可以用以产生全息图或干涉图案。
[0201]
在实施例中,处理单元1090可以是计算机系统。所述计算机系统可配备有图像重构算法,其用以执行所有前述任务,包括执行傅里叶变换、提取每个单独的高阶空间频谱,执行傅里叶逆变换,计算复合场以及基于结果确定所述结构的特性。
[0202]
图15是图示计算机系统1500的框图,所述计算机系统可以辅助实施本发明所披露的方法和流程。计算机系统1500包括用于通信信息的总线1502或其它通信机构,和与总线1502耦接以用于处理信息的处理器1504(或多个处理器1504和1505)。计算机系统1500也包括耦接至总线1502以用于储存信息和将要由处理器1504执行的指令的主存储器1506,诸如随机存取存储器(ram)或其它动态存储。主存储器1506也可以用于在执行将要由处理器1504执行的指令期间储存暂时性变量或其它中间信息。计算机系统1500还包括耦接至总线1502以用于储存用于处理器1504的静态信息和指令的只读存储器(rom)1508或其它静态储存装置。提供诸如磁盘或光盘的储存装置1510,以及将所述储存装置耦接至总线1502以用于储存信息和指令。
[0203]
计算机系统1500可以由总线1502耦接至用于向计算机用户显示信息的显示器1512,诸如阴极射线管(crt)或平板显示器或触控面板显示器。包括字母数字按键和其它按键的输入设备1514耦接至总线1502以用于将信息和命令选择通信至处理器1504。另一类型的用户输入设备是用于将方向信息和命令选择通信至处理器1504且用于控制显示器1512上的光标移动的光标控制件1516,诸如,鼠标、轨迹球或光标方向按键。这种输入设备通常具有在两个轴线(第一轴线(例如,x)和第二轴线(例如,y))上的两个自由度,这种装置允许所述装置指定平面中的位置。触控面板(屏幕)显示器也可以被用作输入装置。
[0204]
如本文中所描述的或多种方法可以通过计算机系统1500响应于处理器1504执行被包含在主存储器1506的一个或更多个指令的一个或更多个序列而执行。可以将这些指令从另一计算机可读介质(诸如,储存装置1510)读取至主存储器1506中。主存储器1506中包含的指令序列的执行导致处理器1504执行本文中所描述的过程步骤。呈多处理布置的一个或更多个处理器也可以用以执行主存储器1506中包含的指令序列。在替代性实施例中,可代替或结合软件指令来使用硬联机电路。因此,本文中的描述不限于硬件电路系统与软件的任何特定组合。
[0205]
如本文中所使用的术语“计算机可读介质”是指参与将指令提供至处理器1504以
供执行的任何介质。这种介质可以呈许多形式,包括但不限于非易失性介质、易失性介质和传输介质。非易失性介质包括例如光盘或磁盘,诸如储存装置1510。易失性介质包括易失存储器,诸如主存储器1506。传输介质包括同轴缆线、铜线和光纤,包括包含总线1502的电线。传输介质也可以采取声波或光波的形式,诸如,在射频(rf)和红外(ir)数据通信期间产生的声波或光波。计算机可读介质的常见形式包括(例如)软性磁盘、可挠性磁盘、硬盘、磁带、任何其它磁介质、cd-rom、dvd、任何其它光学介质、打孔卡、纸带、具有孔图案的任何其它实体介质、ram、prom和eprom、flash-eprom、任何其它存储器芯片或卡匣、如下文所描述的载波,或可以供计算机读取的任何其它介质。
[0206]
可以在将一个或更多个指令的一个或更多个序列承载至处理器1504以供执行中涉及各种形式的计算机可读介质。例如,初始地可以将所述指令承载于远程计算机的磁盘上。远程计算机可以将指令加载至其易失存储器中,以及使用调制解调器经由电话线来发送指令。在计算机系统1500本地的调制解调器可以在电话线上接收数据,以及使用红外传输器将数据转换成红外信号。耦接至总线1502的红外检测器可以接收红外信号中所承载的数据且将数据放置于总线1502上。总线1502将数据承载至主存储器1506,处理器1504从所述主存储器获取并执行指令。由主存储器1506接收的指令可以可选地在供处理器1504执行之前或之后储存在储存装置1510上。
[0207]
计算机系统1500也优选地包括耦接至总线1502的通信接口1518。通信接口1518提供对网络链路1520的双向数据通信耦合,网络链路1520连接至局域网1522。例如,通信接口1518可以是综合业务数字网(isdn)卡或调制解调器以提供对对应类型的电话线的数据通信连接。作为另一示例,通信接口1518可以是局域网(lan)卡以提供对兼容lan的数据通信连接。也可以实施无线链路。在任何这种实施中,通信接口1518发送且接收承载表示各种类型的信息的数字数据流的电信号、电磁信号或光学信号。
[0208]
网络链路1520通常经由一个或更多个网络而向其它数据装置提供数据通信。例如,网络链路1520可以由局域网1522向主计算机1524或向由因特网服务业者(isp)1526操作的数据装备提供连接。isp 1526又经由全球封包数据通信网络(现在通常被称为“因特网”1528)来提供数据通信服务。局域网1522和因特网1528两者都使用承载数字数据流的电信号、电磁信号或光信号。经由各种网络的信号和在网络链路1520上且经由通信接口1518的信号(所述信号承载至且从计算机系统1500的数字数据)是输送信息的载波的示例性形式。
[0209]
计算机系统1500可以由网络、网络链路1520和通信接口1518发送消息并接收数据,包括程序代码。在因特网示例中,服务器1530可能经由因特网1528、isp 1526、局域网1522和通信接口1518来传输用于应用程序的所请求的代码。例如,一种这样的被下载的应用程序可以提供本文中所描述的技术中的一个或更多个。所接收的代码可以在其被接收时由处理器1504执行,和/或储存在储存装置1510或其它非易失性储存器中以供稍后执行。以这种方式,计算机系统1500可以获得呈载波的形式的应用代码。
[0210]
在多个方面的后续被编号的列表中披露了另外的实施例:
[0211]
1.一种暗场数字全息显微镜,所述暗场数字全息显微镜被配置成确定结构的所关注的特性,所述暗场数字全息显微镜包括:
[0212]
照射装置,所述照射装置被配置成至少提供:第一束对,所述第一束对包括第一照
射辐射束和第一参考辐射束;和第二束对,所述第二束对包括第二照射辐射束和第二参考辐射束;和
[0213]
成像分支,所述成像分支能够操作以至少检测由所述结构散射的第一散射辐射以及检测由所述结构散射的第二散射辐射,所述第一散射辐射由所述结构受所述第一照射辐射束照射而产生,所述第二散射辐射由所述结构受所述第二照射辐射束照射而产生,所述成像分支具有大于0.1且可选地大于0.8的检测na;
[0214]
其中所述照射装置被配置使得:
[0215]
所述第一照射辐射束和所述第一参考辐射束是至少部分地时间相干的和至少部分地空间相干的;
[0216]
所述第二照射辐射束和所述第二参考辐射束是至少部分地时间相干的和至少部分地空间相干的;以及
[0217]
所述照射装置被配置成在所述第一束对与所述第二束对之间强加时间非相干性和/或空间非相干性。
[0218]
2.根据方面1所述的暗场数字全息显微镜,其中所述照射装置能够操作以:引导所述第一照射辐射束以便从第一方向照射所述结构;以及引导所述第二照射辐射束以便从第二方向照射所述结构,所述第二方向不同于所述第一方向。
[0219]
3.根据方面1或2所述的暗场数字全息显微镜,其中所述成像分支包括传感器,并且所述暗场数字全息显微镜能够操作以同时在所述传感器上捕获干涉图像,所述干涉图像包括由所述第一散射辐射与所述第一参考束的干涉而产生的第一干涉图案、以及由所述第二散射辐射与所述第二参考束的干涉而产生的第二干涉图案。
[0220]
4.根据方面3所述的暗场数字全息显微镜,所述暗场数字全息显微镜能够操作,使得所述第一干涉图案和所述第二干涉图案在所述传感器上至少部分地在空间上交叠。
[0221]
5.根据方面3或4所述的暗场数字全息显微镜,所述暗场数字全息显微镜被配置成使得所述第一参考辐射束和所述第二参考辐射束被布置成各自相对于所述暗场数字全息显微镜的光轴以相应的不同方位角入射。
[0222]
6.根据方面5所述的暗场数字全息显微镜,其中所述第一参考辐射束的所述方位角和所述第二参考辐射束的所述方位角被配置成包括足够大的差,使得两个所述干涉图案在空间频域中是能够分离的。
[0223]
7.根据方面3至6中任一项所述的暗场数字全息显微镜,所述暗场数字全息显微镜被配置使得所述第一参考辐射束和所述第二参考辐射束被布置成各自相对于所述暗场数字全息显微镜的光轴以相应的不同入射角入射。
[0224]
8.根据方面3至7中任一项所述的暗场数字全息显微镜,包括能够操作以进行以下操作的处理器:
[0225]
将所述第一干涉图案和所述第二干涉图案的所述干涉图像变换成傅里叶表示,其中所述傅里叶表示包括中央频带和至少一对边频带;和
[0226]
根据所述中央频带和所述至少一对边频带中的至少一个边频带至少确定所述第一散射辐射和所述第二散射辐射中的至少一个的复合场的振幅。
[0227]
9.根据方面8所述的暗场数字全息显微镜,其中所述至少一对边频带包括:
[0228]
第一对共轭边频带,所述第一对共轭边频带包括与散射参考束对的所述第一干涉
图案相关的第一信息,和
[0229]
第二对共轭边频带,所述第二对共轭边频带包括与散射参考束对的所述第二干涉图案相关的第二信息。
[0230]
10.根据方面9所述的暗场数字全息显微镜,其中所述处理器能够操作以:
[0231]
使用所述中央频带以经由傅里叶逆变换来计算所述第一干涉图案和所述第二干涉图案的所述干涉图像中的第一分量;
[0232]
使用所述第一边频带以经由傅里叶逆变换来计算所述第一干涉图案和所述第二干涉图案的所述干涉图像中的第二分量;
[0233]
使用所述第二边频带以经由傅里叶逆变换来计算所述第一干涉图案和所述第二干涉图案的所述干涉图像中的第三分量;和
[0234]
根据所述干涉图像的所述第一分量、所述第二分量和所述第三分量确定所述第一散射辐射的第一复合场的第一振幅和第一相位,以及确定所述第二散射辐射的第二复合场的第二振幅和第二相位。
[0235]
11.根据方面10所述的暗场数字全息显微镜,其中所述处理器被配置使得对所述第一散射辐射的所述复合场的第一振幅和第一相位的所述确定以及对所述第二散射辐射的所述复合场的第二振幅和第二相位的确定还包括:
[0236]
获得所述第一干涉图案和所述第二干涉图案的建模图像,所述建模图像包括经建模的第一分量、经建模的第二分量和经建模的第三分量;
[0237]
限定性能函数,所述性能函数描述所述干涉图像和所述建模图像的匹配;和
[0238]
优化(例如,最小化)所述性能函数以获得针对以下各项中的一个或更多个项的值:所述第一相位、所述第二相位、所述第一振幅和所述第二振幅。
[0239]
12.根据方面11所述的暗场数字全息显微镜,其中所述处理器被配置成使得对所述性能函数的所述优化还包括:
[0240]
通过获得所述性能函数相对于所述第一相位的导数来拟合所述第一相位的值;
[0241]
通过获得所述性能函数相对于所述第二相位的导数来拟合所述第二相位的值;
[0242]
通过获得所述性能函数相对于所述第一振幅的导数来拟合所述第一振幅的值;和
[0243]
通过获得所述性能函数相对于所述第二振幅的导数来拟合所述第二振幅的值。
[0244]
13.根据任一前述方面所述的暗场数字全息显微镜,其中所述照射装置还包括相干匹配装置,所述相干匹配装置能够操作以:以能够调整的方式将所述第一照射束和所述第一参考束中的一个相对于所述第一照射束和所述第一参考束中的另一个进行延迟,以便将所述第一束对的束维持为至少部分地相干的;以及以能够调整的方式将所述第二照射束和所述第二参考束中的一个相对于所述第二照射束和所述第二参考束中的另一个进行延迟,以便将所述第二束对的束维持为至少部分地相干的。
[0245]
14.根据方面13所述的暗场数字全息显微镜,其中所述照射装置包括时间延迟装置,所述时间延迟装置被配置成通过能够操作以将所述第一束对和所述第二束对中的一个相对于所述第一束对和所述第二束对中的另一个进行延迟来在所述第一束对与所述第二束对之间强加非相干性。
[0246]
15.根据方面14所述的暗场数字全息显微镜,其中所述时间延迟装置包括可调时间延迟装置,所述可调时间延迟装置能够操作以能够调整的方式将所述第一束对和所述第
二束对中的一个相对于所述第一束对和所述第二束对中的另一个进行延迟以强加所述非相干性。
[0247]
16.根据方面14或15所述的暗场数字全息显微镜,其中所述照射装置包括能够操作以提供所述第一对束的第一分支和能够操作以提供所述第二对束的第二分支,以及其中:
[0248]
所述时间延迟装置至少包括延迟线,所述延迟线能够操作以对所述第一分支或所述第二分支中的一个相对于所述第一分支或所述第二分支中的另一个强加延迟;以及
[0249]
所述相干匹配装置包括:所述第一分支中的第一相干匹配装置,所述第一相干匹配装置能够操作以便以能够调整的方式延迟所述第一参考束和所述第一照射束中的至少一个;和所述第二分支中的第二相干匹配装置,所述第二相干匹配装置能够操作以便以能够调整的方式延迟所述第二参考束和所述第二照射束中的至少一个。
[0250]
17.根据方面14或15所述的暗场数字全息显微镜,其中所述照射装置包括:第一分支,所述第一分支能够操作以提供所述第一照射束和所述第二照射束;和第二分支,所述第二分支能够操作以提供所述第一参考束和所述第二参考束;其中:
[0251]
经由对至少以下各项的共同优化来实施所述相干匹配装置和所述时间延迟装置:第一可调延迟线,所述第一可调延迟线能够操作以对所述第一分支或所述第二分支中的一个相对于所述第一分支或所述第二分支中的另一个强加能够调整的延迟;所述第一分支中的第二可调延迟线,所述第二可调延迟线能够操作以对所述第一照射束和所述第二照射束中的至少一个强加能够调整的延迟;和所述第二分支中的第三可调延迟线,所述第三可调延迟线能够操作以对所述第一参考束和所述第二参考束中的至少一个强加能够调整的延迟。
[0252]
18.根据任一前述方面所述的暗场数字全息显微镜,其中所述第一照射辐射束被配置成以第一入射角照射所述结构;所述第二照射辐射束被配置成以不同于所述第一入射角的第二入射角照射所述结构。
[0253]
19.根据任一前述方面所述的暗场数字全息显微镜,其中所述照射装置包括单个辐射源,所述照射装置被配置成从所述单个辐射源产生所述第一束对和第二束对。
[0254]
20.根据方面19所述的暗场数字全息显微镜,其中所述单个光源被配置成发射至少部分相干辐射。
[0255]
21.根据任一前述方面所述的暗场数字全息显微镜,其中所述照射装置被配置以便以第一功率水平分别产生所述第一参考束和所述第二参考束,以及以第二功率水平分别产生所述第一照射束和所述第二照射束,所述第二功率水平大于所述第一功率水平。
[0256]
22.根据任一前述方面所述的暗场数字全息显微镜,还包括:一个或更多个光学元件,所述一个或更多个光学元件能够操作用以捕获由所述结构散射的第一散射辐射,所述第一散射辐射由所述结构受所述第一照射辐射束照射而产生;以及用以捕获由所述结构散射的第二散射辐射,所述第二散射辐射由所述结构受所述第二照射辐射束照射而产生。
[0257]
23.根据任一前述方面所述的暗场数字全息显微镜,其中成像分支还包括物镜,所述物镜能够操作以至少捕获所述第一散射辐射和所述第二散射辐射。
[0258]
24.根据任一前述方面所述的暗场数字全息显微镜,其中所述成像分支包括净的正放大率。
[0259]
25.根据任一前述方面所述的暗场数字全息显微镜,其中所述照射装置被配置成使得所述第一照射束和所述第二照射束每个都包括平滑轮廓以便实质上均一地照射所述结构。
[0260]
26.一种确定由光刻过程形成于衬底上的目标的所关注的特性的方法,所述方法包括:
[0261]
利用第一照射辐射束照射所述目标且捕获已从所述目标散射的所得到的第一散射辐射;
[0262]
利用第二照射辐射束照射所述目标且捕获已从所述目标散射的所得到的第二散射辐射;
[0263]
在包括所述第一照射束和所述第一参考束的第一束对与包括所述第二照射束和所述第二参考束的第二束对之间强加空间非相干性和/或时间非相干性,使得:
[0264]
所述第一束对的束是至少部分地空间相干的和至少部分地时间相干的,
[0265]
所述第二束对的束是至少部分地空间相干的和至少部分地时间相干的,以及
[0266]
所述第一束对的任何束对于所述第二束对的任何束是空间非相干的和/或时间非相干的;以及
[0267]
同时地生成由所述第一散射辐射与第一参考辐射束的干涉而产生的第一干涉图案、以及由所述第二散射辐射与第二参考束的干涉而产生的第二干涉图案。
[0268]
27.根据方面26所述的方法,还包括:
[0269]
引导所述第一照射辐射束以第一入射角照射所述目标;和引导所述第二照射辐射束以第二入射角照射所述目标,所述第一入射角不同于所述第二入射角。
[0270]
28.根据方面26或27中任一项所述的方法,还包括:
[0271]
引导所述第一照射辐射束以第一方位角照射所述目标;和引导所述第二照射辐射束以第二方位角照射所述目标,所述第一方位角不同于所述第二方位角。
[0272]
29.根据方面26至28中任一项所述的方法,还包括:
[0273]
引导所述第一参考辐射束和所述第二参考辐射束以各自相对于所述暗场数字全息显微镜的光轴以相应的不同方位角入射。
[0274]
30.根据方面29的方法,其中所述第一参考辐射束的所述方位角和所述第二参考辐射束的所述方位角成包括足够大的差,使得两个所述干涉图案在空间频域中是能够分离的。
[0275]
31.根据方面29或30中任一项所述的方法,还包括:
[0276]
引导所述第一参考辐射束和所述第二参考辐射束以各自相对于所述暗场数字全息显微镜的光轴以相应的不同入射角入射。
[0277]
32.根据方面26至31中任一项所述的方法,还包括:
[0278]
以能够调整的方式将所述第一照射束和所述第一参考束中的一个相对于所述第一照射束和所述第一参考束中的另一个进行延迟,以便将所述第一束对的束维持为至少部分地相干的;以及以能够调整的方式将所述第二照射束和所述第二参考束中的一个相对于所述第二照射束和所述第二参考束中的另一个进行延迟,以便将所述第二束对的束维持为至少部分地相干的。
[0279]
33.根据方面32所述的方法,还包括:
[0280]
以能够调整的方式将所述第一束对和所述第二束对中的一个相对于所述第一束对和所述第二束对中的另一个进行延迟,以便在所述第一束对与所述第二束对之间强加非相干性。
[0281]
34.根据方面26至33中任一项所述的方法,还包括:
[0282]
从共同辐射源产生所述第一束对和所述第二束对,所述第一束对包括所述第一照射辐射束和所述第一参考辐射束,并且所述第二束对包括所述第二照射辐射束和所述第二参考辐射束。
[0283]
35.根据方面26至34中任一项所述的方法,还包括:
[0284]
设置所述第一参考束和所述第二参考束为第一功率水平且设置所述第一照射束和所述第二照射束为第二功率水平,所述第二功率水平大于所述第一功率水平。
[0285]
36.根据方面26至35中任一项所述的方法,包括当在所述第一束对与所述第二束对之间强加所述非相干性时,维持所述第一束对与所述第二束对之间的时间延迟为尽可能短的。
[0286]
37.根据方面26至36中任一项所述的方法,还包括:
[0287]
成像所述第一干涉图案和所述第二干涉图案,使得所述第一干涉图案和所述第二干涉图案至少部分地空间交叠以获得干涉图像。
[0288]
38.根据方面37所述的方法,包括以下另外步骤:
[0289]
将所述第一干涉图案和所述第二干涉图案的所述干涉图像变换成傅里叶表示,其中所述傅里叶表示包括中央频带和至少一对边频带;和
[0290]
根据所述中央频带和所述至少一对边频带中的所述至少一个边频带至少确定所述第一散射辐射和所述第二散射辐射中的至少一个的复合场的振幅。
[0291]
39.根据方面38所述的方法,其中所述至少一对边频带包括:
[0292]
第一对共轭边频带,所述第一对共轭边频带包括与所述第一干涉图案相关的第一信息,和
[0293]
第二对共轭边频带,所述第二对共轭边频带包括与所述第二干涉图案相关的第二信息。
[0294]
40.根据方面39所述的方法,其中所述确定步骤还包括:
[0295]
使用所述中央频带以经由傅里叶逆变换来计算所述第一干涉图案和所述第二干涉图案的所述干涉图像中的第一分量;
[0296]
使用所述第一边频带以经由傅里叶逆变换来计算所述第一干涉图案和所述第二干涉图案的所述干涉图像中的第二分量;
[0297]
使用所述第二边频带以经由傅里叶逆变换来计算所述第一干涉图案和所述第二干涉图案的所述图像中的第三分量;和
[0298]
根据所述干涉图像的所述第一分量、所述第二分量和所述第三分量确定所述第一散射辐射的第一复合场的第一振幅和第一相位,以及确定所述第二散射辐射的第二复合场的第二振幅和第二相位。
[0299]
41.根据方面40所述的方法,其中所述第一对共轭边频带和所述第二对共轭边频带中的每种是与所述中央频带和任何其它边频带能够分离的。
[0300]
42.根据方面40或41所述的方法,其中对所述第一散射辐射的所述复合场的第一
振幅和第一相位的所述确定以及对所述第二散射辐射的所述复合场的第二振幅和第二相位的确定还包括:
[0301]
获得所述第一干涉图案和所述第二干涉图案的建模图像,所述建模图像包括经建模的第一分量、经建模的第二分量和经建模的第三分量;
[0302]
限定性能函数,所述性能函数描述所述干涉图像和所述建模图像之间的匹配;和
[0303]
优化(例如,最小化)所述性能函数以获得针对以下各项中的一个或更多个项的值:所述第一相位、所述第二相位、所述第一振幅和所述第二振幅。
[0304]
43.根据方面42所述的方法,其中对所述性能函数的所述优化还包括:
[0305]
通过获得所述性能函数相对于所述第一相位的导数来拟合所述第一相位的值;
[0306]
通过获得所述性能函数相对于所述第二相位的导数来拟合所述第二相位的值;
[0307]
通过获得所述性能函数相对于所述第一振幅的导数来拟合所述第一振幅的值;
[0308]
通过获得所述性能函数相对于所述第二振幅的导数来拟合所述第二振幅的值。
[0309]
44.一种用于确定衬底上的结构的所关注的特性的量测设备,所述量测设备包括根据方面1至22;或方面52至56中任一项所述的暗场数字全息显微镜。
[0310]
45.一种用于检查衬底上的结构的检查设备,所述检查设备包括根据方面1至25;或方面52至56中任一项所述的暗场数字全息显微镜。
[0311]
46.一种确定对结构进行描述的复合场的至少振幅的方法,所述方法包括:
[0312]
利用第一照射辐射束照射所述结构且捕获已从所述结构散射的所得到的第一散射辐射;
[0313]
利用第二照射辐射束照射所述结构且捕获已从所述结构散射的所得到的第二散射辐射;
[0314]
成像由所述第一散射辐射与第一参考辐射束的干涉而产生的第一干涉图案、以及由所述第二散射辐射与第二参考束的干涉而产生的第二干涉图案,使得所述第一干涉图案和所述第二干涉图案至少部分地空间交叠以获得干涉图像;
[0315]
将所述第一干涉图案和所述第二干涉图案的所述干涉图像变换成傅里叶表示,其中所述傅里叶表示包括中央频带和至少一对边频带;和
[0316]
根据所述中央频带和所述至少一对边频带至少确定所述第一散射辐射和所述第二散射辐射中的至少一个的复合场的振幅。
[0317]
47.根据方面46所述的方法,其中所述至少一对边频带包括:
[0318]
第一对共轭边频带,所述第一对共轭边频带包括与所述第一干涉图案相关的第一信息,和
[0319]
第二对共轭边频带,所述第二对共轭边频带包括与所述第二干涉图案相关的第二信息。
[0320]
48.根据方面47所述的方法,其中所述确定步骤还包括:
[0321]
使用所述中央频带以经由傅里叶逆变换来计算所述第一干涉图案和所述第二干涉图案的所述干涉图像中的第一分量;
[0322]
使用所述第一边频带以经由傅里叶逆变换来计算所述第一干涉图案和所述第二干涉图案的所述干涉图像中的第二分量;
[0323]
使用所述第二边频带以经由傅里叶逆变换来计算所述第一干涉图案和所述第二
干涉图案的所述干涉图像中的第三分量;和
[0324]
根据所述干涉图像的所述第一分量、所述第二分量和所述第三分量确定所述第一散射辐射的第一复合场的第一振幅和第一相位,以及确定所述第二散射辐射的第二复合场的第二振幅和第二相位。
[0325]
49.根据方面48所述的方法,其中所述第一对共轭边频带和所述第二对共轭边频带中的每种是与所述中央频带和任何其它边频带能够分离的。
[0326]
50.根据方面48或49所述的方法,其中对所述第一散射辐射的所述复合场的第一振幅和第一相位的所述确定以及对所述第二散射辐射的所述复合场的第二振幅和第二相位的确定还包括:
[0327]
获得所述第一干涉图案和所述第二干涉图案的建模图像,所述建模图像包括经建模的第一分量、经建模的第二分量和经建模的第三分量;
[0328]
限定性能函数,所述性能函数描述所述干涉图像和所述建模图像之间的匹配;和
[0329]
优化(例如,最小化)所述性能函数以获得针对以下各项中的一个或更多个项的值:所述第一相位、所述第二相位、所述第一振幅和所述第二振幅。
[0330]
51.根据方面50所述的方法,其中对所述性能函数的所述优化还包括:
[0331]
通过获得所述性能函数相对于所述第一相位的导数来拟合所述第一相位的值;
[0332]
通过获得所述性能函数相对于所述第二相位的导数来拟合所述第二相位的值;
[0333]
通过获得所述性能函数相对于所述第一振幅的导数来拟合所述第一振幅的值;
[0334]
通过获得所述性能函数相对于所述第二振幅的导数来拟合所述第二振幅的值。
[0335]
52.一种暗场数字全息显微镜,所述暗场数字全息显微镜被配置成确定结构的所关注的特性,所述暗场数字全息显微镜包括:
[0336]
照射装置,所述照射装置被配置成(例如,同时地)至少提供:第一束对,所述第一束对包括第一照射辐射束和第一参考辐射束;和第二束对,所述第二束对包括第二照射辐射束和第二参考辐射束,使得所述暗场数字全息显微镜能够操作以(例如,同时地)捕获由所述结构散射的由所述结构受所述第一照射辐射束照射而产生的第一散射辐射;以及捕获由所述结构散射的由所述结构受所述第二照射辐射束照射而产生的第二散射辐射;
[0337]
传感器,所述传感器能够操作以同时捕获干涉图像,所述干涉图像包括由所述第一散射辐射与所述第一参考束的干涉而产生的第一干涉图案、以及由所述第二散射辐射与所述第二参考束的干涉而产生的第二干涉图案;和
[0338]
处理器,所述处理器能够操作以:
[0339]
将所述第一干涉图案和所述第二干涉图案的所述干涉图像变换成傅里叶表示,其中所述傅里叶表示包括中央频带和至少一对边频带;和
[0340]
根据所述中央频带和所述至少一对边频带至少确定所述第一散射辐射和所述第二散射辐射中的至少一个的复合场的振幅。
[0341]
53.根据方面52所述的暗场数字全息显微镜,其中所述至少一对边频带包括:
[0342]
第一对共轭边频带,所述第一对共轭边频带包括与所述第一干涉图案相关的第一信息,和
[0343]
第二对共轭边频带,所述第二对共轭边频带包括与所述第二干涉图案相关的第二信息。
[0344]
54.根据方面53所述的暗场数字全息显微镜,其中所述处理器能够操作以:
[0345]
使用所述中央频带以经由傅里叶逆变换来计算所述第一干涉图案和所述第二干涉图案的所述干涉图像中的第一分量;
[0346]
使用所述第一边频带以经由傅里叶逆变换来计算所述第一干涉图案和所述第二干涉图案的所述干涉图像中的第二分量;
[0347]
使用所述第二边频带以经由傅里叶逆变换来计算所述第一干涉图案和所述第二干涉图案的所述干涉图像中的第三分量;和
[0348]
根据所述干涉图像的所述第一分量、所述第二分量和所述第三分量确定所述第一散射辐射的第一复合场的第一振幅和第一相位,以及确定所述第二散射辐射的第二复合场的第二振幅和第二相位。
[0349]
55.根据方面54所述的暗场数字全息显微镜,其中所述处理器被配置使得对所述第一散射辐射的所述复合场的第一振幅和第一相位的所述确定以及对所述第二散射辐射的所述复合场的第二振幅和第二相位的确定还包括:
[0350]
获得所述第一干涉图案和所述第二干涉图案的建模图像,所述建模图像包括经建模的第一分量、经建模的第二分量和经建模的第三分量;
[0351]
限定性能函数,所述性能函数描述所述干涉图像和所述建模图像之间的匹配;和
[0352]
优化(例如,最小化)所述性能函数以获得针对以下各项中的一个或更多个项的值:所述第一相位、所述第二相位、所述第一振幅和所述第二振幅。
[0353]
56.根据方面55所述的暗场数字全息显微镜,其中所述处理器被配置成使得对所述性能函数的所述优化还包括:
[0354]
通过获得所述性能函数相对于所述第一相位的导数来拟合所述第一相位的值;
[0355]
通过获得所述性能函数相对于所述第二相位的导数来拟合所述第二相位的值;
[0356]
通过获得所述性能函数相对于所述第一振幅的导数来拟合所述第一振幅的值;和
[0357]
通过获得所述性能函数相对于所述第二振幅的导数来拟合所述第二振幅的值。
[0358]
虽然可以在本文中具体地参考在ic制造中光刻设备的使用,但应理解,本文中所描述的光刻设备可以具有其它应用。可能的其它应用包括制造集成光学系统、用于磁域存储器的引导和检测图案、平板显示器、液晶显示器(lcd)、薄膜磁头等。
[0359]
虽然可以在本文中具体地参考在光刻设备的情境下的本发明的实施例,但本发明的实施例可以用于其它设备中。本发明的实施例可以形成掩模检查设备、量测设备或者测量或处理诸如晶片(或其它衬底)或掩模(或其它图案形成装置)的对象的任何设备的部分。这些设备通常可以称作光刻工具。这种光刻工具可以使用真空条件或环境(非真空)条件。
[0360]
虽然上文可以具体地参考在光学光刻术的情境下的本发明的实施例的使用,但应了解,本发明在情境允许的情况下不限于光学光刻术且可以用于其它应用(例如,压印光刻术)中。
[0361]
虽然上文已描述了本发明的特定实施例,但应了解,可以与所描述的方式不同的其它方式来实践本发明。以上描述意图是说明性的,而不是限制性的。因此,本领域技术人员将明白的是,可以在不背离下文所阐述的权利要求的范围的情况下对如所描述的本发明进行修改。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献