一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

石墨片用聚酰亚胺膜、其制备方法和由其制备的石墨片与流程

2022-07-11 11:52:28 来源:中国专利 TAG:


1.本发明涉及一种用于石墨片的聚酰亚胺膜、其制造方法以及使用其制造的石墨片。更具体地,本发明涉及一种可以提供良好的热导率同时降低制造成本的用于石墨片的聚酰亚胺膜,其制造方法以及使用其制造的石墨片。


背景技术:

2.近来,随着重量、尺寸和厚度的减小以及集成度的提高,电子设备受到发热量增加的困扰。电子设备中产生的热量可导致电子设备的失效、故障和寿命缩短。因此,电子设备的热管理正在成为重要的课题。
3.石墨片具有比铜、铝等金属片更高的热导率,并且作为电子设备的散热部件而引起关注。这种石墨片可以通过各种方法(例如,聚合物膜的碳化和石墨化)来制造。特别地,聚酰亚胺膜由于其良好的机械和热尺寸稳定性以及化学稳定性而被青睐作为用于石墨片的聚合物膜。
4.已知使用聚酰亚胺膜所制造的石墨片的特性取决于聚酰亚胺膜的特性。尽管已经开发了各种用于石墨片的聚酰亚胺膜,但仍然需要一种适于制造具有进一步提高的热导率的石墨片的聚酰亚胺膜。
5.通过聚酰亚胺膜的石墨化来制造石墨片通常需要2,800℃或更高的高温,这会导致大功率消耗并因此增加制造成本。因此,需要一种可以在较低温度下石墨化的聚酰亚胺膜。


技术实现要素:

6.技术问题
7.本发明的一个目的是提供一种用于石墨片的聚酰亚胺膜,其可以提供良好的热导率同时降低制造成本。
8.本发明的另一个目的是提供一种上述聚酰亚胺膜的制造方法。
9.本发明的又一个目的是提供一种使用上述聚酰亚胺膜制造的石墨片。
10.技术方案
11.1.根据本发明的一个方面,提供一种用于石墨片的聚酰亚胺膜。聚酰亚胺膜是通过酰亚胺化由二酐单体与二胺单体之间的反应形成的聚酰胺酸来制造的,其中该反应在平均粒子直径(d
50
)为约1μm至约6μm的金属化合物粒子的存在下进行。
12.2.在实施方式1中,构成金属化合物的金属可包括镍、铂、硼、铝或它们的组合。
13.3.在实施方式1或2中,金属化合物可包括金属氧化物、金属碳化物、金属氮化物或它们的组合。
14.4.在实施方式1至3的任一项中,金属化合物可包括氮化硼。
15.5.在实施方式1至4的任一项中,基于聚酰亚胺膜的总重量,金属化合物可以以约0.05wt%至约1wt%的量存在于聚酰亚胺膜中。
16.6.在实施方式1至5的任一项中,二酐单体可包括均苯四酸二酐、3,3',4,4'-联苯四羧酸二酐或它们的组合。
17.7.在实施方式1至6的任一项中,二胺单体可包括4,4'-二氨基二苯醚、4,4'-二氨基二苯甲烷或它们的组合。
18.8.根据本发明的另一方面,提供了一种聚酰亚胺膜的制造方法。该聚酰亚胺膜的制备方法包括:通过将有机溶剂与二酐单体、二胺单体和平均粒子直径(d
50
)为约1μm至约6μm的金属化合物粒子混合,然后进行反应来制备含金属化合物粒子的聚酰胺酸溶液;通过将聚酰胺酸溶液与脱水剂和酰亚胺化剂混合来制备聚酰亚胺前体组合物;通过将聚酰亚胺前体组合物浇铸到支撑物上,然后干燥来形成凝胶膜;以及通过凝胶膜的热处理来形成聚酰亚胺膜。
19.9.在实施方式8中,凝胶膜的热处理可以在约100℃至约700℃的温度下进行。
20.10.根据本发明的又一方面,提供了一种石墨片。使用实施方式1~7的任一项所述的聚酰亚胺膜或使用通过实施方式8或9所述的聚酰亚胺膜的制造方法制造的聚酰亚胺薄膜来制造所述石墨片。
21.11.在实施方式10中,可通过在低于2,800℃的温度下使聚酰亚胺膜石墨化来制造石墨片。
22.12.在实施方式10或11中,石墨片的热导率可为使用不含金属化合物粒子的聚酰亚胺膜所制造的石墨片的热导率的约1.05至1.6倍。
23.13.在实施方式10至12的任一项中,石墨片的热导率可为约1,300w/m
·
k或更高。
24.有益效果
25.本发明提供一种用于石墨片的聚酰亚胺膜,其制造方法以及使用其制造的石墨片,该聚酰亚胺膜可以提供良好的热导率同时降低制造成本。
具体实施方式
26.将省略可能不必要地模糊本发明主题的已知功能和结构的描述。
27.应进一步理解,当在本说明书中使用时,术语“包括(comprises)”、“包括(comprising)”、“包含(includes)”和/或“包含(including)”指定所述特征、整数、步骤、操作、元件、组件和/或它们的组的存在,但不排除一个或多个其他特征、整数、步骤、操作、元素、组件和/或它们的组的存在或添加。如本文所用,单数形式的“a”、“an”和“the”旨在也包括复数形式,除非上下文另有明确指示。
28.此外,除非另有明确说明,否则在解释构件时,与某个组件相关的数值被解释为包括公差范围。
29.本文中用来表示特定数值范围的表述“a至b”是指“≥a且≤b”。
30.用于石墨片的聚酰亚胺膜
31.根据本发明的一个方面,提供一种用于石墨片的聚酰亚胺膜。通过酰亚胺化由二酐单体与二胺单体之间的反应形成的聚酰胺酸来制备用于石墨片的聚酰亚胺膜,其中该反应在平均粒子直径(d
50
)为约1μm至约6μm的金属化合物粒子的存在下进行。不含金属化合物粒子的聚酰亚胺膜具有致密的线性聚合物层结构,而在金属化合物粒子存在下制造的聚酰亚胺膜具有含有增加的缠结(entanglement)的庞大的聚合物结构,因此可以在较低温度下
石墨化。此外,使用在金属化合物粒子存在下制造的聚酰亚胺膜所制造的石墨片由于金属组分的协同热传导效应而具有增加的热导率。
32.金属化合物粒子的平均粒子直径(d
50
)为约1μm至约6μm(例如1μm、1.5μm、2μm、2.5μm、3μm、3.5μm、4μm、4.5μm、5μm、5.5μm或6μm)。如果金属化合物粒子的平均粒子直径小于约1μm,则难以在聚酰亚胺膜的石墨化期间将足够量的热能传递至聚酰亚胺膜,而如果金属化合物粒子的平均粒子直径超过约6μm,则难以在聚酰亚胺膜的石墨化期间将热能均匀地传递至整个聚酰亚胺膜。在此,可使用粒子大小分析仪来测量金属化合物粒子的平均粒子直径(d
50
)。金属化合物粒子的平均粒子直径(d
50
)可例如为约2μm至约6μm,作为另一示例,约3μm至约6μm,作为又一示例,约4μm至约5μm,但不限于此。
33.金属化合物粒子的形状没有特别限制,金属化合物粒子可具有各种形状,例如球状、片状、或非晶状。
34.金属化合物的种类没有特别限制。例如,构成金属化合物的金属可包括镍、铂、硼、铝或它们的组合。在一个实施方式中,该金属可包括硼,其对于增加热导率和降低聚酰亚胺膜的石墨化温度是有效的,但不限于此。
35.在一个实施方式中,金属化合物可包括金属氧化物、金属碳化物、金属氮化物或它们的组合。例如,金属化合物可包括金属氮化物,其对于增加热导率和降低聚酰亚胺膜的石墨化温度是有效的,但不限于此。
36.在一个实施方式中,金属化合物可包括氮化硼,其可以提供高的面内热导率以及良好的机械稳定性和耐热性,并且对于聚酰亚胺膜的石墨化是有效的,但不限于此。
37.尽管金属化合物的量没有特别限制,但基于聚酰亚胺膜的总重量,金属化合物可以以例如约0.05wt%约1wt%(例如,0.05wt%、0.1wt%、0.15wt%、0.2wt%、0.25wt%、0.3wt%、0.35wt%、0.4wt%、0.45wt%、0.5wt%、0.55wt%、0.6wt%、0.65wt%、0.7wt%、0.75wt%、0.8wt%、0.85wt%、0.85wt%、0.9wt%、0.95wt%或1wt%)的量存在于聚酰亚胺膜中。在此范围内,金属化合物可以提供增加的热导率,同时降低聚酰亚胺膜的石墨化温度。
38.二酐单体可包括本领域常用的任何二酐单体。例如,二酐单体可包括均苯四酸二酐、3,3',4,4'-联苯四羧酸二酐或它们的组合,其对于增加热导率和降低聚酰亚胺膜的石墨化温度是有效的,但不限于此。
39.二胺单体可包括本领域常用的任何二胺单体而没有限制。例如,二胺单体可包括4,4'-二氨基二苯醚、4,4'-二氨基二苯甲烷或它们的组合,其对于增加热导率和降低聚酰亚胺膜的石墨化温度是有效的,但不限于此。
40.聚酰亚胺膜的厚度没有特别限制。聚酰亚胺膜的厚度可为例如约30μm至约120μm,作为另一示例,约30μm至约80μm,作为又一示例,约50μm至约80μm,但不限于此。
41.可以通过制造聚酰亚胺膜领域中常用的任何合适的方法来制造上述用于石墨片的聚酰亚胺膜。
42.在一个实施方式中,可以通过包括以下步骤的方法来制造聚酰亚胺膜:通过将有机溶剂与二酐单体、二胺单体和平均粒子直径(d
50
)为约1μm至约6μm的金属化合物粒子混合,然后进行反应来制备含金属化合物粒子的聚酰胺酸溶液;通过将聚酰胺酸溶液与脱水剂和酰亚胺化剂混合来制备聚酰亚胺前体组合物;通过将聚酰亚胺前体组合物浇铸到支撑
物上,然后干燥来形成凝胶膜;以及通过对凝胶膜的热处理来形成聚酰亚胺膜。
43.首先,将有机溶剂与二酐单体、二胺单体和平均粒子直径(d
50
)为约1μm至约6μm的金属化合物粒子混合,然后进行反应,从而制备含金属化合物粒子的聚酰胺酸溶液。由于二酐单体、二胺单体和金属化合物粒子与上述的相同,因此将省略其详细描述。
44.可通过将本质上(substantially)等摩尔量的二酐单体和二胺单体与金属化合物粒子一起溶解在有机溶剂中,然后进行反应来获得聚酰胺酸溶液。根据用作二酐单体和二胺单体的单体的类型以及聚酰亚胺膜的所需性能,可以将单体全部一次或依次添加到反应器中。单体之间可能发生部分聚合。
45.有机溶剂可包括能够溶解聚酰胺酸的任何有机溶剂,例如非质子极性有机溶剂。非质子极性有机溶剂的例子可包括酰胺溶剂,例如n,n'-二甲基甲酰胺(dmf)和n,n'-二甲基乙酰胺(dmac),酚类溶剂,例如对氯苯酚和邻氯苯酚,n-甲基-吡咯烷酮(nmp)、γ-丁内酯(gbl)和二甘醇二甲醚。这些可以单独使用或组合使用。根据需要,可进一步使用辅助溶剂,诸如甲苯、四氢呋喃、丙酮、甲乙酮、甲醇、乙醇或水,来调节聚酰胺酸的溶解度。在一个实施方式中,有机溶剂可为酰胺溶剂,例如n,n'-二甲基甲酰胺或n,n'-二甲基乙酰胺,但不限于此。
46.之后,可通过将聚酰胺酸溶液与脱水剂和酰亚胺化剂混合来制备聚酰亚胺前体组合物。
47.在此,脱水剂是指通过脱水来促进聚酰胺酸的闭环的物质,可包含例如脂肪族酸酐、芳香族酸酐、n,n'-二烷基碳二亚胺、低级脂肪族卤化物(lower aliphatic halides)、卤代低级脂肪酸酸酐(halogenated lower fatty acid anhydrides)、芳基膦酸二卤化物和亚硫酰卤化物。这些可以单独使用或以它们的混合物形式使用。其中,考虑到可得性(availability)和成本,优选脂肪族酸酐,诸如乙酸酐、丙酸酐、和乳酸酐。这些可以单独使用或以它们的混合物形式使用。
48.酰亚胺化剂是指促进聚酰胺酸的闭环的物质,可包含例如脂肪族叔胺、芳香族叔胺和杂环叔胺等。其中,考虑到催化反应性,优选杂环叔胺。杂环叔胺的例子可包括喹啉、异喹啉、β-甲基吡啶和吡啶。这些可以单独使用或以它们的混合物形式使用。
49.尽管脱水剂和酰亚胺化剂的量没有特别限制,但是相对于聚酰胺酸中每摩尔的酰胺酸基团,脱水剂可以以约0.5mol至约5mol(例如,0.5mol、1mol、1.5mol、2mol、2.5mol、3mol、3.5mol、4mol、4.5mol或5mol)的量存在,例如,约1.0mol至约4mol,相对于聚酰胺酸中每摩尔的酰胺酸基团,酰亚胺化剂可以以约0.05mol至约3mol(例如,0.05mol、0.1mol、0.5mol、1mol、1.5mol、2mol、2.5mol、3mol)的量存在,例如约0.2mol至约2mol。在这些范围内,可以实现充分的酰亚胺化并且可以容易地将聚酰亚胺前体组合物浇铸为膜形式。
50.在一个实施方式中,基于聚酰亚胺前体组合物的总重量,聚酰胺酸可以以约5wt%至约35wt%(例如,5wt%、10wt%、15wt%、20wt%、25wt%、30wt%或35wt%)的量存在。在这个范围内,前体组合物可以具有适合形成膜的分子量和溶液粘度。基于前体组合物的总重量,聚酰胺酸可以以例如约10wt%至约30wt%的量存在,作为另一示例,约15wt%至约20wt%,但不限于此。
51.在一个实施方式中,聚酰亚胺前体组合物在25℃的温度下可具有约100,000cp至约500,000cp(例如,100,000cp、150,000cp、200,000cp、250,000cp、300,000cp、350,000cp、
400,000cp、450,000cp或50,000cp)的粘度。在此范围内,在使聚酰胺酸具有预定的重均分子量的同时,前体组合物在聚酰亚胺膜的形成期间可以表现出良好的加工性。这里,可以使用布氏粘度计来测量“粘度”。聚酰亚胺前体组合物在25℃的温度下可具有例如约150,000cp至约450,000cp的粘度,作为另一示例,约200,000cp至约400,000cp,作为又一示例,约250,000cp至约350,000cp,但不限于此。
52.在一个实施方式中,聚酰胺酸可具有约100,000g/mol或更高,例如约100,000g/mol至约500,000g/mol(例如,100,000g/mol、150,000g/mol、200,000g/mol、250,000g/mol、300,000g/mol、350,000g/mol、400,000g/mol、450,000g/mol或500,000g/mol)的重均分子量(mw),但不限于此。在此范围内,使用聚酰亚胺薄膜制造的石墨片可以具有进一步提高的热导率。这里,可以通过凝胶渗透色谱法测量“重均分子量”。
53.之后,可通过将聚酰亚胺前体组合物浇铸在支撑物上,然后干燥来形成凝胶膜。
54.支撑物可以包括本领域常用的任何支撑物。支撑体的例子可包括玻璃板、铝箔、环形不锈钢带和不锈钢圆桶(drum)。
55.聚酰亚胺前体组合物的干燥可以在例如约40℃至约300℃,作为另一示例,约80℃至约200℃,作为又一示例,约100℃至约180℃,作为再一示例,约100℃至约130℃的温度下进行。在此范围内,脱水剂和酰亚胺化剂可以被活化,借此浇铸的前体组合物发生部分固化和/或干燥,导致凝胶膜的形成。在此,“凝胶膜”是指在聚酰胺酸转化为聚酰亚胺的中间阶段形成的自支撑膜中间体。
56.根据需要,根据本发明的方法可以进一步包括拉伸凝胶膜以调整最终获得的聚酰亚胺膜的厚度和尺寸以及改善聚酰亚胺膜的取向(orientation)。在此,可在纵向(md)和横向(td)中的至少一个上进行凝胶膜的拉伸。
57.凝胶膜可具有约5wt%至约500wt%,例如约5wt%至约200wt%,作为另一示例,约5wt%至约150wt%的挥发物含量,但不限于此。在此范围内,可以避免在随后的用于获得聚酰亚胺膜的热处理过程中发生诸如膜破裂、色调不均匀和特性变化等缺陷。在此,可根据公式1来计算凝胶膜的挥发物含量。在公式1中,a表示凝胶膜的初始重量,b表示在将凝胶膜加热至450℃保持20分钟后凝胶膜的重量。
58.《公式1》
59.(a-b)
×
100/b
60.之后,可以通过对凝胶膜的热处理来形成聚酰亚胺膜。
61.可以在例如约100℃至约700℃,作为另一示例,约200℃至约600℃,作为又一示例,约250℃至约550℃的可变温度下持续例如约0.05至0.4小时,作为另一示例,约0.08至0.3小时,作为又一示例,约0.1至0.2小时的时间来进行凝胶膜的热处理。在这些条件下,可以从凝胶膜中除去剩余的溶剂,并且几乎所有剩余的酰胺酸基团都可以被酰亚胺化,从而获得聚酰亚胺膜。
62.根据需要,可以将所获得的聚酰亚胺膜在约400℃和约650℃的温度下进行约5至400秒的热精加工处理(heat-finishing treatment),以进一步固化。在此,可以在预定张力下进行热精加工处理以减轻所获得的聚酰亚胺膜的任何残留应力。
63.石墨片
64.根据本发明的另一方面,提供一种使用上述用于石墨片的聚酰亚胺膜制造的石墨
片。
65.可以在较低温度下石墨化聚酰亚胺膜,例如低于2,800℃(例如,2,700℃或更低、2,600℃或更低、2,500℃或更低、2,400℃或更低、2,300℃或更低),作为另一示例,约2,000℃至约2,500℃,作为又一示例,约2,200℃至约2,400℃,从而降低石墨片制造成本,同时由于其金属组分而提高石墨片的热导率。
66.在一个实施方式中,比起使用除了没有金属化合物粒子外在相同条件下制造的聚酰亚胺膜所制造的石墨片,石墨片(即,使用在金属化合物粒子的存在下制造的聚酰亚胺膜所制造的石墨片)可以具有更高的热导率。例如,石墨片的热导率可以为使用不含金属化合物粒子的聚酰亚胺膜制造的石墨片的热导率的约1.05至1.6倍(例如,1.05倍、1.1倍、1.2倍、1.3倍、1.4倍、1.5倍或1.6倍),例如约1.05至1.5倍,作为另一示例,约1.1至1.5倍,作为又一示例,约1.3至1.5倍,但不限于此。
67.在一个实施方式中,石墨片可具有约1,300w/m
·
k或更高(例如,1,350w/m
·
k或更高、1,400w/m
·
k或更高、1,450w/m
·
k或更高、1,500w/m
·
k或更高、1,550w/m
·
k或更高、1,600w/m
·
k或更高、1,650w/m
·
k或更高、或1,700w/m
·
k或更高)的热导率。例如,石墨片可具有约1,300w/m
·
k至约2,000w/m
·
k,作为另一示例,约1,300w/m
·
k至约1,800w/m
·
k,作为又一示例,约1,400w/m
·
k至约1,800w/m
·
k的热导率,但不限于此。
68.石墨片的厚度没有特别限制。石墨片可具有例如约15μm至约70μm的厚度,作为另一示例,约15μm至约50μm,作为又一示例,约20μm至约40μm,但不限于此。
69.可通过在制造石墨片领域中常用的任何合适的方法来制造石墨片。例如,可通过聚酰亚胺膜的碳化和石墨化来制造石墨片。
70.在此,碳化过程可以在例如约1,000℃至约1,500℃的温度下进行约1至5小时,但不限于此。通过碳化过程,聚酰亚胺膜的聚合物链被热分解,导致形成包括非晶碳体和/或无定形碳体的初步石墨片。
71.在此,石墨化过程可以在例如小于约2,800℃(例如,2,700℃或更低、2,600℃或更低、2,500℃或更低、2,400℃或更低、2,300℃或更低),作为另一示例,约2,000℃至约2500℃,作为又一示例,约2,200℃至约2,400℃的温度下进行约1至10小时,但不限于此。通过石墨化过程,非晶碳体和/或无定形碳体的碳原子被重新排列,从而形成石墨片。
72.接下来,将参考实施例更详细地描述本发明。然而,应当注意,提供这些实施例仅用于说明而不应以任何方式解释为限制本发明。
73.实施例
74.实施例1
75.首先,将50g作为二酐单体的均苯四酸酐、50g作为二胺单体的4,4'-二氨基二苯醚、1g作为金属化合物粒子的平均粒子直径(d
50
)为1μm的氮化硼(3m公司)和300g作为有机溶剂的二甲基甲酰胺混合在一起,然后进行聚合,从而制备聚酰胺酸溶液。
76.之后,将100g制备的聚酰胺酸溶液与20g作为脱水剂的乙酸酐、3g作为酰亚胺化剂的β-甲基吡啶和15g二甲基甲酰胺混合,从而制备具有最终粘度为300,000cp的聚酰亚胺前体组合物。
77.之后,使用刮刀在sus板(100sa,山特维克有限公司)上将制备的聚酰亚胺前体组合物浇铸至80μm的厚度,然后在100℃干燥5分钟,从而形成凝胶膜。接着,将凝胶膜与sus板
分离,然后在300℃下热处理5分钟,并在500℃下热处理5分钟,从而制造出厚度为50μm的聚酰亚胺膜。在此,基于聚酰亚胺膜的总重量,金属化合物以0.05wt%的量存在。
78.实施例2至6和比较例1至3
79.除了金属化合物的粒子直径和量如表1中所列出的改变之外,以与实施例1相同的方式制造聚酰亚胺膜。
80.特性评估
81.(1)金属化合物粒子的平均粒子直径(d
50
(单位:μm):通过使用粒子大小分析仪(sald-2201,岛津有限公司)计算粒子大小(d
50
)的分布来测量金属化合物粒子的平均粒子直径(d
50
)。
82.(2)石墨片的热导率(单位:w/m
·
k):使用电炉在氮气下以1℃/分钟的加热速率将实施例和比较例中制造的每个聚酰亚胺膜加热至1,000℃,然后保持该温度3小时使聚酰亚胺膜碳化。接着,将碳化的聚酰亚胺膜在氩气下以20℃/分钟的加热速度加热至表1中所示的温度,然后保持该温度3小时使聚酰亚胺膜石墨化,从而制造石墨片。
83.然后,使用热扩散率测试仪(lfa467,netzsch co.)通过激光闪光法测量所制造的石墨片的面内热扩散率,然后将面内热扩散率的测量值乘以密度(重量/体积)和比热(通过dsc测量)来计算石墨片的热导率。
84.表1
[0085][0086]
从表1所示的结果可看出,尽管在低温下被石墨化,但在平均粒子直径(d
50
)在本发明范围内的金属化合物粒子的存在下所制备的实施例1至6的聚酰亚胺膜可被制备为具有良好热导率的石墨片。
[0087]
相反地,比较例1的聚酰亚胺膜(不含有任何金属化合物粒子)需要高的石墨化温度,并且尽管在高温下被石墨化,其所制得的石墨片的热导率低于使用实施例1至6的聚酰亚胺膜所制得的石墨片的热导率。
[0088]
另外,在平均粒子直径(d
50
)在本发明范围外的金属化合物粒子的存在下所制备的比较例2和比较例3的聚酰亚胺膜在低温下被石墨化时,由其所制得的石墨片具有较小的热导率。
[0089]
应当理解,本领域的技术人员在不脱离本发明的精神和范围的情况下可以做出各
种修改、变化、变更和等效实施方式。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献