一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

用于AGV的车载动力总成的制作方法

2022-07-10 16:17:03 来源:中国专利 TAG:

用于agv的车载动力总成
技术领域
1.本公开涉及用于自动引导车辆的车载动力总成。


背景技术:

2.自动引导车辆(agv)使用电池来向agv中的不同电动机提供电力。图1a示出了用于agv的动力总成的示例。具有电压vb的电池1通过dc/dc转换器(示出为升压转换器bc)连接到dc链路(示出为电压源逆变器vsi)。可替代地,电池1可以直接连接到vsi。在电动车辆(ev)应用中,超级电容器已用于延长电池寿命,并因此延长整个系统的寿命。在图1a中,在bc中提供超级电容器5和/或在vsi中提供超级电容器6,以用于缓冲来自加速和再生制动的高功率峰值。bc包括连接到电池1和mosfet 4的电感器2,mosfet 4连接到vsi以及超级电容器5。电感器2还连接到mosfet 3。vsi包括被布置为提供电动机电压va-vc的mosfet 7-12。因此,将超级电容器单元集成到车载能量存储单元中在降低系统的总成本以及延长其寿命方面具有高潜力。在这种情况下,通常的做法是使用另一dc/dc转换器来接口接合超级电容器,即,如下使用两个bc:一个bc用于电池,并且一个bc用于超级电容器,其中两个dc/dc转换器的输出将并联连接到vsi,如图1b所示。在图1b中,超级电容器bc与图1a所示的动力总成并联地被添加,以用于缓冲来自加速和再生制动的高功率峰值。超级电容器bc包括连接到电池13和mosfet 16的电感器14,mosfet 16连接到vsi以及超级电容器17。电感器14还连接到mosfet 15。
3.在agv应用中,车载动力总成的成本和紧凑性被高度评估。对于图1b所示的常规解决方案,存在两个dc/dc转换器bc和一个vsi,这导致了较高的成本并限制了更加紧凑的系统设计。
4.如https://en.wikipedia.org/wiki/supercapacitor所述,也称为超级电容(ultracapacitor)的超级电容器(sc)是介于电解电容器与可充电电池之间的、具有远高于其它电容器的电容值但电压限制较低的高容量电容器。超级电容器通常在每单位体积或质量下比电解电容器储能多10至100倍,可以比具有高很多的电流能力的电池快很多地接受和输送电荷,并且比可充电电池承受更多的充放电循环。
5.与普通电容器不同,超级电容器不使用传统的固体电介质,而是使用静电双层电容和电化学赝电容,这两者都对电容器的总电容有贡献,但存在一些差异。
6.静电双层电容器(edlc)使用碳或其衍生物作为电极,具有远高于电化学赝电容的静电双层电容,从而在导电电极表面和电解质之间的界面处的亥姆霍兹(helmholtz)双层中实现电荷分离。电荷的分离是几个埃(0.3-0.8nm)的数量级,比常规电容器中小得多。
7.电化学赝电容器使用双层电容上附加了大量电化学赝电容的金属氧化物或导电聚合物电极。赝电容通过利用氧化还原反应的法拉第电子电荷转移、插层或电吸附来实现。
8.诸如锂离子电容器之类的混合电容器使用具有不同特性的电极:一个主要表现出静电电容,并且另一个主要表现出电化学电容。
9.电解质在两个电极之间形成离子导电连接,这将它们与其中总是存在介电层的常
规电解电容器区分开,并且所谓的电解质(例如mno2或导电聚合物)实际上是第二电极(阴极,或更准确地说是正极)的一部分。超级电容器通过不对称电极的设计来极化,或者对于对称电极,通过在制造期间施加的电势来极化。


技术实现要素:

10.本发明的一个目的是将电池和超级电容器集成在用于自动引导车辆(agv)的车载动力总成中,而不需要附加的dc/dc转换器,以实现紧凑的系统设计。
11.根据第一方面,提供了一种用于agv的车载动力总成。车载动力总成包括具有至少一个中点极、正dc链路极和负dc链路极的分源逆变器(ssi)、串联连接在正dc链路极或负dc链路极与中点极之间的电池和电感器、以及连接在正dc链路极与负dc链路极之间的超级电容器。
12.车载动力总成可以被配置成生成多个电气相,诸如三个电气相。
13.每个电气相可以连接到单独的中点极。车载动力总成还可以包括串联连接在正或负dc链接极与每个中点极之间的电池和电感器。
14.所有电气相可以连接到公共中点极。车载动力总成还可以包括在公共中点极与每个电气相之间的半导体元件。半导体元件可以是二极管或mosfet。
15.电池可以比到电感器更靠近地连接到正或负dc链路极。
16.车载动力总成还可以包括ssi的每个电气相的超级电容器,每个超级电容器连接在用于ssi的公共负dc链路极与ssi的每个相的单独的正dc链路极之间。
17.车载动力总成还可以包括具有降压变压器的非车载充电器。车载充电器可以经由开关和电感连接到ssi的电气相。车载充电器可以单独地连接到各个中点极。车载充电器可以连接到公共中点极。
18.至少一个超级电容器的电容可以至少为1mj/mm3。
19.每个超级电容器的电容可以至少为1法拉(f),诸如至少为10f或至少为100f。
20.通过所提出的车载动力总成,超级电容器连接到dc链路端子,以允许针对电池削减和缓冲峰值负载。通过将开关集成到ssi中,模块化设计也是可行的。电动机还可以被驱动以改变dc链路电压。dc链路将进一步具有较小的电压变化,因为电池直接连接到dc链路并且超级电容器被布置为仅注入高电流。
21.通常,权利要求书中使用的所有术语将根据其在技术领域中的通常含义来解释,除非本文另外明确定义。所有对“一/一个/所述元件、设备、部件、装置、步骤等”的引用,除非另外明确说明,否则将被开放地解释为指代元件、设备、部件、装置、步骤等的至少一个实例。除非明确说明,本文公开的任何方法的步骤不必以所公开的确切顺序执行。
附图说明
22.现在参考附图通过示例描述各方面和实施例,其中:
23.图1a和1b示意性地示出用于agv的已知车载动力总成;以及
24.图2-6是示意性地示出用于agv的车载动力总成的实施例的图。
具体实施方式
25.现在将在下文中参考附图更全面地描述本发明内容的各方面,在附图中示出了本发明的某些实施例。
26.然而,这些方面可以许多不同的形式实施,并且不应当被视为限制;相反,这些实施例是以示例的方式提供的,因而本发明能够彻底和完整的将所有方面的范围完全传达给本领域技术人员。在整个说明书中,相同的附图标记表示相同的元件。
27.参考图2a和2b,示出了用于agv的车载动力总成的实施例。该实施例提出了有效的拓扑结构,该拓扑结构将电池和超级电容器与二极管-电感器集合集成在一起以提供分源逆变器(ssi),从而利用机架上可用的两电平转换器。
28.超级电容器20连接到三相ssi的dc链路,即在dc链路的正极和负极之间。配置成驱动三相agv的电池21连接在(经由电感器22的)ssi的中点与用于agv的电动机驱动的dc链路的负极(图2a)或正极(图2b)之间。
29.ssi的中点连接到三相ssi的每一相的二极管23,每相连接到电动机的相应ac端子va、vb、vc。ssi还包括布置为提供电动机电压va-vc的mosfet 7-12。
30.因此,电池电流和超级电容器电流都可以由ssi控制,使得仅平滑的dc电流从电池提取或馈送到电池,并且波动电流由超级电容器缓冲,超级电容器具有更好的循环能力和更小的内部损耗。电池寿命可以得到延长,同时超级电容器的寿命显著长于电池,并且不再是问题。此外,来自再生制动的能量可以被缓冲以延长充电里程。来自再生制动的能量在超级电容器被缓冲,超级电容器的电压将建立并且该超级电容器被设计成处理这种情况。然后,存储在超级电容器中的能量在加速期间被再次注入到负载。
31.在电池电压vb为12v并且超级电容器额定电压v
sc
为48v的情况下,系统的dc链路电压可在48v与24v之间变化,以便允许来自电动机的高电流注入或吸收。
32.因此允许超级电容器20、电池21和电动机之间的能量流动。有两个主要的优点:通过使用超级电容器缓冲负载峰值并吸收再生能量,可以延长电池寿命和充电里程;并且二极管和电感器的成本可能低于传统解决方案中的dc/dc转换器的成本。
33.ssi、电池和超级电容器均可以由标准化商业产品制成。具有二极管的电感器可以备选地集成为单件,而不是连接到标准ssi的标准产品。只需对agv的典型车载动力总成做出微小的设计修改即可实现拓扑结构。
34.图3示出了具有拓扑结构的实施例,其中图2a和2b的二极管23和24由mosfet 25代替以允许双向功率流。当将能量推入电池中时,mosfet 25以同步整流模式工作,并根据电动机要求以基频切换。
35.图4示出了具有拓扑结构的实施例,其中图3的电池21被分成3个模块v
b1
、v
b2
、v
b3
,其中每个模块经由开关26a、26b、26c连接在负dc链路极和ac端子va、vb、vc中的一个端子之间。开关26a、26b、26c可以是二极管、mosfet或具有串联mosfet的二极管,以实现完全可控性。开关26a、26b、26c也可以是继电器以仅启动这些电池中的一个电池。
36.图5示出了具有拓扑结构的实施例,其中超级电容器20也以图4所示的电池相同的方式分成3个模块v
sc1
、v
sc2
、v
sc3
,使得电动机的每相连接到半桥。
37.图6示出了具有图3的拓扑结构的车载充电器的实施例。外部ac电源经由降压变压器29能够经由开关28和电感27连接到ssi的相va、vb、vc。电动机能够经由开关30连接。当电
池21经由外部ac电源充电时,电动机断开连接。车载充电器被图示为连接到三相端子,但是备选地可以作为单相充电器连接到公共中点极。继电器或接触器可以用于避免变压器和电动机之间的直接连接。作为一种备选选项,开关可以是mosfet,在这种选项下,车载充电器可以仅仅是降压变压器而没有太多复杂性,从而降低系统成本。
38.特定实现方式的拓扑的选择可以取决于agv的内部布局设计(即空间要求)和所需的功能。
39.参考图4和图5,示出了用于agv的车载动力总成的实施例。车载动力总成包括ssi、ssi的每个电气相的中点极、正dc链路极和负dc链路极、串联在正或负dc链路极与中点极之间的电池21和电感器22、以及连接在正和负dc链路极之间的超级电容器20。
40.车载动力总成可以被配置成生成多个电气相。可以有三个电气相va、vb、vc.。
41.每个电气相va、vb、vc连接到单独的中点极。
42.车载动力总成还可以包括电池21和电感器22,它们串联连接在正或负dc链路极与每个中点极之间。
43.(多个)电池可以比到电感器更靠近地连接到正或负dc链路极。
44.车载动力总成还可以包括ssi的每个电气相va、vb、vc的超级电容器,每个超级电容器连接在ssi的公共负dc链路极与ssi的每个相的单独正dc链路极之间。
45.车载动力总成还可以包括具有降压变压器的非车载充电器。
46.车载充电器可以经由开关和电感连接到ssi的电气相va、vb、vc。
47.车载充电器可以单独地连接到各个中点极。
48.至少一个超级电容器20的电容可以至少为1mj/mm3。
49.每个超级电容器20的电容可以至少为1法拉(f),或者可以至少为10f,或者至少为100f。
50.参考图2、3和6,示出了用于agv的车载动力总成的实施例。车载动力总成包括具有公共中点极、正dc链路极和负dc链路极的ssi、串联连接在正或负dc链路极与公共中点极之间的电池21和电感器22、以及连接在正和负dc链路极之间的超级电容器20。
51.车载动力总成可以被配置成生成多个电气相。可以有三个电气相va、vb、vc。
52.所有电气相都连接到公共中点极。
53.车载动力总成还可以包括在公共中点极与每个电气相va、vb、vc之间的半导体元件23、24、25。
54.半导体元件可以是二极管23、24或mosfet 25。
55.电池21可以比到电感器22更靠近地连接到正或负dc链路极。
56.车载动力总成还可以包括ssi的每个电气相va、vb、vc的超级电容器20,每个超级电容器连接在ssi的公共负dc链路极与ssi的每个相的单独正dc链路极之间。
57.车载动力总成还可以包括具有降压变压器29的非车载充电器。
58.车载充电器可以经由开关28和电感27连接到ssi的电气相va、vb、vc。
59.车载充电器可以连接到公共中点极。
60.至少一个超级电容器20的电容可以至少为1mj/mm3。
61.每个超级电容器20的电容至少为1f,或至少为10f,或至少为100f。
62.以上主要参考一些实施例及其示例描述了本发明的各个方面。然而,如本领域技
术人员容易理解的,在由所附专利权利要求书所限定的本发明的范围内,除以上公开的实施例之外的其它实施例同样可行。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献