一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种低损耗BiFeO3-BaTiO3高温无铅压电陶瓷及其制备方法

2022-06-29 21:17:04 来源:中国专利 TAG:

一种低损耗bifeo
3-batio3高温无铅压电陶瓷及其制备方法
技术领域
1.本发明涉及一种高温无铅压电陶瓷材料及其制备技术领域,提供一种低损耗bifeo
3-batio3高温无铅压电陶瓷及其制备方法,采用传统固相反应法制备得到纯相、低损耗、高压电活性、低温烧结的mno2掺杂0.68bifeo
3-0.32batio3陶瓷,其合成工艺简单、成本低廉、电性能甚至超出目前商用的钛酸铋系k-15陶瓷,在高温压电传感器的制备方面具有较高的工业应用价值。


背景技术:

2.作为航空、医疗、国防和能源等领域不可缺少的关键性基础材料,压电陶瓷的主流市场多年来一直被铅基压电陶瓷所占据,铅基压电陶瓷的使用和废弃引起严重的环境污染和健康损害问题,欧盟和世界各国相继立法以加强对有毒物质含量超标的元器件和电子设备的管控,压电陶瓷无铅化迫在眉睫,为保证高温环境下的正常工作,压电陶瓷需要在足够宽的温度范围保持稳定的压电性,如石油勘探、汽车工业、航空航天和能源等领域使陶瓷压电性能的高温稳定性面临诸多挑战,高温压电传感器要求压电陶瓷具有低介电损耗、高居里温度tc、强压电性和良好的温度稳定性。目前,在高温无铅压电陶瓷体系中,bifeo
3-batio3体系以其在三方相(r)-四方(t)相两相共存的准同型相界区域(mpb)的高压电活性和高tc,成为可用于高温压电传感器的重要候选材料,但其钙钛矿相稳定性低、高场电阻率低、漏电流大、高场极化困难、高介电损耗和高电导率导致其电学特征变得复杂,提高bifeo
3-batio3陶瓷的直流电阻率和降低低频交流损耗,是实现高场极化和压电性能表征的必要条件,获得低损耗、高tc和强压电性是bifeo
3-batio3陶瓷实现其在高温压电传感器应用的一个技术瓶颈。


技术实现要素:

3.针对上述bifeo
3-batio3无铅陶瓷的低频介电损耗高和直流电阻率低的技术问题,本发明提供一种低损耗bifeo
3-batio3高温无铅压电陶瓷及其制备方法,利用该方法制备得到的68bf-32btmn100x陶瓷在1khz下室温介电损耗tanδ低至0.045,烧结温度低(ts≤1020℃),铁电-顺电相变特征温度tm高达436℃,d
33
=133pc/n,电性能超出目前商用钛酸铋系k-15陶瓷(tanδ=0.03、d
33
=18pc/n、tc=600℃)。
4.本发明提供一种低损耗bifeo
3-batio3高温无铅压电陶瓷,其化学配方组成为0.68bifeo
3-0.32batio3 x wt%mno2,其中x为化合物中添加剂mno2的质量百分数,x的范围为0.01≤x≤0.03。
5.上述一种低损耗bifeo
3-batio3高温无铅压电陶瓷的制备方法,按以下步骤进行:
6.(1)按化学式0.68bifeo
3-0.32batio3 x wt%mno2的化学计量比称量分析纯级别的baco3、caco3、tio2、bi2o3、fe2o3粉料和98%纯度的mno2粉料,其中0.01≤x≤0.03,以无水乙醇为媒质、玛瑙磨球为球磨介质放入行星式球磨机采用湿法球磨工艺混合均匀,其中,球磨机的转速为150~200转/min,球磨时间为24~26h,无水乙醇媒质的质量与粉料总质量的
配比为(1.0~1.4):1,所用磨球由直径为20mm、10mm和6mm的玛瑙球按个数比1:11:16组成,然后烘干浆料;
7.(2)所得粉料用压片机在8~10mpa保压1~2min压块得到直径为58~60mm的圆柱体形状待预烧胚体,用马弗炉以2~4℃/min的速度升温至650~750℃时保温3~4h进行预烧,随炉自然冷却至室温得到预烧结压片;
8.(3)在研钵中将预烧结压片粉碎,采用湿法球磨工艺以150~175转/min的转速球磨20~24h混合均匀,将浆料置于70~90℃的干燥箱中保温4~5h烘干,加入质量浓度为5~7%的聚乙烯醇溶液粘结剂,所述粘结剂的加入量为68bf-32btmn100x粉体质量的4~7%,研磨均匀,置于空气中陈化22~24h,造粒,过筛,用压片机在5~8mpa保持1~3min压成薄圆片胚体,上下叠放,埋入同组分粉料中,以3~5℃/min速度升温至600℃时保温2h排塑,随炉冷却至室温得到68bf-32btmn100x胚体;
9.(4)将获得的68bf-32btmn100x胚体放在马弗炉中采用阶梯式升温的方法进行烧结:以2~4℃/min的速度升温至400℃时保温2h,再以1.5~3℃/min速度升温至700℃时保温2h,最后以1~2℃/min的速度升温至980~1020℃时保温3~4h烧结,随炉冷却至室温制得所述低损耗bifeo
3-batio3高温无铅压电陶瓷。
10.本发明的优点:
11.1.本发明通过在bifeo
3-batio3陶瓷的三方相r和四方相t共存的两相临界点的mpb组分68bf-32bt中引入mno2通过b位受主掺杂使其烧结温度(ts《1020℃)和tc降低,晶胞体积增大,样品表现出典型的介电弛豫行为,介电损耗明显降低,漏电流密度减小(j≤1.04
×
10-5
a/cm2),室温铁电和压电性能增强,制备的68bf-32btmn100x陶瓷均呈r-t两相共存的钙钛矿结构,致密度均高于92%;
12.2.本发明制备的68bf-32btmn100x陶瓷的室温tanδ低至0.045,其中68bf-32btmn20陶瓷的室温综合电性能最佳:ts=1000℃,tanδ=0.045,tm=436℃,d
33
=133pc/n,其电性能超出目前商用钛酸铋系k-15陶瓷(tanδ=0.03、d
33
=18pc/n、tc=600℃),在高温压电传感器中具有巨大应用潜力;
13.3.本发明制备的68bf-32btmn100x陶瓷的烧结温度ts和铁电-顺电相变特征温度tm随着mno2掺杂量的增大而单调降低,tm由未掺杂68bf-32bt陶瓷的460℃降至68bf-32btmn60陶瓷的385℃,0.2wt%mno2掺杂使68bf-32bt陶瓷的室温、1khz下的介电损耗降至最低(tanδ=0.045),铁电性(pr=28.2μc/cm2)和压电性(tm=436℃,d
33
=133pc/n)最强。
14.4.本发明获得的低损耗bifeo
3-batio3高温无铅压电陶瓷的合成工艺简单,成本低廉,烧结温度低于1020℃,容易实现工业化推广,部分陶瓷的电性能甚至优于目前商用的钛酸铋系k-15陶瓷,在高温压电传感器方面具有很大的应用潜力。
附图说明
15.图1为具体实施方式六制备的68bf-32btmn100x陶瓷(0.01≤x≤0.03)的粉末x射线衍射图谱(xrd);图2为具体实施方式六制备68bf-32btmn100x陶瓷样品(x=0、0.1、0.2、0.3、0.45和0.6)的表面背散射扫描电镜照片(sem);图3为具体实施方式六制备68bf-32btmn100x陶瓷样品(x=0、0.1、0.2、0.3、0.45和0.6)的介温谱图;图4为具体实施方式六制备的68bf-32btmn100x陶瓷样品的特征温度t
m-mno2掺杂量x关系曲线;图5为具体实施方
式六制备的68bf-32btmn100x陶瓷样品的在1khz、室温测得的εr和tanδ随mno2掺杂量x的变化关系;图6为具体实施方式六制备的68bf-32btmn100x陶瓷样品(x=0、0.1、0.2、0.3、0.45和0.6)的室温铁电电滞回线(p-e);图7为具体实施方式六制备的68bf-32btmn100x陶瓷样品的室温铁电性能参数p
max
、pr和ec随着mno2掺杂量x的变化关系;图8为具体实施方式六制备的68bf-32btmn100x陶瓷样品的室温压电常数d
33
、机电耦合系数k
p
和机械品质因数qm随着mno2掺杂量的变化关系;图9为具体实施方式六制备的68bf-32btmn100x陶瓷样品的漏电流密度-场强(j-e)关系曲线。
具体实施方式
16.本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
17.具体实施方式一:本实施方式一种低损耗bifeo
3-batio3高温无铅压电陶瓷的化学式为0.68bifeo
3-0.32batio3 x wt%mno2,其中x为化合物中mno2的质量百分数,0.01≤x≤0.03。
18.具体实施方式二:本实施方式一种低损耗bifeo
3-batio3高温无铅压电陶瓷的制备方法,按以下步骤进行:
19.(1)按化学组成0.68bifeo
3-0.32batio3 x wt%mno2的化学计量比称量分析纯级别的药品粉料baco3、caco3、tio2、bi2o3、fe2o3和98%纯度的mno2粉料,其中0.01≤x≤0.03,将粉料放入玛瑙罐中,放入无水乙醇媒质,以玛瑙磨球为球磨介质用行星式球磨机以150~200转/min的转速湿法球磨24~26h混合均匀,其中无水乙醇媒质的质量与粉料总质量的配比为(1.0~1.4):1;所用磨球由直径为20mm、10mm和6mm的玛瑙球按个数比1:11:16组成,烘干浆料;
20.(2)将所得粉料用压片机在8~10mpa保压1~2min进行压块得到直径为58~60mm的圆柱体形状待预烧胚体,用马弗炉以2~4℃/min的速度升温至650~750℃时保温3~4h进行预烧,随炉自然冷却至室温得到预烧结胚体;
21.(3)在研钵中将预烧结胚体粉碎,采用湿法球磨工艺以无水乙醇为媒质以150~200转/min的转速球磨24~26h混合均匀,将浆料置于70~90℃的干燥箱中保温4~5h烘干,加入质量浓度为5~7%的聚乙烯醇溶液粘合剂,粘结剂的加入量为68bf-32btmn100x粉体质量的4~7%,放在空气中陈化24~26h,造粒,过筛,取150目粉料,在5~8mpa保持1~3min压成薄圆片胚体,上下叠放埋入相同组分的粉料中,600℃时保温2h排塑,随炉冷却至室温得到68bf-32btmn100x待烧结胚体;
22.(4)将所得的68bf-32btmn100x待烧结胚体上下叠放,埋入同组分粉料中,采用阶梯式升温的方法进行烧结:首先以2~4℃/min的速度升温至400℃时保温2h,其次以1.5~3℃/min速率升温至700℃时保温2h,然后以1~2℃/min的速率升温至980~1020℃时保温3~4h,随炉冷却至室温制得所述低损耗bifeo
3-batio3高温无铅压电陶瓷,步骤(4)中所述阶梯式升温的烧结工艺的温度节点分别是400℃、700℃和980~1020℃。
23.具体实施方式三:本实施方式与具体实施方式二不同的是:步骤(1)中x=0.2,x=0.3。其它与具体实施方式二相同。
24.具体实施方式四:本实施方式与具体实施方式二或三不同的是:步骤(2)中预烧结
胚体的升温速率为1.5~3℃/min,预烧工艺参数为700℃保温3h。其它与具体实施方式二或三相同。
25.具体实施方式五:本实施方式与具体实施方式二至四之一不同的是:步骤(4)中烧结参数为1000℃保温3h。其它与具体实施方式二至四之一相同。
26.具体实施方式六:本实施方式的一种低损耗bifeo
3-batio3高温无铅压电陶瓷的制备方法,按以下步骤进行:
27.(1)按化学组成0.68bifeo
3-0.32batio3 x wt%mno2的化学计量比称量分析纯级别的baco3、caco3、tio2、bi2o3、fe2o3粉料和98%纯度的mno2粉料,加入无水乙醇媒质、以玛瑙磨球为球磨介质以150转/min的转速用湿法球磨工艺球磨24h混合均匀,烘干浆料,其中无水乙醇媒质的质量与粉料总质量的配比为(1.0~1.4):1;所用磨球由直径为20mm、10mm和6mm的玛瑙球按个数比1:11:16组成;
28.(2)将所得的粉料在8mpa保压1min压块,以3℃/min的速率升至700℃时保温3h进行预烧,随炉冷却至室温得到预烧结胚体;
29.(3)在玛瑙研钵中将步骤(2)制备的预烧结胚体粉碎,以无水乙醇为媒质、以150转/min的转速用湿法球磨工艺球磨24h混合均匀,烘干浆料,加入质量浓度为7%的聚乙烯醇溶液粘合剂,粘合剂的加入量为68bf-32btmn100x粉体质量的6%,陈化24h,造粒,过筛,取150目粉料,在7mpa保持1min压成薄圆片胚体,叠放、埋入同组分粉料中,600℃时保温2h排塑,随炉冷却至室温,得到68bf-32btmn100x待烧结胚体;
30.(4)将所得的68bf-32btmn100x待烧结胚体叠放,埋入相同组分粉料,采用阶梯升温的烧结工艺:首先以3℃/min的速度升至400℃时保温2h,其次以2℃/min速度升温至700℃时保温2h,然后以1℃/min的速度升温至1000℃时保温3h,随炉冷却至室温制备得到所述低损耗bifeo
3-batio3高温无铅压电陶瓷。
31.另外,化学式0.68bifeo
3-0.32batio3 x wt%mno2中x分别取0、0.1、0.2、0.3、0.45和0.6,按照本实施方式的方法进行实验。
32.本实施方式制备一种低损耗bifeo
3-batio3高温无铅压电陶瓷的室温xrd图谱如图1所示,2θ=33
°
附近的(121)单峰和2θ=45
°
附近的(002)/(200)劈裂峰表明68bf-32btmn100x(0≤x≤0.6)陶瓷样品在室温均具有r-t两相共存的晶体结构,随着mno2掺杂量x增大,晶胞体积膨胀。
33.本实施方式制备一种低损耗bifeo
3-batio3高温无铅压电陶瓷(0≤x≤0.6)的表面背散射sem图如图2所示;mno2掺杂量的增大使样品的烧结温度降低,样品结晶良好,晶界清晰,致密度均大于92%,平均晶粒尺寸均随着mno2掺杂量的增大先增大后减小。
34.用烧银法在68bf-32btmn100x(0≤x≤0.6)陶瓷样品的上下两表面被覆银电极,600℃时保温1h烧制直径为10~13mm的满电极,在室温、50kv/cm电场中极化20min,用安捷伦4284a型号阻抗分析仪和温控装置在25~500℃温度范围内测试极化后的本实施方式制备的68bf-32btmn100x(0≤x≤0.6)陶瓷样品在频率为1khz、10khz和100khz的介温谱如图3所示,获得样品的铁电-顺电相变的特征温度tm随mno2掺杂量x的变化关系如图4所示,从图中可以看出,在25~500℃温区所有样品均呈现一个介电反常峰,对应铁电-顺电相变特征温度tm,其相对介电常数峰值ε
rmax
随测试频率f增大而减小,表现出典型的频率色散和弥散相变行为,表明样品为弛豫型铁电体,随x增大,tm单调降低,介电反常峰转变为平缓的“鼓
包”,弛豫化有利于其介电温度稳定性增强。
35.用安捷伦4294a型号阻抗分析仪对本实施方式制备的68bf-32btmn100x(0≤x≤0.6)陶瓷样品的1khz、室温介电性能参数(εr和tanδ)进行测试,结果如图5所示,小于0.2wt%的mno2掺杂使68bf-32bt陶瓷的室温介电损耗tanδ降低了30%,在0.02≤x≤0.03组分范围内68bf-32btmn100x陶瓷样品的tanδ《0.046,其介电弛豫化和tm降低可能来自于b位mn受主掺杂量增大引起的晶粒细化、氧八面体稳定性降低、内电场的建立和缺陷偶极效应的共同作用。
36.采用td-88a铁电综合测试仪在室温、1hz、70kv/cm电场下测试得到68bf-32btmn100x陶瓷样品的电滞回线如图6所示,其对应的室温铁电性能参数(极化强度最大值p
max
、剩余极化强度pr和矫顽场ec)随mno2掺杂量x的变化关系如图7所示,由图中可以看出,0.2wt%的mno2掺杂使68bf-32bt样品的室温铁电性最佳:p
max
=36.8μc/cm2,pr=27.8μc/cm2,ec=28.2kv/cm,其铁电性增强可能来自于mno2掺杂浓度增大引起的电性能的晶粒尺寸效应、内电场对畴壁的夹持效应、缺陷偶极效应、晶格结构畸变的共同作用。
37.将本实施方式制备得到的68bf-32btmn100x(0.0≤x≤0.6)陶瓷样品在室温、50kv/cm直流电场下极化20min,测得其室温压电性能参数(d
33
、k
p
和qm)-组分关系如图8所示,由图可知,微量(x≤0.2)mno2掺杂几乎不影响其d
33
(~133pc/n),随掺杂量增大,压电性减弱,这可能来自于晶粒细化引起的εr减小、铁电性降低、内建电场对电畴的钉扎效应增强、畴壁运动对电性能的非本征贡献减弱。k
p
随x增大先增大后减小,在x=0.2时达到最大28.1%,qm随x增大先增大后减小,在x=0.3处取得最大值67,比未掺mn的样品(qm=38)提高了将近一倍,这可能来自掺杂引起的内建电场对电畴的钉扎效应阻碍电畴反转,降低陶瓷振动时克服的内摩擦及其机械损耗;
38.在30kv/cm的电场下测得本实施方式制备的68bf-32btmn100x(0.0≤x≤0.6)陶瓷样品的漏电流密度-场强(j-e)关系曲线如图9所示,测试结果表明mno2掺杂使68bf-32bt陶瓷的漏电流密度明显减小(j≤1.04
×
10-5
a/cm2);
39.由图1至图9可知,本实施方式制备的68bf-32btmn100x高温无铅压电陶瓷具有合成工艺简单、成本低廉、烧结温度低、低损耗和高压电性,其最佳综合电性能参数为:tanδ=0.045,tm=436℃,d
33
=133pc/n,pr=27.8μc/cm2,ec=28.2kv/cm,其电性能超出目前商用钛酸铋系k-15陶瓷(tanδ=0.03、d
33
=18pc/n、tc=600℃),在高温压电传感器中具有巨大应用潜力。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献