一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

智能室内空气污染防治解决方法与流程

2022-06-22 23:06:34 来源:中国专利 TAG:

智能室内空气污染防治解决方法
【技术领域】
1.本发明是有关一种于室内空间实施一气体污染交换,特别是指一种智能室内空气污染防治解决方法。


背景技术:

2.由于人们对于生活周遭的空气品质愈来愈重视,悬浮粒子(particulate matter,pm)例如pm1、pm
2.5
、pm
10
、二氧化碳、总挥发性有机物(total volatile organic compound,tvoc)、甲醛等气体,甚至于气体中含有的微粒、气溶胶、细菌、病毒等,都会在环境中暴露影响人体健康,严重的甚至危害到生命。
3.而室内空气品质并不容易掌握,除了室外空气品质之外,室内的空调状况、污染源皆是影响室内空气品质的主要因素,特别是室内空气不流通造成的粉尘。为了改善室内的空气环境达到良好的空气品质状态,人们多会利用空调机或空气滤清器等装置来达到改善室内空气品质的目的。然而,空调机及空气滤清器皆为室内空气循环,并无法排除绝大部分的有害气体,尤其是一氧化碳或二氧化碳等有害气体。
4.为此,能提供能即时净化空气品质减少在室内呼吸到有害气体的净化解决方案,并可随时随地即时监测室内空气品质,当室内空气品质不良时快速净化室内空气,乃为本发明所研发的主要课题。


技术实现要素:

5.本发明是为一种智能室内空气污染防治解决方法,其主要目的是借由一云端处理装置智能比对室外气体检测数、室内气体检测数据及各装置气体检测数据,并配合室内气体交换系统智能选择控制室内空间的气体污染实施交换于室外,促使室内空间的气体污染形成一可呼吸的状态,同时气体交换机的区域位置可即时对气体污染的洁净处理,促使室内空间的气体污染形成一可呼吸的状态。
6.为达上述目的,一种智能室内空气污染防治解决方法,包括:一室外的气体污染予以检测及传输一室外气体检测数据,其中提供一室外气体检测器检测及传输气体污染的室外气体检测数据;一室内空间的气体污染予以检测及传输一室内气体检测数据,其中提供一室内气体检测器检测及传输气体污染的室内气体检测数;提供一室内气体交换系统在室内空间环境下应用实施洁净处理,并检测及传输一装置气体检测数据,其中室内气体交换系统包含至少一气体处理装置,供以对气体污染在室内空间内的洁净处理,气体处理装置检测及传输气体处理装置区域位置的气体污染的装置气体检测数据;以及提供一云端处理装置远端传输及智能比对室外气体检测数据、室内气体检测数据以及装置气体检测数据,并传输控制至少一气体处理装置,促使气体处理装置智能选择控制室内空间内的气体污染实施交换于室外的洁净处理,其中提供一通信中继站接收及传输室外气体检测数据、室内气体检测数据以及装置气体检测数据至云端处理装置予以储存及智能运算比对,促使云端处理装置远端传输一控制命令至通信中继站,再传输控制命令给至少一气体处理装置,提
供智能选择执行气体处理装置的启动运作及控制运作需求时间,供以对气体污染在室内空间内实施交换于室外,并能提供气体处理装置的区域位置即时对气体污染的洁净处理,假使在室内空间内的气体污染的室内气体检测数据降至一安全检测值,在室内空间内快速交换形成洁净可安全呼吸的状态。
【附图说明】
7.图1a为本发明室内空气污染防治解决方法流程示意图。图1b为本发明室内空气污染防治解决方法于室内空间使用状态示意图(一)。图1c为本发明室内空气污染防治解决方法于室内空间使用状态示意图(二)。图1d为本发明室内空气污染防治解决方法于室内空间使用状态示意图(三)。图1e为本发明室内空气污染防治解决方法于室内空间使用状态示意图(四)。图2为本发明气体交换机剖视示意图。图3为本发明气体检测模块立体组合示意图。图4a为本发明气体检测主体立体组合示意图(一)。图4b为本发明气体检测模块立体组合示意图(二)。图4c为本发明气体检测模块立体分解示意图。图5a为本发明基座立体示意图(一)。图5b为本发明基座立体示意图(二)。图6为本发明基座立体示意图(三)。图7a为本发明压电致动器与基座分解的立体示意图。图7b为本发明压电致动器与基座组合的立体示意图。图8a为本发明压电致动器的立体分解示意图(一)。图8b为本发明压电致动器的立体分解示意图(二)。图9a为本发明压电致动器的剖视作动示意图(一)。图9b为本发明压电致动器的剖视作动示意图(二)。图9c为本发明压电致动器的剖视作动示意图(三)。图10a为气体检测主体组合剖视图(一)。图10b为气体检测主体组合剖视图(二)。图10c为气体检测主体组合剖视图(三)。图11为本发明气体检测模块与通信中继站信号传输示意图。【符号说明】
8.1a:室外气体检测器1b:室内气体检测器2:室内气体交换系统21:气体交换机211:进气口212:进气通道213:清净单元213a:高效滤网
213b:光触媒单元2131b:光触媒2132b:紫外线灯213c:光等离子单元213d:负离子单元2131d:电极线2132d:集尘板2133d:升压电源器213e:等离子单元2131e:第一电场护网2132e:吸附滤网2133e:高压放电极2134e:第二电场护网2135e:升压电源器214:导风机215:出气口216:换气入口217:换气通道218:换气出口219:控制驱动单元22:清净机23:空调机23a:中央系统空调机23b:独立式空调机24:抽油烟机25:排风机26:电风扇3:气体检测模块31:控制电路板32:气体检测主体321:基座3211:第一表面3212:第二表面3213:激光设置区3214:进气沟槽3214a:进气通口3214b:透光窗口3215:导气组件承载区3215a:通气孔
3215b:定位凸块3216:出气沟槽3216a:出气通口3216b:第一区间3216c:第二区间322:压电致动器3221:喷气孔片3221a:悬浮片3221b:中空孔洞3221c:空隙3222:腔体框架3223:致动体3223a:压电载板3223b:调整共振板3223c:压电板3223d:压电接脚3224:绝缘框架3225:导电框架3225a:导电接脚3225b:导电电极3226:共振腔室3227:气流腔室323:驱动电路板324:激光组件325:微粒传感器326:外盖3261:侧板3261a:进气框口3261b:出气框口327a:气体传感器33:微处理器34:通信器4:通信中继站5:云端处理装置a:室内空间s1~s4:智能室内空气污染防治解决方法
【具体实施方式】
9.体现本发明特征与优点的实施例将在后段的说明中详细叙述。应理解的是本发明
能够在不同的态样上具有各种的变化,其皆不脱离本发明的范围,且其中的说明及图示在本质上当作说明之用,而非用以限制本发明。
10.请综合参阅图1a至图11所示,本发明是为一种智能室内空气污染防治解决方法,适用于一气体污染于一室内空间实施过滤交换,其方法包括下列:。
11.首先方法s1,一室外的一气体污染予以检测及传输一室外气体检测数据,其中提供一室外气体检测器1a检测及传输气体污染的室外气体检测数据。
12.方法s2,一室内空间a的气体污染予以检测及传输一室内气体检测数据,其中提供一室内气体检测器1b检测及传输气体污染的室内气体检测数据。
13.方法s3,提供一室内气体交换系统2在室内空间a环境下应用实施洁净处理,并检测及传输一装置气体检测数据,其中室内气体交换系统2包含至少一气体处理装置,供以对气体污染在室内空间a内的洁净处理,气体处理装置检测及传输气体处理装置区域位置的气体污染的装置气体检测数据。
14.方法s4,提供一云端处理装置5智能比对室外气体检测数据、室内气体检测数据以及装置气体检测数据,并远端传输控制各气体处理装置,促使气体处理装置智能选择控制室内空间a内的气体污染实施交换于室外的洁净处理,其中提供一通信中继站4接收及传输室外气体检测数据、室内气体检测数据、装置气体检测数据至云端处理装置5予以储存及智能运算比对,促使云端处理装置5远端传输一控制命令给通信中继站4,再传输控制命令给至少一气体处理装置,提供智能选择执行气体处理装置的启动运作及控制运作需求时间,供以对气体污染在室内空间a内实施交换于室外,并提供气体处理装置的区域位置即时对气体污染的洁净处理,促使在室内空间a内的气体污染的室内气体检测数据降至一安全检测值,在室内空间a内快速交换形成洁净可安全呼吸的状态。
15.上述的云端处理装置5进一步包含一气体模流模拟系统(图未式),提供室内空间a内运算一气体处理装置配置数量,提供室内空间a的气体流场方向,以及提供设置气体处理装置所需求气体管路及通气进出口位置。以及通信中继站4可以是行动装置或路由电讯网络装置,其中行动装置可显示室外气体检测数据、室内气体检测数据、至少一装置气体检测数据,提醒通知在室内空间a的气体污染的污染程度及防护措施。
16.由上述方法说明得知,本发明提供云端处理装置5远端智能比对室外气体检测数、室内气体检测数据及各个装置气体检测数据,配合通信中继站4传输控制信号至室内气体交换系统2,使室内气体交换系统2可智能选择控制室内空间a的气体污染实施交换,使室内检测数据降至一安全检测值,让用户于室内空间a内可以呼吸到洁净安全的气体。以下就本发明的实施装置及处理方法详细说明如下。
17.上述的气体污染所检测的数据是指悬浮微粒(pm1、pm
2.5
、pm
10
)、一氧化碳(co)、二氧化碳(co2)、臭氧(o3)、二氧化硫(so2)、二氧化氮(no2)、铅(pb)、总挥发性有机物(tvoc)、甲醛(hcho)、细菌、病毒的其中之一或其组合,但不以此为限。
18.请参阅图3至图11所示,本发明提供一气体检测模块3包含有:一控制电路板31、一气体检测主体32、一微处理器33及一通信器34。其中,气体检测主体32、微处理器33及通信器34封装于控制电路板31形成一体且彼此电性连接。而微处理器33及通信器34设置于控制电路板31上,且微处理器33控制气体检测主体32的驱动信号而启动检测运作,并接收气体检测模块3所检测的气体污染作数据运算处理,借由通信器34对外通信,以及将气体检测主
体32的检测数据(气体)转换成一检测数据储存。而通信器34接收微处理器33所输出的检测数据(气体),并将检测数据传输至室内气体交换系统2或一外部装置,外部装置可为携带式行动装置(图未示),借由控制室内气体交换系统2的启动及调整出风量,过滤室内空间a内的气体污染降至一安全检测值,并达到室内空间a内的气体交换形成洁净可安全呼吸状态。详言之,上述的通信器34与室内气体交换系统2的信号连接并传输,其传输的信号可依据事先设定好室内空间a大小、预计运转多久时间将气体污染降至一安全检测值,再通过微处理器33自动调配出风量以及连线的室内气体交换系统2台数(但不以此为限),且通信器34对外通信传输可以是有线的双向通信传输,例如:usb、mini-usb、micro-usb,或者是通过无线的双向通信传输,例如:wi-fi模块、蓝牙模块、无线射频识别模块、近场通信模块等。
19.当然,上述室内气体检测器1b是设置在室内空间a内实施,室内气体检测器1b可以是固定在室内空间a中,或者是一移动式检测装置,在一具体实施例中,车内气体检测器1b可以是一穿戴式装置,例如手表、手环,直接穿戴于人体上(图1b至图1e所示),人们待在室内空间a即可随时即时检测室内空间a的气体污染,并传输一室内的气体检测数据,以及纪录显示室内空间a的气体污染数据;因此本发明室内气体检测器1b为移动式检测装置时,室内气体检测器1b的气体检测模块3的通信器34是采无线的双向通信传输方式。
20.请参阅图4a至图9a所示,上述气体检测主体32包含一基座321、一压电致动器322、一驱动电路323,一激光组件324、一微粒传感器325及一外盖326。其中基座321具有一第一表面3211、一第二表面3212、一激光设置区3213、一进气沟槽3214、一导气组件承载区3215及一出气沟槽3216。其中第一表面3211与第二表面3212为相对设置的两个表面。激光组件324自第一表面3211朝向第二表面3212挖空形成。另,外盖326罩盖基座321,并具有一侧板3261,侧板3261具有一进气框口3261a与一出气框口3261b。而进气沟槽3214自第二表面3212凹陷形成,且邻近激光设置区3213。进气沟槽3214设有一进气通口3214a,连通于基座321的外部,并与外盖326的出气通口3216a对应,以及进气沟槽3214两侧壁贯穿于压电致动器322的透光窗口3214b,而与激光设置区3213连通。因此,基座321的第一表面3211被外盖326封盖,第二表面3212被驱动电路板323封盖,致使进气沟槽3214定义出一进气路径。
21.其中,导气组件承载区3215是由第二表面3212凹陷形成,并连通进气沟槽3214,且于底面贯通一通气孔3215a,以及导气组件承载区3215的四个角分别具有一定位凸块3215b。而上述的出气沟槽3216设有一出气通口3216a,出气通口3216a与外盖326的出气框口3261b对应设置。出气沟槽3216包含有第一表面3211对于导气组件承载区3215的垂直投影区域凹陷形成的一第一区间3216b,以及于导气组件承载区3215的垂直投影区所延伸的区域,且由第一表面3211至第二表面3212挖空形成的第二区间3216c,其中第一区间3216b与第二区间3216c相连以形成段差,且出气沟槽3216的第一区间3216b与导气组件承载区3215的通气孔3215a相通,出气沟槽3216的第二区间3216c与出气通口3216a相通。因此,当基座321的第一表面3211被外盖326封盖,第二表面3212被驱动电路板323封盖时,出气沟槽3216与驱动电路板323共同定义出一出气路径。
22.上述的激光组件324及微粒传感器325皆设置于驱动电路板323上,且位于基座321内,为了明确说明激光组件324及微粒传感器325与基座321的位置,故特意省略驱动电路板323,其中激光组件324容设于基座321的激光设置区3213内,微粒传感器325容设于基座321的进气沟槽3214内,并与激光组件324对齐。此外,激光组件324对应到透光窗口3214b,透光
窗口3214b供激光组件324所发射的激光穿过,使激光照射至进气沟槽3214。激光组324所发出的光束路径为穿过透光窗口3214b且与进气沟槽3214形成正交方向。激光组件324发射光束通过透光窗口3214b进入进气沟槽3214内,进气沟槽3214内的气体中的检测数据被照射,当光速接触到气体时会散射并产生投射光点,使微粒传感器325位于其正交方向位置并接收散射所产生的投射光点进行计算,以获取气体的检测数据。另,气体传感器327a定位设置于驱动电路板323上与其电性连接,且容设于进气沟槽3214中,供以对导入进气沟槽3214的气体污染做检测,于本发明一较佳实施例中,气体传感器327a是为一挥发性有机物传感器,检测二氧化碳或总挥发性有机物气体信息;或为一甲醛传感器,检测甲醛气体信息;或为一细菌传感器,检测细菌、真菌信息;或为一病毒传感器,检测病毒气体信息。
23.上述的压电致动器322容设于基座321的正方形的导气组件承载区3215。此外,导气组件承载区3215与进气沟槽3214相通,当压电致动器322作动时,汲取进气沟槽3214内的气体进入压电致动器322,并供气体通过导气组件承载区3215的通气孔3215a,进入出气沟槽3216。以及,上述的驱动电路板323封盖于基座321的第二表面3212。激光组件324设置于驱动电路板323并呈电性连接。微粒传感器325亦设置于驱动电路板323并呈电性连接。当外盖326罩于基座321时,出气通口3216a对应到基座321的进气通口3214a,出气框口3261b对应到基座321的出气通口3216a。
24.上述压电致动器322包含一喷气孔片3221、一腔体框架3222、一致动体3223、一绝缘框架3224及一导电框架3225。其中,喷气孔片3221为一可绕性材质并具有一悬浮片3221a、一中空孔洞3221b,悬浮片3221a为一弯曲振动的片状结构,其形状与尺寸对应导气组件承载区3215的内缘,而中空孔洞3221b则贯穿悬浮片3221a的中心处,供气体流通。于本发明较佳实施例中,悬浮片3221a的形状可为方形、图形、椭圆形、三角形及多角形其中之一。
25.述腔体框架3222叠设于喷气孔片3221上,且其外观与喷气孔片3221对应。致动体3223叠设于腔体框架3222上,并与喷气孔片3221、悬浮片3221a之间定义出一共振腔室3226。绝缘框架3224叠设于致动体3223上,其外观与腔体框架3222近似。导电框架3225叠设于绝缘框架3224上,其外观与绝缘框架3224近似,且导电框架3225具有一导电接脚3225a及自导电接脚3225a外缘向外延伸的一导电电极3225b,且导电电极3225b自导电框架3225内缘向内延伸。此外,致动体3223更包含一压电载板3223a、一调整共振板3223b及一压电板3223c。其中,压电载板3223a叠设于腔体框架3222。调整共振板3223b叠设于压电载板3223a上。压电板3223c叠设于调整共振板3223b上。而调整共振板3223b及压电板3223c则容设于绝缘框架3224内。并由导电框架3225的导电电极3225b电连接压电板3223c。其中,于本发明较佳实施例中,压电载板3223a与调整共振板3223b皆为导电材料。压电载板3223a具有一压电接脚3223d,且压电接脚3223d与导电接脚3225a连接驱动电路板323上的驱动电路(图未示),以接收驱动信号(可为驱动频率及驱动电压),驱动信号得以由压电接脚3223d、压电载板3223a、调整共振板3223b、压电板3223c、导电电极3225b、导电框架3225及导电接脚3225a形成一回路,并由绝缘框架3224将导电框架3225与致动体3223之间阻隔,避免发生短路现象,使驱动信号得以传送至压电板3223c。压电板3223c接受驱动信号后,因压电效应产生形变,进一步驱动压电载板3223a及调整共振板3223b产生往复式地弯曲振动。
26.进一步说明,调整共振板3223b位于压电板3223c与压电载板3223a之间,作为两者
间的缓冲物,可调整压电载板3223a的振动频率。基本上,调整共振板3223b的厚度大于压电载板3223a,借由改变共振板3223b的厚度调整致动体3223的振动频率。
27.请配合参阅图7a、图7b、图8a、图8b及图9a所示,喷气孔片3221、腔体框架3222、致动体3223、绝缘框架3224及导电框架3225是依序堆叠设置并定位于导气组件承载区3215内,促使压电致动器322定位于导气组件承载区3215内,压电致动器322在悬浮片3221a及导气组件承载区3215的内缘之间定义出一空隙3221c,供气体流通。上述的喷气孔片3221与导气组件承载区3215的底面间形成一气流腔室3227。气流腔室3227通过喷气孔片3221的中空孔洞3221b连通致动体3223、喷气孔片3221及悬浮片3221a之间的共振腔室3226,通过共振腔室3226中气体的振动频率,使其与悬浮片3221a的振动频率趋近于相同,可使共振腔室3226与悬浮片3221a产生亥姆霍兹共振效应(helmholtz resonance),提高气体的传输效率。当压电板3223c向远离导气组件承载区3215的底面移动时,压电板3223c带动喷气孔片3221的悬浮片3221a以远离导气组件承载区3215的底面方向移动,使气流腔室3227的容积急遽扩张,内部压力下降产生负压,吸引压电致动器322外部的气体由空隙3221c流入,并经由中空孔洞3221b进入共振腔室3226,增加共振腔室3226内的气压进而产生一压力梯度。当压电板3223c带动喷气孔片3221的悬浮片3221a朝向导气组件承载区3215的底面移动时,共振腔室3226中的气体经中空孔洞3221b快速流出,挤压气流腔室3227内的气体,并使汇聚后的气体以接近白努利定律的理想气体状态快速且大量地喷出导入导气组件承载区3215的通气孔3215a。
28.通过重复图9b与图9c所示的动作,压电板3223c进行往复式地振动,依据惯性原理,排气后的共振腔室3226内部气压低于平衡气压会导引气体再次进入共振腔室3226中,如此控制共振腔室3226中气体的振动频率与压电板3223c的振动频率趋于相同,以产生亥姆霍兹共振效应,实现气体高速且大量的传输。气体皆由外盖326的进气通口3214a进入,通过进气通口3214a进入基座321的进气沟槽3214,并流至微粒传感器325的位置。再者,压电致动器322持续驱动会吸取进气路径的气体,以利外部气体快速导入且稳定流通,并通过微粒传感器325上方,此时激光组件324发射光束通过透光窗口3214b进入进气沟槽3214,进气沟槽3214通过微粒传感器325上方,当微粒传感器325的光束照射到气体中的悬浮微粒时会产生散射现象及投射光点,当微粒传感器325接收散射所产生的投射光点进行计算以获取气体中所含的悬浮微粒的粒径又浓度等相关信息,并且微粒传感器325上方的气体也持续受到压电致动器322驱动而导入导气组件承载区3215的通气孔3215a,进入出气沟槽3216。最后当气体进入出气沟槽3216后,由于压电致动器322不断输送气体进入出气沟槽3216,因此出气沟槽3216内的气体会被推引并通过出气通口3216a及出气框口3261b而向外部排出。
29.本发明的室外气体检测器1a及室内气体检测器1b不仅可针对气体中的悬浮微粒进行检测,更可进一步针对导入的气体特性做检测,如气体为甲、氨气、一氧化碳、二氧化碳、氧气、臭氧等。因此本发明的室外气体检测器1a及室内气体检测器1b更包括气体传感器327a,气体传感器327a定位设置且电性连接于驱动电路板323,且容设于出气沟槽3216中,针侧出气路径所导出的气体中所含的挥发性有机物的浓度或特性。
30.再请参阅图2所示,上述的气体处理装置是为气体交换机21包含至少一进气口211、一进气通道212、一清净单元213、至少一导风机214、至少一出气口215、至少一换气入口216、一换气通道217及至少一换气出口218,以及气体交换机21更包括气体检测模块3,供
以控制导风机214的启动运转,导引室外的气体进入气体交换机21内部,其中进气口211连接进气通道212,清净单元213设于进气通道212中,供以进气口211所导入的气体予以过滤净化,以及出气口215连通进气通道212,并连接导风机214,供以导送进气通道212所过滤净化的气体由出气口215导出并进入室内空间a,以及换气入口216连接换气通道217,换气通道217连通换气出口218,且气体检测模块3的通信器34接收通信中继站4所传送的控制命令,供以智能选择控制在室外的气体是否导入室内空间a,促使在室内空间a内的气体污染实施交换,让在室内空间a内的气体污染的室内气体检测数据降至一安全检测值。
31.于本发明的较佳实施例中,云端处理装置5接收并比对室外气体检测数据以及室内气体检测数据,且室外气体检测数据较室内气体检测数据为佳时,云端处理装置5远端传输控制命令给通信中继站4,再传输至气体交换机21的气体检测模块3,促使智能选择执行气体交换机21的启动运作及控制运作需求时间,让导风机214启动运转,将室外的气体由进气口211导入进气通道212中,通过清净单元213实施过滤净化处理,再导入至出气口215而进入于室内空间a内,同时在室内空间a内的气体污染由换气入口216导出至换气通道217中,最后由换气出口218排出室外,促使在室内空间a内的气体污染实施交换于室外,同时能提供气体交换机21的区域位置即时对气体污染的洁净处理,让在室内空间a内的气体污染的室内气体检测数据降至一安全检测值。
32.于本发明的较佳实施例中,云端处理装置5接收并比对室外检测数据以及室内检测数据,且室内检测数据较室外检测数据为佳时,云端处理装置5远端传输控制命令给通信中继站4,再传输至气体交换机21的气体检测模块3,促使智能选择执行气体交换机21的停止运作,在室外的气体不导入室内空间a,促使在室内空间a内的气体污染的室内气体检测数据降至一安全检测值。
33.请参阅图1b所示,气体处理装置为一清净机22,清净机22包含有气体检测模块3,且气体检测模块3的微处理器33输出清净机22的装置气体检测数据,提供给通信器34对外无线传输至通信中继站4,再远端传输该云端处理装置5接收并予以储存及智能运算比对,经比对清净机22的装置气体检测数据为清净机22区域位置污染状态时,云端处理装置5远端传输控制命令给通信中继站4,再传输至清净机22的气体检测模块3,促使智能选择执行清净机22的启动运作及控制运作需求时间,同时能提供清净机22的区域位置即时对气体污染实施过滤净化,促使在室内空间a内的气体污染的室内气体检测数据降至一安全检测值。
34.进一步说明,当云端处理装置5比对室外检测数据以及室内检测数据,且室内检测数据较室外检测数据为佳时,同时清净机22的装置气体检测数据为清净机22区域位置污染状态时,云端处理装置5远端传输控制命令给通信中继站4,再传输至气体交换机21的气体检测模块3及清净机22的气体检测模块3,促使智能选择执行气体交换机21的停止运作,在室外的气体不导入室内空间a,以及促使智能选择执行清净机22的启动运作及控制运作需求时间,同时能提供清净机22的区域位置即时对气体污染实施过滤净化,促使在室内空间a内的气体污染的室内气体检测数据降至一安全检测值,其中清净机22的气体检测模块3检测出装置气体检测数据,提供清净机22的过滤耗材更换时间的提醒参考。
35.请再参阅图1b所示,气体处理装置为一该空调机23(可为中央系统空调机23a或独立式空调机23b),空调机23包含有气体检测模块3,且气体检测模块3的微处理器33输出空调机23的装置气体检测数据,提供给通信器34对外无线传输至通信中继站4,再传输给云端
处理装置5予以储存及智能运算比对,经比对空调机23的装置气体检测数据为空调机23区域位置污染状态时,云端处理装置5传输控制命令给通信中继站4,再传输至空调机23的气体检测模块3,促使智能选择执行空调机23的启动运作及控制运作需求时间,同时能提供空调机23的区域位置即时对气体污染实施过滤净化,并调节室内空间a的温度、湿度、气体流动,促使在室内空间a内的气体污染的室内气体检测数据降至一安全检测值。
36.进一步说明,当云端处理装置5比对室外检测数据以及室内检测数据,且室内检测数据较该室外检测数据为佳时,同时空调机23的装置气体检测数据为空调机23区域位置污染状态时,云端处理装置5远端传输控制命令至通信中继站4,再传输至气体交换机21的气体检测模块3及空调机23的气体检测模块3,促使智能选择执行气体交换机21的停止运作,在室外的气体不导入室内空间a,以及促使智能选择执行空调机23的启动运作及控制运作需求时间,同时能提供空调机23的区域位置即时对气体污染实施过滤净化,并调节室内空间a的温度、湿度、气体流动,促使在室内空间a内的气体污染的室内气体检测数据降至一安全检测值,其中空调机23的气体检测模块3检测出装置气体检测数据,提供空调机23的过滤耗材更换时间的提醒参考。
37.请参阅图1c所示,气体处理装置为一抽油烟机24,抽油烟机24包含有气体检测模块3,且气体检测模块3的微处理器33输出抽油烟机24的装置气体检测数据,提供给通信器34对外无线传输至通信中继站4,再传输给云端处理装置5予以储存及智能运算比对,经比对抽油烟机24的装置气体检测数据为抽油烟机24区域位置污染状态时,云端处理装置5远端传输控制命令给通信中继站4,再传输至抽油烟机24的气体检测模块3,促使智能选择执行抽油烟机24的启动运作及控制运作需求时间,同时能提供抽油烟机24的区域位置即时对气体污染实施排出于室外,促使在室内空间a内的气体污染的室内气体检测数据降至一安全检测值。
38.进一步说明,当云端处理装置5比对室外检测数据以及室内检测数据,且室内检测数据较室外检测数据为佳时,同时抽油烟机24的装置气体检测数据为抽油烟机24区域位置污染状态时,云端处理装置5远端传输控制命令至通信中继站4,再传输至气体交换机21的气体检测模块3及抽油烟机24的气体检测模块3,促使智能选择执行气体交换机21的停止运作,在室外的气体不导入室内空间a,以及促使智能选择执行抽油烟机24的启动运作及控制运作需求时间,同时能提供抽油烟机24的区域位置即时对气体污染实施排出于室外,促使在室内空间a内的气体污染的室内气体检测数据降至一安全检测值,其中抽油烟机24的气体检测模块3检测出装置气体检测数据,提供抽油烟机24的过滤耗材更换时间的提醒参考。
39.请参阅图1d所示,气体处理装置为一排风机25,排风机25包含有气体检测模块3,且气体检测模块3的微处理器33输出排风机25的装置气体检测数据,提供给通信器34对外无线传输至通信中继站4,再传输给云端处理装置5予以储存及智能运算比对,经比对排风机25的装置气体检测数据为排风机25区域位置污染状态时,云端处理装置5远端传输控制命令给通信中继站4,再传输至排风机25的气体检测模块3,促使智能选择执行排风机25的启动运作及控制运作需求时间,同时能提供排风机25的区域位置即时对气体污染实施排出于室外,促使在室内空间a的气体污染的该室内气体检测数据降至一安全检测值。
40.进一步说明,当云端处理装置5比对室外检测数据以及室内检测数据,且室内检测数据较该外检测数据为佳时,同时排风机25的装置气体检测数据为排风机25区域位置污染
状态时,云端处理装置5远端传输控制命令至通信中继站4,再传输至气体交换机21的气体检测模块3及排风机25的气体检测模块3,促使智能选择执行气体交换机21的停止运作,在室外的气体不导入室内空间a,以及促使智能选择执行排风机25的启动运作及控制运作需求时间,同时能提供排风机25的区域位置即时对气体污染实施排出于室外,促使在室内空间a内的气体污染的室内气体检测数据降至一安全检测值。
41.请参阅图1e所示,气体处理装置是一电风扇26,电风扇26包含有气体检测模块3,且气体检测模块3的微处理器33输出电风扇26的装置气体检测数据,提供给通信器34对外无线传输至通信中继站4,再传输给云端处理装置5予以储存及智能运算比对,经比对电风扇26的装置气体检测数据为电风扇26区域位置污染状态时,云端处理装置5远端传输控制命令给通信中继站4,再传输至电风扇26的气体检测模块3,促使智能选择执行电风扇26的启动运作及控制运作需求时间,同时能提供电风扇26的区域位置即时对气体污染实施加速对流,促使在室内空间a内的气体污染的室内气体检测数据降至一安全检测值。
42.进一步说明,当云端处理装置5比对室外检测数据以及室内检测数据,且室内检测数据较室外检测数据为佳时,同时电风扇26的装置气体检测数据为电风扇26区域位置污染状态时,云端处理装置5远端传输控制命令至通信中继站4,再传输至气体交换机21的气体检测模块3及电风扇26的气体检测模块3,促使智能选择执行气体交换机21的停止运作,在室外的气体不导入室内空间a,以及促使智能选择执行电风扇26的启动运作及控制运作需求时间,同时能提供电风扇26的区域位置即时该气体污染实施加速对流,促使在室内空间a内的气体污染的室内气体检测数据降至一安全检测值。
43.上述的安全检测值包含悬浮微粒2.5(pm
2.5
)的浓度小于10μg/m3、二氧化碳(co2)的浓度小于1000ppm、总挥发性有机物(tvoc)的浓度小于0.56ppm、甲醛(hcho)的浓度小于0.08ppm、细菌数量小于1500cfu/m3、真菌数量小于1000cfu/m3、二氧化硫的浓度小于0.075ppm、二氧化氮的浓度小于0.1ppm、一氧化碳的浓度小于35ppm、臭氧的浓度小于0.12ppm、铅的浓度小于0.15μg/m3。
44.以及,上述气体交换机21的清净单元213可以是多种实施态样的组合,例如,清净单元213为一高效滤网213a(high-efficiency particulate air,hepa)。当气体通过导风机214由进气口211导入进气通道212中,受高效滤网213a吸附气体中所含的化学烟雾、细菌、尘埃微粒及花粉,使导入气体交换机21的气体,达到过滤净化的效果。在一些实施例中,高效滤网213a上涂布一层二氧化氯的洁净因子,抑制导入气体交换机21所导入气体中病毒、细菌、真菌。其中高效滤网213a上可以涂布一层二气化氯的洁净因子,抑制气体交换机21外的气体中病毒、细菌、真菌、a型流感病毒、b型流感病毒、肠病毒、诺罗病毒的抑制率达99%以上,帮助少病毒交互传染。在一些实施例中,高效滤网213a上涂布一层萃取了银杏及日本严肤木的草本加护层,构成一草本加护抗敏滤网,有效抗敏及破坏通过滤网的流感病毒表面蛋白,以及由气体交换机21所导入并通过高效滤网213a的气体中流感病毒(例如:h1n1)的表面蛋白。另一些实施例中,高效滤网213a上可以涂布银离子,抑制气体交换机21所导入气体中病毒、细菌、真菌。
45.另一实施例,清净单元213亦可为高效滤网213a搭配光触媒单元213b所构成的样态,光触媒单元213b包含一光触媒2131b及一紫外线灯2132b,光触媒2131b通过紫外线灯2132b照射而分解气体交换机21所导入气体进行过滤净化。其中光触媒2131b及一紫外线灯
2132b分别设于进气通道212中,并彼此保持一间距,使气体交换机21将室外气体通过导风机214导入至进气通道212中,且当光触媒2131b通过紫外线灯2132b照射,得以将光能转化成电能,分解气体中的有害物质并进行消毒杀菌,以达到过滤及净化气体的效果。
46.另一实施例,清净单元213亦可为高效滤网213a搭配光等离子单元213c所构成的样态,光等离子单元213c包含一纳米光管,通过纳米光管照射气体交换机21所导入的室外气体,促使气体中所含的挥发性有机气体分解净化。其中纳米光管是设于进气通道212中,当气体交换机21将室外气体通过导风机214导入进气通道212中时,通过纳米光管照射所导入的气体,使气体中的氧分子及水分子分解成具高氧化性光等离子,形成具有破坏有机分子的离子气流,将气体中含有挥发性甲醛、甲苯、挥发性有机气体(volatile organic compounds,voc)等气体分子分解成水和二氧化碳,达到过滤及净化气体的效果。
47.另一实施例,清净单元213亦可为高效滤网213a搭配负离子单元213d所构成的样态,负离子单元213d包含至少一电极线2131d、至少一集尘板2132d及一升压电源器2133d,通过电极线2131d高压放电,将气体交换机21由室外所导入的气体中所含微粒吸附在集尘板2132d上进行过滤净化。其中电极线2131d、集尘板2132d设于气体流道中,而升压电源器2133d提供电极线2131d高压放电,而集尘板2132d带有负电荷,使气体交换机21将室外所导入的气体通过导风机214导引进入进气通道212中,通过电极线2131d高压放电,将气体中所含微粒带正电荷附着在带负电荷的集尘板2132d,达到对导入的气体进行过滤净化的效果。
48.另一实施例,清净单元213亦可为高效滤网213a搭配等离子单元213e所构成的样态,等离子单元213e包含一第一电场护网2131e、一吸附滤网2132e、一高压放电极2133e、一第二电场护网2134e及一升压电源器2135e,升压电源器2135e提供高压放电极2133e的高压电,以产生一高压等离子柱,使高压等离子柱中等离子分解气体交换机21将室外所导入气体中的病毒及细菌。其中第一电场护网2131e、吸附滤网2132e、高压放电极2133e及第二电场护网2134e设于气体流道中,且吸附滤网2132e、高压放电极2133e夹设于第一电场护网2131e、第二电场护网2134e之间,而升压电源器2135e提供高压放电极2133e的高压放电,以产生高压等离子柱带有等离子,使气体交换机21将室外气体通过导风机214导入进气通道212中,通过等离子使得气体中所含氧分子与水分子电离生成阳离子(h

)和阴离子(o
2-),且离子周围附着有水分子的物质附着在病毒和细菌的表面之后,在化学反应的作用下,会转化成强氧化性的活性氧(羟,oh基),从而夺走病毒和细菌表面蛋白质的氢,将其氧化分解,以达到过滤导入的气体进行过滤进化的效果。
49.另一实施例,清净单元213可仅只有高效滤网213a;或是高效滤网213a搭配光触媒单元213b、光等离子单元213c、负离子单元213d、等离子单元213e的任一单元组合;或是高效滤网213a搭配光触媒单元213b、光等离子单元213c、负离子单元213d及等离子单元213e的任二单元的组合;亦或是高效滤网213a搭配光触媒单元213b、光等离子单元213c、负离子单元213d、等离子单元213e的任三单元组合;或是高效滤网213a搭配光触媒单元213b、光等离子单元213c、负离子单元213d、等离子单元213e的所有组合。
50.本发明一较佳实施例,上述导风机214可为一风扇,但不限于涡漩风扇或离心风扇等。且导风机214可由前述气体检测模块3控制启动或关闭,更可控制导风机214运转时的出风量,其出分量可以介于200至1600洁净空气输出比率(cadr)之间的出风范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献