一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

天线装置及电子设备的制作方法

2022-06-11 17:33:00 来源:中国专利 TAG:


1.本技术实施例涉及终端技术领域,特别涉及一种天线装置及电子设备。


背景技术:

2.随着通信技术的不断发展,多输入多输出(multiple-input multiple-output,mimo)天线技术在电子设备上的应用愈加广泛,需求越来越高,因而天线数量成倍增加,覆盖的频段也越来越多。目前,电子设备产品尤其是金属工业设计(industry design,id)的电子设备依然要求很高的结构紧凑型以及金属占比度,而最近的电子设备设计趋势是更高的屏占比、更多的多媒体器件以及更大的电池容量,这些设计使得天线空间被急剧压缩,对金属机身终端的天线设计带来了严峻的挑战。
3.现有技术中,在金属边框、玻璃电池盖id的电子设备上,mimo天线,例如低频(low band,lb)频段的mimo无线(也可称为lb mimo天线)的传统设计方案一般是在金属边框上设计多段低频天线,而且,考虑到mimo天线频段往往和原有通信天线频段相同,容易导致天线系统的隔离度恶化,通常将相邻两个低频天线之间的距离设计得较大,以此实现较好的隔离度。
4.然而,上述方案中,低频天线在电子设备的金属边框上占据过大的设计面积,不利于其它天线的布局。


技术实现要素:

5.本技术实施例提供一种天线装置及电子设备,能够减小在金属边框上的布局面积,降低对其它天线的影响。
6.本技术实施例第一方面提供一种天线装置,该天线装置应用于电子设备,所述电子设备包括中框、电池盖和位于所述中框和所述电池盖之间的电池,所述天线装置包括:至少一组耦合馈电单元和至少一组辐射单元;每组所述辐射单元包括:第一辐射体和第二辐射体,所述第一辐射体和第二辐射体设置在所述电池盖的内表面;所述第一辐射体和第二辐射体分别位于所述耦合馈电单元的两侧,且所述耦合馈电单元分别与所述第一辐射体和所述第二辐射体耦合馈电。
7.本技术实施例提供的天线装置,该天线装置包括至少一组耦合馈电单元和至少一组辐射单元,通过将至少一组辐射单元中的第一辐射体和第二辐射体设置在电池盖的内表面,第一辐射体和第二辐射体分别位于耦合馈电单元的两侧,且耦合馈电单元分别与第一辐射体和第二辐射体耦合馈电,可实现耦合馈电单元和辐射单元之间的分布式馈电连接,这样能够激励出双谐振实现宽频段覆盖,馈电网络可大部分通过设置在电池盖的内表面上的辐射体实现,从而能够减小天线在金属边框上的布局面积,降低对其它天线的影响,而且该天线装置可以在有限的设计空间内实现,在一定程度上有效节省了电子设备内部的天线设计空间。
8.在一种可能的实现方式中,所述第一辐射体和所述第二辐射体中的至少一个位于
所述中框的其中一个侧边框和所述电池朝向所述电池盖的正投影之间。
9.也就是说,第一辐射体和第二辐射体中的至少一个位于侧边框(左侧边框或右侧边框)和电池的外边缘(电池靠近该侧边框一侧的外边缘)之间,这样,第一辐射体和第二辐射体中的至少一个不位于电池朝向电池盖的正投影区域之内,则电池不会遮挡住第一辐射体或第二辐射体,进而能够避免对第一辐射体或第二辐射体的辐射性能的影响或干涉。
10.在一种可能的实现方式中,所述第一辐射体位于所述中框的其中一个侧边框和所述电池朝向所述电池盖的正投影之间,所述第二辐射体位于所述中框的另一相对的侧边框和所述电池朝向所述电池盖的正投影之间。
11.这样,第一辐射体和第二辐射体均位于侧边框(左侧边框或右侧边框)和电池的外边缘(电池靠近该侧边框一侧的外边缘)之间,即第一辐射体和第二辐射体均不位于电池朝向电池盖的正投影区域之内,电池不会遮挡住第一辐射体和第二辐射体,进而能够避免对第一辐射体和第二辐射体的辐射性能的影响或干涉。
12.在一种可能的实现方式中,还包括:至少两个金属边框天线,且所述至少两个金属边框天线中的其中两个为低频天线。
13.通过将电子设备的部分金属边框作为天线装置中的辐射体,有利于进一步提升天线装置的辐射性能。
14.在一种可能的实现方式中,所述第一辐射体的一端朝向所述中框的顶边框延伸,所述第二辐射体的一端朝向所述中框的底边框延伸;其中一个所述低频天线朝向所述电池盖的正投影与所述第一辐射体相对,且所述其中一个所述低频天线朝向所述电池盖的正投影与所述第一辐射体分别位于所述电池朝向所述电池盖的正投影的两侧;另一个所述低频天线朝向所述电池盖的正投影与所述第二辐射体相对,且所述另一个所述低频天线朝向所述电池盖的正投影与所述第二辐射体分别位于所述电池朝向所述电池盖的正投影的两侧。
15.通过第一辐射体与第二辐射体呈对角相对设置,且第一辐射体与其中一个低频天线沿着边框的长度方向的中轴线相对设置,第二辐射体与另一个低频天线沿着边框的长度方向的中轴线相对设置,其中一个低频天线与另一个低频天线呈对角相对设置,这样,辐射体(第一辐射体或第二辐射体)与金属边框天线(两个低频天线)均分离设置,使得辐射体(第一辐射体或第二辐射体)与金属边框天线在空间位置上相对相距较远,能够增加第一辐射体与金属边框天线以及第二辐射体与金属边框天线之间的隔离度,从而能够有效提升天线装置中的各天线模块之间的隔离效果,进而能够保证第一辐射体和第二辐射体不对金属边框天线(两个低频天线)造成干扰。
16.在一种可能的实现方式中,所述第一辐射体的一端朝向所述中框的底边框延伸,所述第二辐射体的一端朝向所述中框的底边框延伸;或者,所述第一辐射体的一端朝向所述中框的顶边框延伸,所述第二辐射体的一端朝向所述中框的顶边框延伸;或者,所述第一辐射体的一端朝向所述中框的底边框延伸,所述第二辐射体的一端朝向所述中框的侧边框延伸。
17.在一种可能的实现方式中,所述第一辐射体和所述第二辐射体的电长度为1/4λ-1/2λ,其中,λ为所述第一辐射体和所述第二辐射体的谐振频率对应的波长。
18.在一种可能的实现方式中,每组所述耦合馈电单元包括:第一耦合馈电单元和第二耦合馈电单元,所述第一耦合馈电单元与馈源电连接,且所述第一耦合馈电单元分别与
所述第一辐射体的另一端和所述第二耦合馈电单元的一端耦合馈电;所述第二耦合馈电单元的另一端与所述第二辐射体的另一端耦合馈电。
19.这样,外部馈源对第一耦合馈电单元馈电,第一耦合馈电单元分别对第一辐射体和第二耦合馈电单元耦合馈电,然后第二耦合馈电单元再对第二辐射体耦合馈电,以此实现通过馈源对第一辐射体和第二辐射体的馈电过程。
20.在一种可能的实现方式中,所述第一耦合馈电单元包括:支架和设在所述支架上的馈电枝节,所述馈电枝节与所述馈源电连接;所述支架固定在所述电池盖的内表面上。
21.通过将支架固定在电池盖的内表面上,能够实现对第一耦合馈电单元的固定,通过馈电枝节与馈源电连接,能够实现馈源对第一耦合馈电单元馈电,第一耦合馈电单元分别对第一辐射体和第二耦合馈电单元耦合馈电,然后第二耦合馈电单元再对第二辐射体耦合馈电,从而实现通过馈源对第一辐射体和第二辐射体的馈电过程。
22.在一种可能的实现方式中,所述第二耦合馈电单元、所述第一辐射体、所述第二辐射体为悬浮金属、石墨烯层或透明导电层。
23.在一种可能的实现方式中,所述第一辐射体和所述第二辐射体的工作频段为700-900mhz。
24.在一种可能的实现方式中,还包括:至少一组耦合接地单元,每组所述耦合接地单元包括至少两个耦合接地层,其中一个所述耦合接地层靠近所述第一辐射体的一端设置且与所述第一辐射体耦合接地;另一个所述耦合接地层靠近所述第二辐射体的一端设置且与所述第二辐射体耦合接地。
25.这样,通过靠近第一辐射体的耦合接地层能够实现第一辐射体与中框之间的耦合接地,通过靠近第二辐射体的耦合接地层能够实现第二辐射体与中框之间的耦合接地。
26.本技术实施例第二方面提供一种电子设备,至少包括:显示屏、中框、电池盖和位于所述中框和所述电池盖之间的电池,还包括:上述任一所述的天线装置;所述天线装置中的所述第一辐射体、第二辐射体和耦合馈电单元均设置在所述电池盖的内表面。
27.本技术实施例提供的电子设备,通过在电子设备中设置上述天线装置,因该天线装置能够减小天线在金属边框上的布局面积,降低对其它天线的影响,且该天线装置可以在有限的设计空间内实现,在一定程度上有效节省电子设备内部的天线设计空间,在电子设备内设置该天线装置,这样在增强电子设备功能的同时,能够缩小天线装置在电子设备内的占用尺寸,从而能够给电子设备中其他元器件的安装提供有效的空间,优化电子设备的体验效果。与此同时,也保证了电子设备中信号传输的稳定性,确保电子设备的正常工作。
28.在一种可能的实现方式中,所述中框为金属中框,且所述金属中框至少包括金属边框,所述金属边框形成所述天线装置中的至少两个金属边框天线。
29.通过将电子设备的部分金属边框形成天线装置中的至少两个金属边框天线作为辐射体,有利于进一步提升该电子设备中天线装置的辐射性能。
30.本技术实施例第三方面还提供一种电子设备,该电子设备至少包括:金属中框、电池盖和位于所述金属中框和所述电池盖之间的电池,还包括:天线装置,所述天线装置包括:耦合辐射单元、馈电单元以及由金属中框的金属边框形成的至少三个低频天线;所述耦合辐射单元靠近其中一个所述低频天线设置,且所述馈电单元的一端与所述耦合辐射单元
耦合馈电,所述馈电单元的另一端向所述其中一个低频天线馈电。
31.本技术实施例提供的电子设备,通过将金属中框的金属边框形成至少三个低频天线,天线装置中的耦合辐射单元靠近其中一个低频天线设置,天线装置中的馈电单元的一端与耦合辐射单元耦合馈电,馈电单元的另一端向至少三个低频天线中的其中一个低频天线馈电,这样能够通过耦合辐射单元与金属边框天线馈电连接以实现分布式馈电,从而能够提升天线装置的辐射性能,且能够在一定程度上降低整个天线装置的设计难度。
32.在一种可能的实现方式中,所述耦合辐射单元包括:至少一个耦合辐射体,所述耦合辐射体设置在所述电池盖的内表面;所述馈电单元位于所述耦合辐射体和所述低频天线之间,所述馈电单元的一端与所述耦合辐射体耦合馈电,所述馈电单元的另一端向所述低频天线馈电。
33.在一种可能的实现方式中,所述耦合辐射体的至少部分位于所述中框的其中一个侧边框和所述电池朝向所述电池盖的正投影之间。
34.也就是说,耦合辐射体的部分或全部结构位于侧边框(左侧边框或右侧边框)和电池的外边缘(电池靠近该侧边框一侧的外边缘)之间,这样,耦合辐射体的部分或全部结构将不位于电池朝向电池盖的正投影区域之内,则电池不会遮挡住耦合辐射体或只能遮挡住耦合辐射体的部分结构,进而能够避免对遮挡住耦合辐射体的辐射性能的影响或干涉。
35.在一种可能的实现方式中,所述馈电单元与馈源电连接,所述馈电单元的一端与所述耦合辐射体耦合馈电,所述馈电单元的另一端通过馈电线与低频天线电连接,以实现所述馈电单元向所述低频天线馈电。
36.这样,外部馈源对馈电单元馈电,馈电单元对耦合辐射体耦合馈电,且馈电单元通过馈电线向低频天线馈电,以此实现通过馈源对耦合辐射体和低频天线的馈电过程。
37.在一种可能的实现方式中,所述馈电单元包括:支架和设在所述支架上的馈电枝节,所述馈电枝节与所述馈源电连接;所述支架固定在所述电池盖的内表面上。
38.通过将支架固定在电池盖的内表面上,能够实现对馈电单元的固定,通过馈电枝节与馈源电连接,能够实现外部馈源对馈电单元馈电,馈电单元对耦合辐射体耦合馈电,且馈电单元通过馈电线向低频天线馈电,以此实现通过馈源对耦合辐射体和低频天线的馈电过程。
39.在一种可能的实现方式中,所述耦合辐射单元或所述馈电单元为悬浮金属、石墨烯层或透明导电层。
40.在一种可能的实现方式中,还包括:至少一个接地层,所述接地层靠近所述耦合辐射体的一端设置且与所述耦合辐射体耦合接地;所述接地层还通过馈电线与所述低频天线接地。
41.这样,通过靠近第一辐射体的耦合接地层能够实现第一辐射体与中框之间的耦合接地,通过靠近耦合辐射体的接地层能够实现耦合辐射体与中框之间的耦合接地,以及低频天线与中框之间的接地。
42.结合附图,根据下文描述的实施例,示例性实施例的这些和其它方面、实施形式和优点将变得显而易见。但应了解,说明书和附图仅用于说明并且不作为对本技术实施例的限制的定义,详见随附的权利要求书。本技术实施例的其它方面和优点将在以下描述中阐述,而且部分将从描述中显而易见,或通过本技术实施例的实践得知。此外,本技术实施例
的各方面和优点可以通过所附权利要求书中特别指出的手段和组合得以实现和获得。
附图说明
43.图1为本技术一实施例提供的电子设备的整体结构示意图;
44.图2为本技术一实施例提供的电子设备的拆分结构示意图;
45.图3a为本技术一实施例提供的电子设备中天线装置的结构示意图;
46.图3b为本技术一实施例提供的电子设备中天线装置的仿真模型图;
47.图3c为本技术一实施例提供的电子设备中天线装置的仿真模型图;
48.图4为本技术一实施例提供的电子设备中天线装置的结构示意图;
49.图5为本技术一实施例提供的电子设备中天线装置的结构示意图;
50.图6为本技术一实施例提供的电子设备中天线装置的性能对比图;
51.图7为本技术一实施例提供的电子设备中天线装置的性能对比图;
52.图8a为本技术一实施例提供的电子设备中天线装置在使用左手持握靠近左耳时的实际应用场景图;
53.图8b为本技术一实施例提供的电子设备中天线装置在使用右手持握靠近右耳时的实际应用场景图;
54.图9为本技术一实施例提供的电子设备中天线装置的性能对比图;
55.图10为本技术一实施例提供的电子设备中天线装置的性能对比图;
56.图11a为本技术一实施例提供的电子设备中天线装置在0.88ghz下的电流分布图;
57.图11b为本技术一实施例提供的电子设备中天线装置在0.88ghz下的电场分布图;
58.图11c为本技术一实施例提供的电子设备中天线装置在0.88ghz下的辐射方向图;
59.图12a为本技术一实施例提供的电子设备中天线装置在0.92ghz下的电流分布图;
60.图12b为本技术一实施例提供的电子设备中天线装置在0.92ghz下的电场分布图;
61.图12c为本技术一实施例提供的电子设备中天线装置在0.92ghz下的辐射方向图;
62.图13为本技术一实施例提供的电子设备中天线装置的结构示意图;
63.图14为本技术一实施例提供的电子设备中天线装置的结构示意图;
64.图15为本技术一实施例提供的电子设备中天线装置的结构示意图;
65.图16为本技术一实施例提供的电子设备中天线装置的性能对比图;
66.图17为本技术一实施例提供的电子设备中天线装置的性能对比图;
67.图18a为本技术一实施例提供的电子设备中天线装置在使用左手持握靠近左耳时的实际应用场景图;
68.图18b为本技术一实施例提供的电子设备中天线装置在使用右手持握靠近右耳时的实际应用场景图;
69.图19为本技术一实施例提供的电子设备中天线装置的性能对比图;
70.图20为本技术一实施例提供的电子设备中天线装置的性能对比图;
71.图21a为本技术一实施例提供的电子设备中天线装置在使用左手持握时的实际应用场景图;
72.图21b为本技术一实施例提供的电子设备中天线装置在使用右手持握时的实际应用场景图;
73.图22为本技术一实施例提供的电子设备中天线装置的性能对比图;
74.图23为本技术一实施例提供的电子设备中天线装置的性能对比图;
75.图24a为本技术一实施例提供的电子设备中天线装置在0.89ghz下的电流分布图;
76.图24b为本技术一实施例提供的电子设备中天线装置在0.89ghz下的电场分布图;
77.图25a为本技术一实施例提供的电子设备中天线装置在0.95ghz下的电流分布图;
78.图25b为本技术一实施例提供的电子设备中天线装置在0.95ghz下的电场分布图;
79.图26为本技术一实施例提供的电子设备中天线装置的性能对比图;
80.图27为本技术一实施例提供的电子设备中天线装置的性能对比图;
81.图28为本技术一实施例提供的电子设备中天线装置的性能对比图;
82.图29a为本技术一实施例提供的电子设备中天线装置的第一低频天线在0.89ghz下的辐射方向图;
83.图29b为本技术一实施例提供的电子设备中天线装置的第二低频天线在0.89ghz下的辐射方向图;
84.图29c为本技术一实施例提供的电子设备中天线装置的第三低频天线在0.89ghz下的辐射方向图;
85.图30a为本技术一实施例提供的电子设备中天线装置的第一低频天线在0.95ghz下的辐射方向图;
86.图30b为本技术一实施例提供的电子设备中天线装置的第二低频天线在0.95ghz下的辐射方向图;
87.图30c为本技术一实施例提供的电子设备中天线装置的第三低频天线在0.95ghz下的辐射方向图;
88.图31a为本技术一实施例提供的电子设备中天线装置的结构示意图;
89.图31b为本技术一实施例提供的电子设备中天线装置的仿真模型图;
90.图32为本技术一实施例提供的电子设备中天线装置的结构示意图;
91.图33为本技术一实施例提供的电子设备中天线装置的结构示意图;
92.图34为本技术一实施例提供的电子设备中天线装置的性能对比图;
93.图35为本技术一实施例提供的电子设备中天线装置的性能对比图;
94.图36为本技术一实施例提供的电子设备中天线装置的性能对比图;
95.图37为本技术一实施例提供的电子设备中天线装置的性能对比图;
96.图38a为本技术一实施例提供的电子设备中天线装置在1.3ghz下的电流分布图;
97.图38b为本技术一实施例提供的电子设备中天线装置在1.3ghz下的电场分布图;
98.图38c为本技术一实施例提供的电子设备中天线装置在1.3ghz下的辐射方向图;
99.图39a为本技术一实施例提供的电子设备中天线装置在1.9ghz下的电流分布图;
100.图39b为本技术一实施例提供的电子设备中天线装置在1.9ghz下的电场分布图;
101.图39c为本技术一实施例提供的电子设备中天线装置在1.9ghz下的辐射方向图;
102.图40a为本技术一实施例提供的电子设备中天线装置在2.01ghz下的电流分布图;
103.图40b为本技术一实施例提供的电子设备中天线装置在2.01ghz下的电场分布图;
104.图40c为本技术一实施例提供的电子设备中天线装置在2.01ghz下的辐射方向图;
105.图41为本技术一实施例提供的电子设备中天线装置的结构示意图;
106.图42为本技术一实施例提供的电子设备中天线装置的性能对比图;
107.图43为本技术一实施例提供的电子设备中天线装置的结构示意图;
108.图44为本技术一实施例提供的电子设备中天线装置的结构示意图;
109.图45为本技术一实施例提供的电子设备中天线装置的结构示意图;
110.图46为本技术一实施例提供的电子设备中天线装置的结构示意图;
111.图47为本技术一实施例提供的电子设备中天线装置的结构示意图;
112.图48为本技术一实施例提供的电子设备中天线装置的结构示意图;
113.图49为本技术一实施例提供的电子设备中天线装置的结构示意图;
114.图50为本技术一实施例提供的电子设备中天线装置的结构示意图。
115.附图标记说明:
116.100-天线装置;10-耦合馈电单元;101-第一耦合馈电单元;102-第二耦合馈电单元;20-辐射单元;201-第一辐射体;202-第二辐射体;30-金属边框天线;40-耦合接地单元;401-耦合接地层;50-耦合辐射单元;60-馈电单元;70-印制电路板;200-手机;21-显示屏;211-开孔;22-中框;221-金属中板;222-边框;2221-顶边框;2222-底边框;2223-左侧边框;2224-右侧边框;23-电路板;24-电池;25-电池盖;26a-前置摄像模组;26b-后置摄像模组。
具体实施方式
117.本技术的实施方式部分使用的术语仅用于对本技术的具体实施例进行解释,而非旨在限定本技术,下面将结合附图对本技术实施例的实施方式进行详细描述。
118.本技术实施例提供一种电子设备,可以包括但不限于为手机、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,umpc)、手持计算机、对讲机、上网本、销售点(point of sales,pos)机、个人数字助理(personal digital assistant,pda)、可穿戴设备、虚拟现实设备、无线u盘、蓝牙音响/耳机、或车载前装、行车记录仪、安防设备等具有天线的移动或固定终端。
119.其中,本技术实施例中,以手机200为上述电子设备为例进行说明,本技术实施例提供的手机200可以为曲面屏手机也可以为平面屏手机,本技术实施例中以平面屏手机为例进行说明。图1和图2分别示出了手机200的整体结构和拆分结构,本技术实施例提供的手机200的显示屏21可以为水滴屏、刘海屏、全面屏或者挖孔屏(参见图1所示),下述描述以挖孔屏为例进行说明。
120.参见图2所示,手机200可以包括:显示屏21、中框22、电池盖25和位于中框22和电池盖25之间的电池24,其中,电池24可以设在中框22朝向电池盖25的一面上(如图2所示),或者电池24可以设置在中框22朝向显示屏21的一面上,例如中框22朝向电池盖25的一面可以具有电池仓(图中未示出),电池24安装在电池仓中。在一些其它的示例中,手机200还可以包括电路板23,其中,电路板23可以设置在中框22上,例如,电路板23可以设置在中框22朝向电池盖25的一面上(如图2所示),或者电路板23可以设置在中框22朝向显示屏21的一面上,显示屏21和电池盖25分别位于中框22的两侧。
121.其中,电池24可以通过电源管理模块与充电管理模块和电路板23相连,电源管理模块接收电池24和/或充电管理模块的输入,并为处理器、内部存储器、外部存储器、显示屏21、摄像模组以及通信模块等供电。电源管理模块还可以用于监测电池24容量,电池24循环
次数,电池24健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块也可以设置于电路板23的处理器中。在另一些实施例中,电源管理模块和充电管理模块也可以设置于同一个器件中。
122.当手机200为平面屏手机时,显示屏21可以为有机发光二极管(organic light-emitting diode,oled)显示屏,也可以为液晶显示屏(liquid crystal display,lcd),当手机200为曲面屏手机时,显示屏21可以为oled显示屏。
123.继续参照图2,中框22可以包括金属中板221和边框222,边框222围绕金属中板221的外周设置一周。一般地,边框222可以包括顶边框2221、底边框2222、左侧边框2223和右侧边框2224,顶边框2221、底边框2222、左侧边框2223和右侧边框2224围成方环结构的边框222。其中,金属中板221的材料包括但不限于为铝板、铝合金、不锈钢、钢铝复合压铸板、钛合金或镁合金等。边框222可以为金属边框,也可以为陶瓷边框,还可以为玻璃边框。当边框222为金属边框时,金属边框的材料包括但不限于为铝合金、不锈钢、钢铝复合压铸板或钛合金等。其中,金属中板221和边框222之间可以卡接、焊接、粘合或一体成型,或者金属中板221与边框222之间可以通过注塑固定相连。
124.参照图2所示,顶边框2221和底边框2222相对设置,左侧边框2223与右侧边框2224相对设置,顶边框2221分别与左侧边框2223的一端和右侧边框2224的一端呈圆角连接,底边框2222分别与左侧边框2223的另一端和右侧边框2224的另一端呈圆角连接,从而共同形成一圆角矩形区域。后壳接地面设置于圆角矩形区域内,并分别与顶边框2221、底边框2222、左侧边框2223以及右侧边框2224连接。可以理解的是,后壳接地面可以为手机200的电池盖25。
125.电池盖25可以为金属电池盖,也可以为玻璃电池盖,还可以为塑料电池盖,或者,还可以为陶瓷电池盖,本技术实施例中,对电池盖25的材质并不加以限定,也不限于上述示例。
126.需要说明的是,在一些示例中,手机200的电池盖25可以与边框222相连形成一体成型(unibody)电池盖,例如手机200可以包括:显示屏21、金属中板221和电池盖,电池盖可以为边框222和电池盖25一体成型(unibody)形成的电池盖,这样电路板23和电池24位于金属中板221和电池盖围成的空间中。
127.其中,为了实现拍摄功能,手机200还可以包括:摄像模组,继续参照图2所示,摄像模组可以包括前置摄像模组26a和后置摄像模组26b。其中,后置摄像模组26b可以设置在金属中板221朝向电池盖25的一面上,显示屏21上开设有开孔211,后置摄像模组26b的镜头与开孔211相对应。电池盖25上可以开设可供后置摄像模组26b的部分区域安装的安装孔(图中未示出),当然,后置摄像模组26b也可以安装在电池盖25朝向金属中板221的一面上。前置摄像模组26a可以设在金属中板221朝向显示屏21的一面上,或者前置摄像模组26a可以设在金属中板221朝向电池盖25的一面上,或者,前置摄像模组26a还可以设在电池盖25朝向显示屏21的一面上,金属中板221上开设可供前置摄像模组26a的镜头端裸露的开口。
128.本技术实施例中,前置摄像模组26a和后置摄像模组26b的设置位置包括但不限于上述描述。其中,在一些实施例中,手机200内设置的前置摄像模组26a和后置摄像模组26b的数量可以为1个或n个,n为大于1的正整数。
129.可以理解的是,本技术实施例示意的结构并不构成对手机200的具体限定。在本申
请另一些实施例中,手机200可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
130.为了进一步的增加手机200的可实现功能,可以在该手机200上可以设置有天线。目前电子设备大多应用金属边框、玻璃后盖的id设计,由于金属边框尺寸有限而且天线环境紧张,某些频段的天线只能激励金属边框的单个模式以尽量小型化,因此这种采用金属边框设计的天线,特别设计在低频段时,其带宽较窄,而且性能受手握影响程度较大。目前低频三天线、四天线的规格逐渐提上日程,增加的mimo天线继续采用边框天线设计,在手机的金属边框上占据较大的布局面积,必然压缩其他天线空间,对其它天线(例如中高频天线)影响很大。因此,找到一种对其他天线影响较小的新型mimo天线方案成为当务之急。
131.基于此,本技术实施例提供一种天线装置,该天线装置可应用于上述的电子设备(例如手机200)中,该天线装置中的第一辐射体、第二辐射体和耦合馈电单元均设置在电池盖的内表面,具体地,该天线装置包括至少一组耦合馈电单元和至少一组辐射单元,通过将至少一组辐射单元中的第一辐射体和第二辐射体设置在电池盖的内表面,第一辐射体和第二辐射体分别位于耦合馈电单元的两侧,且耦合馈电单元分别与第一辐射体和第二辐射体耦合馈电,可实现耦合馈电单元和辐射单元之间的分布式馈电连接,这样能够激励出双谐振实现宽频段覆盖,馈电网络可大部分通过设置在电池盖的内表面上的辐射体实现,从而能够减小天线在金属边框上的布局面积,降低对其它天线的影响,而且该天线装置可以在有限的设计空间内实现,在一定程度上有效节省了电子设备内部的天线设计空间。
132.需要说明的是,本技术提供的天线装置适用于采用以下一种或多种mimo通信技术的电子设备:例如,长期演进(long term evolution,lte)通信技术、wi-fi通信技术、5g通信技术、sub-6g通信技术以及未来其他mimo通信技术等。
133.下面分别以不同的实施例为例,并结合附图对该天线装置的具体结构进行介绍(以下各实施例不突出通信网络的需求,仅以频率大小说明天线装置的工作特性)。
134.实施例一
135.本技术实施例提供一种天线装置100,该天线装置100应用于电子设备,其中,电子设备(例如手机200)至少可以包括中框22、电池盖25以及位于中框22和电池盖25之间的电池24(参见图2所示),其中,如图3a所示,该天线装置100可以包括:至少一组耦合馈电单元10和至少一组辐射单元20,具体地,在本技术实施例中,每组辐射单元20可以包括:第一辐射体201和第二辐射体202,第一辐射体201和第二辐射体202可以设置在电池盖25的内表面,第一辐射体201和第二辐射体202可以分别位于耦合馈电单元10的两侧,且耦合馈电单元10分别与第一辐射体201和第二辐射体202耦合馈电。
136.在一定程度上,该天线装置100可以在有限的设计空间内实现,有效节省了电子设备内部的天线设计空间。而且,该天线装置100无需在中框22的金属边框上额外开槽,不会影响电子设备的工业设计外观,且同时可以有效降低手握影响。
137.其中,第一辐射体201和第二辐射体202可以印制或者粘贴于电池盖25的内表面,或者,第一辐射体201和第二辐射体202也可以是嵌入电池盖25的内表面,本技术实施例对第一辐射体201和第二辐射体202在电池盖25的内表面上的具体设置方式并不加以限定,也不限于上述示例。当然,在其它的一些实施例中,第一辐射体201和第二辐射体202也可以是
设置在电池盖25的外表面,本技术实施例对此并不加以限定。
138.可以理解的是,在一些实施例中,本技术实施例提供的天线装置100可以包括多组辐射单元20,以增加更多的辐射体,通过辐射体的数量的增加,天线装置100能够实现更多模式的覆盖。
139.在本技术实施例中,第一辐射体201和第二辐射体202中的至少一个可以位于中框22的其中一个侧边框和电池24朝向电池盖25的正投影之间。也就是说,第一辐射体201和第二辐射体202中的至少一个可以位于侧边框(左侧边框2223或右侧边框2224)和电池24的外边缘(电池24靠近该侧边框一侧的外边缘)之间,例如,参照图3a所示,第一辐射体201位于左侧边框2223和电池24靠近该左侧边框2223一侧的外边缘之间。这样,第一辐射体201和第二辐射体202中的至少一个位于电池24朝向电池盖25的正投影区域之外,则电池24不会遮挡住第一辐射体201或第二辐射体202,进而能够避免对第一辐射体201或第二辐射体202的辐射性能的影响或干涉。
140.进一步地,在一些实施例中,第一辐射体201可以位于中框22的其中一个侧边框和电池24朝向电池盖25的正投影之间,第二辐射体202可以位于中框22的另一相对的侧边框和电池24朝向电池盖25的正投影之间。也就是说,第一辐射体201可以位于中框22的其中一个侧边框和电池24的外边缘(电池24靠近该侧边框一侧的外边缘)之间,第二辐射体202可以位于中框22的与该侧边框相对的另一侧边框和电池24的另一相对的外边缘(电池24靠近该另一侧边框一侧的另一外边缘)之间,例如,如图3a所示,第一辐射体201位于左侧边框2223和电池24靠近该左侧边框2223一侧的外边缘之间,第二辐射体202位于右侧边框2224和电池24靠近该右侧边框2224一侧的外边缘之间。
141.这样,第一辐射体201和第二辐射体202均位于侧边框(左侧边框2223或右侧边框2224)和电池24的外边缘(电池24靠近该侧边框一侧的外边缘)之间,即第一辐射体201和第二辐射体202均不位于电池24朝向电池盖25的正投影区域之内,电池24不会遮挡住第一辐射体201和第二辐射体202,进而能够避免对第一辐射体201和第二辐射体202的辐射性能的影响或干涉。
142.或者,在其它的一些实施例中,第一辐射体201或者第二辐射体202也可以不完全位于侧边框(左侧边框2223或右侧边框2224)和电池24的外边缘(电池24靠近该侧边框一侧的外边缘)之间,即第一辐射体201或第二辐射体202的部分也可以位于电池24朝向电池盖25的正投影区域之内,只要保证第一辐射体201或第二辐射体202并非全部位于电池24朝向电池盖25的正投影区域之内即可。即在一些示例中,第一辐射体201和第二辐射体202的部分区域可能会位于电池24朝向电池盖25的正投影区域之内,但是第一辐射体201和第二辐射体202的大部分区域位于电池24朝向电池盖25的正投影区域之外。
143.该天线装置100还可以包括:至少两个金属边框天线30,且至少两个金属边框天线30中的其中两个可以为低频天线。示例性地,如图3a所示,该天线装置100还包括两个金属边框天线30,且两个金属边框天线30均为低频天线。通过将电子设备的部分金属边框作为天线装置100中的辐射体,有利于进一步提升天线装置100的辐射性能。
144.需要说明的是,在本技术实施例中,中框22可以为金属中框,金属中框至少包括金属边框,金属边框形成天线装置100中的至少两个金属边框天线30。具体地,金属边框天线30可以是位于金属边框上的辐射体,通过在金属边框在开设缝隙以形成辐射体,换句话说,
金属边框天线30即在金属边框上开缝形成的槽天线。该槽天线可以包括用缝隙隔开的第一部分,第二部分,第三部分,其中,第一部分与第二部分之间、第二部分与第三部分之间以及第三部分与第一部分之间可以填充有非导电材料。
145.在实际应用时,缝隙的位置可以根据需要改变,各缝隙内可以采用非导电材料(例如塑胶)填充,以保证金属边框在外观上的完整性。通过灵活设置金属边框上的缝隙的开设位置,可以在保证天线辐射性能的同时,实现不同需求的外观设计,有利于提升电子设备的产品品质。
146.在本技术实施例中,第一辐射体201和第二辐射体202的延伸方向可以包括但不限于以下几种可能的实现方式:
147.一种可能的实现方式为:第一辐射体201的一端可以朝向中框22的底边框延伸,第二辐射体202的一端可以朝向中框22的底边框延伸(参见图3、图43、图49或图50所示)。
148.另一种可能的实现方式为:第一辐射体201的一端可以朝向中框22的顶边框延伸,第二辐射体202的一端可以朝向中框22的底边框延伸(参见图13、图44、图46或图48所示)。
149.再一种可能的实现方式为:第一辐射体201的一端可以朝向中框22的顶边框延伸,第二辐射体202的一端可以朝向中框22的顶边框延伸(参见图31a或图47所示)。
150.又一种可能的实现方式为:第一辐射体201的一端可以朝向中框22的底边框延伸,第二辐射体202的一端可以朝向中框22的侧边框延伸(参见图45所示)。
151.基于以上描述,在本技术实施例中,第一辐射体201和第二辐射体202的电长度可以为1/4λ-1/2λ,其中,λ为第一辐射体201和第二辐射体202的谐振频率对应的波长。第一辐射体201和第二辐射体202的电长度为所需谐振频率对应的四分之一波长至二分之一波长。
152.进一步地,结合图3a所示,每组耦合馈电单元10可以包括:第一耦合馈电单元101和第二耦合馈电单元102,其中,第一耦合馈电单元101可以与馈源电连接,且第一耦合馈电单元101可以分别与第一辐射体201的另一端和第二耦合馈电单元102的一端耦合馈电,第二耦合馈电单元102的另一端可以与第二辐射体202的另一端耦合馈电。这样,外部馈源对第一耦合馈电单元101馈电,第一耦合馈电单元101分别对第一辐射体201和第二耦合馈电单元102耦合馈电,然后第二耦合馈电单元102再对第二辐射体202耦合馈电,以此实现通过馈源对第一辐射体201和第二辐射体202的馈电过程。
153.在本技术实施例中,第一耦合馈电单元101可以包括:支架(图中未示出)以及设在支架上的馈电枝节(图中未示出),其中,馈电枝节与馈源电连接(或者是,馈电枝节上可以具有馈电点,馈电点与馈源电连接),支架可以固定在电池盖25的内表面上。通过将支架固定在电池盖25的内表面上,能够实现对第一耦合馈电单元101的固定,通过馈电枝节与馈源电连接,能够实现馈源对第一耦合馈电单元101馈电,第一耦合馈电单元101分别对第一辐射体201和第二耦合馈电单元102耦合馈电,然后第二耦合馈电单元102再对第二辐射体202耦合馈电,从而实现通过馈源对第一辐射体201和第二辐射体202的馈电过程。
154.另外,馈电枝节也可以直接是设置在支架上的线路层,馈电枝节可以通过激光直接成型蚀刻在支架上,以此形成一部分与电池盖25的内表面固定,一部分与外部馈源电连接的第一耦合馈电单元101。需要说明的是,若馈电枝节是通过悬浮金属实现,该馈电枝节也可以用于覆盖其它频段。
155.其中,作为一种可选的实施方式,支架可以为绝缘材料,示例性地,支架可以为聚
碳酸酯、丙烯腈-丁二烯-苯乙烯共聚物和混合物pc/abs材料(例如塑胶)中的任意一种或多种,本技术实施例对此并不加以限定,也不限于上述示例。
156.在一种可能的实现方式中,耦合馈电单元10(例如第一耦合馈电单元101和第二耦合馈电单元102)也可以设置在电池盖25上,且第一耦合馈电单元101与第二耦合馈电单元102之间存在耦合间距,第二耦合馈电单元102被第一耦合馈电单元101隔空耦合,两者之间可以形成耦合区域。应当理解的是,耦合间距越小,耦合效应越强;耦合间距越大,耦合效应越弱;耦合区域越大,耦合效应越强;耦合区域越小,耦合效应越弱。耦合间距以及耦合区域的具体取值可根据实际应用需求进行灵活设定,本技术实施例对此并不加以限定。
157.继续参照图3a所示,该天线装置100还可以包括:至少一组耦合接地单元40,其中,每组耦合接地单元40可以包括至少两个耦合接地层401,其中一个耦合接地层401靠近第一辐射体201的一端设置且与第一辐射体201耦合接地,另一个耦合接地层401靠近第二辐射体202的一端设置且与第二辐射体202耦合接地。通过靠近第一辐射体201的耦合接地层401可以实现第一辐射体201与中框22之间的耦合接地,通过靠近第二辐射体202的耦合接地层401可以实现第二辐射体202与中框22之间的耦合接地。
158.容易理解的是,在本技术实施例中,耦合接地层401的一端可以与第一辐射体201和第二辐射体202中的至少一个连接,耦合接地层401的另一端可以连接至电子设备的接地面。当然,在其它的一些实施例中,第一辐射体201和第二辐射体202也可以不采用耦合接地结构,例如可以通过馈电线直接接地。其中,馈电线可以是有线电缆(例如cable线)或传输线等。本技术实施例对该天线装置100的接地结构并不加以限定,也不限于上述示例。
159.在本技术实施例中,第一辐射体201和第二辐射体202为低频天线,作为低频天线时,第一辐射体201和第二辐射体202的工作频段可以为700-900mhz。示例性地,第一辐射体201和第二辐射体202的工作频段可以为700mhz、800mhz或900mhz等,本技术实施例对此并不加以限定,也不限于上述示例。
160.具体地,第一辐射体201和第二辐射体202可以设置在电池盖25的内表面,第一辐射体201和第二辐射体202在电池盖25的内表面上的设计空间充裕,其尺寸可以设计的较大,这样,该第一辐射体201和第二辐射体202和耦合馈电单元10形成的耦合天线设计结构可以激励出较低频段的谐振模式,产生更多谐振,实现更多频段覆盖,或者,在其它的一些实施例中,该天线装置100包括的第一辐射体201和第二辐射体202的尺寸可以设计的很小,受周围器件影响降低,在较小的设计空间内便可以得以实现。
161.另外,在一些实施例中,以第一辐射体201和第二辐射体202为悬浮金属天线为例,第一辐射体201和第二辐射体202内部还可以具有滤波器,如带通滤波器、高频滤波器等,这样可对悬浮金属天线辐射的信号进行滤波,即可实现多个频段。
162.在本技术实施例中,第二耦合馈电单元102、第一辐射体201、第二辐射体202可以为悬浮金属、石墨烯层或透明导电层。其中,第一辐射体201可以用于形成第一mimo天线,第二辐射体202可以用于形成第二mimo天线。当然,在本技术实施例中,第二耦合馈电单元102、第一辐射体201以及第二辐射体202包括但不限于为悬浮金属天线、石墨烯天线以及透明天线,例如,该设置于电池盖25的内表面上的第一辐射体201和第二辐射体202还可以是其他设置于电池盖25的内表面上的能够被耦合而辐射信号的天线元件。
163.其中,图3b和3c为本技术实施例提供的天线装置100的仿真模型图,以第二耦合馈
电单元102、第一辐射体201和第二辐射体202为悬浮金属为例,参照如图3c所示,第一辐射体201(即第一悬浮金属天线)距离边框222(金属边框)的间距l1以及第二辐射体202(即第二悬浮金属天线)距离边框222(金属边框)的间距l1可以为0.3mm-0.7mm,以具有该天线装置100的电子设备的尺寸为158mm*78mm为例(参见图3b所示),第一悬浮金属天线距离金属边框的间距以及第二悬浮金属天线距离金属边框的间距l1可以为0.4mm、0.5mm、0.6mm等,本技术实施例对此并不加以限定,也不限于上述示例。第一辐射体201(即第一悬浮金属天线)距离印制电路板70的间距l2以及第二辐射体202(即第二悬浮金属天线)距离印制电路板70的间距l2可以为2.6mm-3.0mm,例如,第一悬浮金属天线距离印制电路板70的间距以及第二悬浮金属天线距离印制电路板70的间距可以为2.7mm、2.8mm、2.9mm等,本技术实施例对此并不加以限定,也不限于上述示例。第一耦合馈电单元101(例如第一耦合馈电单元101中的支架)距离第二辐射体202(即第二悬浮金属天线)的间距l3可以为0.1mm-0.5mm,例如,第一耦合馈电单元101距离第二悬浮金属天线的间距l3可以为0.2mm、0.3mm、0.5mm等,本技术实施例对此并不加以限定,也不限于上述示例。另外,在一种可能的实现方式中,在图3b所示的天线装置100的仿真模型图中,天线装置100中边框222(金属边框)接地不辐射。
164.基于上述描述,为了进一步体现上述天线装置100的优势,本技术实施例还提供一种辐射单元20仅包括第一辐射体201的天线装置100(参见图4)以及一种辐射单元20仅包括第二辐射体202的天线装置100(参见图5),即图3是分布式辐射体馈电结构,图4是左侧单独辐射体馈电结构,图5是右侧单独辐射体馈电结构。图6和图7给出了该三种天线结构下的性能对比图。参见图6,s1为分布式辐射体馈电结构在自由空间(未对天线装置100造成干扰的情形下)下对应的天线反射系数随频率变化的曲线图,s2为左侧单独辐射体馈电结构在自由空间下对应的天线反射系数随频率变化的曲线图,s3为右侧单独辐射体馈电结构在自由空间下对应的天线反射系数随频率变化的曲线图。参见图7所示,e1为分布式辐射体馈电结构在自由空间下对应的系统效率随频率变化的曲线图,e2为左侧单独辐射体馈电结构在自由空间下对应的系统效率随频率变化的曲线图,e3为右侧单独辐射体馈电结构在自由空间下对应的系统效率随频率变化的曲线图,r1为分布式辐射体馈电结构在自由空间下对应的辐射效率随频率变化的曲线图,r2为左侧单独辐射体馈电结构在自由空间下对应的辐射效率随频率变化的曲线图,r3为右侧单独辐射体馈电结构在自由空间下对应的辐射效率随频率变化的曲线图,由图可知,分布式辐射体馈电结构相比于单独辐射体馈电结构,辐射效率提升1.5db以上,其带宽(信号所占据的频带宽度)约增加1倍。
165.而且,经过在实际场景下对三种天线装置100的头手性能,即手握电子设备例如手机200靠近头部,其中,手机200中具有天线装置100,左手握手机200靠近左耳(参见图8a),右手握手机200靠近右耳(参见图8b)下的应用评测,如图9和图10所示,a1为分布式辐射体馈电结构在左手握手机200靠近左耳时对应的曲线图,a2为左侧单独辐射体馈电结构在左手握手机200靠近左耳时对应的曲线图,a3为右侧单独辐射体馈电结构在左手握手机200靠近左耳时对应的曲线图,b1为分布式辐射体馈电结构在右手握手机200靠近右耳时对应的曲线图,b2为左侧单独辐射体馈电结构在右手握手机200靠近右耳时对应的曲线图,b3为右侧单独辐射体馈电结构在右手握手机200靠近右耳时对应的曲线图,由图可知,分布式馈电结构的头手性能更加均衡,分布式馈电结构相比于单独馈电结构,其头手性能效率带宽也更好。
166.此外,图11a、图11b和图11c分别为分布式馈电结构对应的天线装置100在0.88ghz下对应的电流、电场分布以及辐射方向图,图12a、图12b和图12c分别为分布式馈电结构对应的天线装置100在0.92ghz下对应的电流、电场分布以及辐射方向图,经过对分布式馈电结构对应的天线装置100的两个谐振(0.88ghz和0.92ghz)对应的电流、电场分布以及辐射方向图的分析,可以发现较低谐振主要由右侧的第二辐射体202产生,较高谐振由左侧的第一金属辐射体产生。
167.实施例二
168.与上述实施例一不同的是,继续参照附图13所示,第一辐射体201的一端可以朝向中框22的顶边框延伸,第二辐射体202的一端可以朝向中框22的底边框延伸。而且,其中一个低频天线朝向电池盖25的正投影可以与第一辐射体201相对,其中一个低频天线朝向电池盖25的正投影与第一辐射体201可以分别位于电池24朝向电池盖25的正投影的两侧。另一个低频天线朝向电池盖25的正投影可以与第二辐射体202相对,且另一个低频天线朝向电池盖25的正投影与第二辐射体202可以分别位于电池24朝向电池盖25的正投影的两侧。
169.具体地,继续参照图13所示,第一辐射体201与第二辐射体202呈对角相对设置,且第一辐射体201与其中一个低频天线沿着边框的长度方向的中轴线相对设置,第二辐射体202与另一个低频天线沿着边框的长度方向的中轴线相对设置,其中一个低频天线与另一个低频天线呈对角相对设置,这样,辐射体(第一辐射体201或第二辐射体202)与金属边框天线30(两个低频天线)均分离设置,使得辐射体(第一辐射体201或第二辐射体202)与金属边框天线30在空间位置上相对相距较远,能够增加第一辐射体201与金属边框天线30以及第二辐射体202与金属边框天线30之间的隔离度,从而能够有效提升天线装置100中的各天线模块之间的隔离效果,进而能够保证第一辐射体201和第二辐射体202不对金属边框天线30(两个低频天线)造成干扰。
170.同样,基于上述描述,为了进一步体现上述天线装置100的优势,本技术实施例还提供一种辐射单元20仅包括第一辐射体201的天线装置100(参见图14)以及一种辐射单元20仅包括第二辐射体202的天线装置100(参见图15),即图13是分布式辐射体馈电结构,图14是左侧单独辐射体馈电结构,图15是右侧单独辐射体馈电结构。同样对比了该三种天线结构下的性能,参见图16所示,s1为分布式辐射体馈电结构在自由空间(未对天线装置100造成干扰的情形下)下对应的天线反射系数随频率变化的曲线图,s2为左侧单独辐射体馈电结构在自由空间下对应的天线反射系数随频率变化的曲线图,s3为右侧单独辐射体馈电结构在自由空间下对应的天线反射系数随频率变化的曲线图,参见图17,e1为分布式辐射体馈电结构在自由空间下对应的系统效率随频率变化的曲线图,e2为左侧单独辐射体馈电结构在自由空间下对应的系统效率随频率变化的曲线图,e3为右侧单独辐射体馈电结构在自由空间下对应的系统效率随频率变化的曲线图,r1为分布式辐射体馈电结构在自由空间下对应的辐射效率随频率变化的曲线图,r2为左侧单独辐射体馈电结构在自由空间下对应的辐射效率随频率变化的曲线图,r3为右侧单独辐射体馈电结构在自由空间下对应的辐射效率随频率变化的曲线图,由图可知,分布式辐射体馈电结构相比于单独辐射体馈电结构,效率提升接近2db,其带宽(信号所占据的频带宽度)提升1倍以上。
171.而且,经过在实际应用场景下图13所示的分布式辐射体馈电结构对应的天线装置100的头手性能,即手握电子设备例如手机200靠近头部,左手握手机200靠近左耳(参见图
18a所示),右手握手机200靠近右耳(参见图18b所示)的仿真模拟评测,以及经过在实际应用场景下对图13所示的分布式辐射体馈电结构对应的天线装置100的手握性能,即手握电子设备例如手机200,左手持握手机200(参见图21a所示),右手持握手机200(参见图21b所示)的仿真模拟评测,分别如图19和图20以及图22和图23所示,在图19和图20中,c1为自由空间状态下对应的曲线图,c2为左手握手机200靠近左耳时对应的曲线图,c3为右手握手机200靠近右耳时对应的曲线图,在图22和图23中,c1为自由空间状态下对应的曲线图,c2为左手握手机200时对应的曲线图,c3为右手握手机200时对应的曲线图,由图可知,分布式辐射体馈电结构的左右头手性能和左右手握性能均衡,差异在1db以内。
172.此外,图24a和图24b分别为分布式馈电结构对应的天线装置100在0.89ghz下对应的电流分布图和电场分布图,图25a和图25b分别为分布式馈电结构对应的天线装置100在0.95ghz下对应的电流分布图和电场分布图,经过对分布式辐射体馈电结构对应的天线装置100的两个谐振(0.89ghz和0.95ghz)对应的电流分布图和电场分布图的分析,可以发现偏低谐振主要由左侧的第一辐射体201产生,偏高谐振由右侧的第二辐射体202产生。
173.另外,当金属边框天线30也辐射时,以第一辐射体201和第二辐射体202为低频天线为例,如图13所示,分布式天线(第一辐射体201和第二辐射体202)与两个低频天线(金属边框天线30)工作在同一频段。
174.例如,在图13中,以左侧的金属边框天线30作为第一低频天线(ant1),右侧的金属边框天线30作为第二低频天线(ant2),第一辐射体201和第二辐射体202作为第三低频天线(ant3)为例,图26和图27显示了该三个低频天线自由空间下的天线反射系数曲线以及效率曲线,其中,s1为第一低频天线对应的天线反射系数曲线图,s2为第二低频天线对应的天线反射系数曲线图,s3为第三低频天线对应的天线反射系数曲线图,e1为第一低频天线对应的系统效率曲线图,e2为第二低频天线对应的系统效率曲线图,e3为第三低频天线对应的系统效率曲线图,r1为第一低频天线对应的辐射效率曲线图,r2为第二低频天线对应的辐射效率曲线图,r3为第三低频天线对应的辐射效率曲线图,由图可知,该三个低频天线在同频状态下性能正常。
175.另外,图28为这三个低频天线对应的系统隔离度的曲线图,其中,d1为第二低频天线与第一低频天线之间的系统隔离度对应的曲线图,d2为第三低频天线与第一低频天线之间的系统隔离度对应的曲线图,d3为第三低频天线与第二低频天线之间的系统隔离度对应的曲线图,由图可知,这三个天线两两之间的系统隔离度均在12db以上,即说明图13所示的天线装置100的辐射性能很好。
176.ecc at 0.89ghz/0.95ghzant1ant2ant3ant1
ꢀꢀꢀ
ant20.14/0.1
ꢀꢀ
ant30.15/0.130.23/0.47 177.图29a、图29b和图29c分别显示了该三个低频天线在0.89ghz下的辐射方向图,图30a、图30b和图30c分别显示了该三个低频天线在0.95ghz下的辐射方向图,另外,上表显示了上述三个低频天线在两个频点下的包络相关系数(envelope correlation coefficient,ecc),同样,以图13中的第一辐射体201和第二辐射体202作为第三低频天线(ant3),左侧的金属边框天线30作为第一低频天线(ant1),右侧的金属边框天线30作为第
二低频天线(ant2),由上表可知,该三个低频天线在两个频点(0.89ghz和0.95ghz)下的ecc均小于0.5,因此,足以可见图13所示的这种分布式天线设计是一种较好的mimo天线设计方案。
178.在本技术实施例中,其他技术特征与实施例一相同,并能取得相同或相应的技术效果,此处不再一一赘述。
179.实施例三
180.与上述实施例一或实施例二不同的是,本技术实施例中的辐射体为中高频辐射体,例如可以通过缩减辐射体的长度以实现频段的增加,两个中高频辐射体(例如悬浮金属天线)位于左右两侧,并通过耦合馈电单元10(例如悬浮金属)实现连接。具体地,与实施例一相比,参照图31a所示,第一辐射体201的长度以及第二辐射体202的长度均有缩短,本技术实施例通过缩短第一辐射体201和第二辐射体202的长度来提高其工作频段。具体地,结合图3和图31a所示,与图3相比,图31a所示的天线装置100中第一辐射体201和第二辐射体202的长度较短。
181.在本技术实施例中,第一辐射体201和第二辐射体202为中高频天线,作为中高频天线时,第一辐射体201和第二辐射体202的工作频段可以大于1000mhz。示例性地,第一辐射体201和第二辐射体202的工作频段可以为1000mhz、1100mhz或1200mhz等,本技术实施例对此并不加以限定,也不限于上述示例。
182.另外,图31b为本技术实施例提供的天线装置100的仿真模型图,该仿真模型及天线环境与实施例一相同或相似,此处不再赘述。
183.同样,基于上述描述,为了进一步体现上述天线装置100的优势,本技术实施例还提供一种辐射单元20仅包括第一辐射体201的天线装置100(参见图32)以及一种辐射单元20仅包括第二辐射体202的天线装置100(参见图33),即图31a是分布式辐射体馈电结构,图32是左侧单独辐射体馈电结构,图33是右侧单独辐射体馈电结构。参见图34所示,s1为分布式辐射体馈电结构在自由空间(未对天线装置100造成干扰的情形下)下对应的天线反射系数随频率变化的曲线图,s2为左侧单独辐射体馈电结构在自由空间下对应的天线反射系数随频率变化的曲线图,s3为右侧单独辐射体馈电结构在自由空间下对应的天线反射系数随频率变化的曲线图,参见图35所示,e1为分布式辐射体馈电结构在自由空间下对应的系统效率随频率变化的曲线图,e2为左侧单独辐射体馈电结构在自由空间下对应的系统效率随频率变化的曲线图,e3为右侧单独辐射体馈电结构在自由空间下对应的系统效率随频率变化的曲线图,r1为分布式辐射体馈电结构在自由空间下对应的辐射效率随频率变化的曲线图,r2为左侧单独辐射体馈电结构在自由空间下对应的辐射效率随频率变化的曲线图,r3为右侧单独辐射体馈电结构在自由空间下对应的辐射效率随频率变化的曲线图,由图可知,分布式辐射体馈电结构相比于单独辐射体馈电结构,其带宽(信号所占据的频带宽度)提升1倍以上,且分布式辐射体馈电结构的两个谐振分别对应单独辐射体馈电结构两个不同单元的谐振。
184.而且,图36和图37给出了左右手握下的分布式辐射体馈电结构对应的天线性能,经过在实际场景下对图31a所示的天线装置100的手握性能(即手握电子设备例如手机200,左手握手机200或右手握手机200)的应用评测,参见图36和图37所示,c1为自由空间状态下对应的曲线图,c2为左手握手机200状态下对应的曲线图,c3为右手握手机200状态下对应
的曲线图,由图可知,左手手握和右手手握情形下,效率相比自由空间状态只降低2~3db,而且比较均衡。
185.此外,图38a、图38b和图38c分别为分布式馈电结构对应的天线装置100在1.3ghz下对应的电流分布图、电场分布图以及辐射方向图,图39a、图39b和图39c分别为分布式馈电结构对应的天线装置100在1.9ghz下对应的电流分布图、电场分布图以及辐射方向图,图40a、图40b和图40c分别为分布式馈电结构对应的天线装置100在2.01ghz下对应的电流分布图、电场分布图以及辐射方向图,经过对分布式馈电结构对应的天线装置100的三个谐振对应的电流分布图和电场分布图的分析,发现高频的两个谐振分别由左侧的第一辐射体201和右侧的第二辐射体202产生,而较低的谐振由耦合馈电单元10中的馈电枝节产生,当其环境较好时,通过调整长度,也可以用于设计低频天线。
[0186][0187]
另外,上表对比了图31a所示的天线装置100(双谐振结构)和图32所示的天线装置100(单谐振结构)这两种天线结构下背面的5mm body sar(单位时间内单位质量的物质吸收的电磁辐射能量,衡量终端辐射的热效应),通过分布式辐射体馈电结构(图31a所示的天线装置100),相比于单独辐射体馈电结构(例如图32所示的左侧单独辐射体馈电结构),其sar值下降约1~2db。
[0188]
在本技术实施例中,其他技术特征与实施例一或实施例二相同,并能取得相同或相应的技术效果,此处不再一一赘述。
[0189]
实施例四
[0190]
与上述实施例一、实施例二或实施例三不同的是,本技术实施例中的辐射体与金属边框天线30可以馈电连接,相结合以实现分布式馈电。
[0191]
本技术实施例提供一种电子设备,该电子设备至少包括:中框22(金属中框)、电池盖25和位于金属中框和电池盖25之间的电池24,还包括:天线装置100,具体地,参照图41所示,天线装置100包括:耦合辐射单元50、馈电单元60以及由金属中框的金属边框形成的至少三个低频天线;耦合辐射单元50靠近其中一个低频天线设置,且馈电单元60的一端与耦合辐射单元50耦合馈电,馈电单元60的另一端向其中一个低频天线馈电。
[0192]
通过将金属中框的金属边框形成至少三个低频天线,天线装置100中的耦合辐射单元50靠近其中一个低频天线设置,天线装置100中的馈电单元60的一端与耦合辐射单元50耦合馈电,馈电单元60的另一端向至少三个低频天线中的其中一个低频天线馈电,这样能够通过耦合辐射单元50与金属边框天线30馈电连接以实现分布式馈电,从而能够提升天线装置100的辐射性能,且能够在一定程度上降低整个天线装置100的设计难度。
[0193]
其中,耦合辐射单元50可以包括:至少一个耦合辐射体,耦合辐射体设置在电池盖25的内表面;馈电单元60位于耦合辐射体和低频天线之间,馈电单元60的一端与耦合辐射
体耦合馈电,馈电单元60的另一端向低频天线馈电。
[0194]
在一种可能的实现方式中,耦合辐射体的至少部分位于中框22的其中一个侧边框和电池24朝向电池盖25的正投影之间。也就是说,耦合辐射体的部分或全部结构位于侧边框(左侧边框2223或右侧边框2224)和电池24的外边缘(电池24靠近该侧边框一侧的外边缘)之间,这样,耦合辐射体的部分或全部结构将不位于电池24朝向电池盖25的正投影区域之内,则电池24不会遮挡住耦合辐射体或只能遮挡住耦合辐射体的部分结构,进而能够避免对遮挡住耦合辐射体的辐射性能的影响或干涉。
[0195]
在本技术实施例中,馈电单元60与馈源电连接,馈电单元60的一端与耦合辐射体耦合馈电,馈电单元60的另一端通过馈电线与低频天线电连接,以实现馈电单元60向低频天线馈电。这样,外部馈源对馈电单元60馈电,馈电单元60对耦合辐射体耦合馈电,且馈电单元60通过馈电线向低频天线馈电,以此实现通过馈源对耦合辐射体和低频天线的馈电过程。
[0196]
可以理解的是,馈电形式可以是通过有线电缆(例如cable线)、传输线或者悬浮金属结构等实现,本技术实施例中的馈电形式包括但不限于上述示例,具体可以根据实际应用场景的需求进行灵活设置。
[0197]
馈电单元60包括:支架和设在支架上的馈电枝节,馈电枝节与馈源电连接;支架固定在电池盖25的内表面上。通过将支架固定在电池盖25的内表面上,能够实现对馈电单元60的固定,通过馈电枝节与馈源电连接,能够实现外部馈源对馈电单元60馈电,馈电单元60对耦合辐射体耦合馈电,且馈电单元60通过馈电线向低频天线馈电,以此实现通过馈源对耦合辐射体和低频天线的馈电过程。
[0198]
在本技术实施例中,耦合辐射单元50或馈电单元60可以为悬浮金属、石墨烯层或透明导电层。
[0199]
此外,本技术实施例提供的该天线装置100还可以包括:至少一个接地层,接地层靠近耦合辐射体的一端设置且与耦合辐射体耦合接地;接地层还通过馈电线与低频天线接地。这样,通过靠近第一辐射体201的耦合接地层401能够实现第一辐射体201与中框22之间的耦合接地,通过靠近耦合辐射体的接地层能够实现耦合辐射体与中框22之间的耦合接地,以及低频天线与中框22之间的接地。
[0200]
综上,耦合辐射体与金属边框天线30作分布式馈电连接以提升辐射性能时,参见图42所示,其中,f1为图41所示的分布式馈电天线结构(耦合辐射体 金属边框天线30)对应的效率曲线图,f2为现有技术中仅馈电金属边框天线30的天线结构对应的效率曲线图,由图可知,图41所示的分布式馈电天线结构(耦合辐射体 金属边框天线30)相比于现有技术中仅馈电金属边框天线30的天线结构,分布式馈电天线效率可提升1.5db,带宽增加1倍左右。
[0201]
在本技术实施例中,其他技术特征与实施例一、实施例二或实施例三相同,并能取得相同或相应的技术效果,此处不再一一赘述。
[0202]
在本技术实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本技术实施例中的具体含义。
[0203]
在本技术实施例或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本技术实施例的限制。在本技术实施例的描述中,“多个”的含义是两个或两个以上,除非是另有精确具体地规定。
[0204]
本技术实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本技术实施例的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
[0205]
最后应说明的是:以上各实施例仅用以说明本技术实施例的技术方案,而非对其限制;尽管参照前述各实施例对本技术实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本技术实施例各实施例技术方案的范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献