一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种苯硼酸修饰的水溶性近红外二区荧光造影剂及其应用

2022-06-05 06:13:29 来源:中国专利 TAG:


1.本发明属于纳米生物医学成像技术领域,具体涉及一种苯硼酸修饰的离子型水溶性近红外二区荧光成像造影剂及其应用。


背景技术:

2.荧光成像是一种传统的光学成像技术,根据不同的生物组织光学窗口,它可被分为可见光区(200-650nm)荧光成像、近红外一区(nir-i,700-900nm)荧光成像和近红外二区(nir-ii,1000-1700nm)荧光成像。相比于近红外一区荧光成像的不足,荧光发射波长范围超过1000nm的近红外二区荧光对生物组织的散射和自吸收都降至最低,从而使nir-ii荧光成像的成像穿透深度更深,成像分辨率更高,成像时自发荧光背景更弱,致使nir-ii荧光成像技术可在生物体内获得更好的成像质量。
3.经过近几年的发展,近红外二区荧光造影剂的种类逐渐增多,可大致分为无机纳米材料、有机共轭聚合物和有机小分子三类。其中有机小分子nir-ii荧光材料主要包括电子供体-受体(d-a)结构小分子和一些杂环取代的亚甲基染料,相比其他种类材料,有机d-a结构分子在生物体内易代谢,具有极好的生物相容性,是十分理想的近红外二区荧光造影剂。
4.现有技术存在以下缺陷:然而现在报道的d-a型nir-ii荧光造影剂水溶性较差,并且侧链缺乏功能性基团(如苯硼酸等),限制了其在药物负载等方面的应用。


技术实现要素:

5.目的:本发明提供了一种通苯硼酸修饰的离子型水溶性近红外二区荧光成像造影剂及其制备方法和应用,旨在提高近红外二区荧光成像造影剂的水溶性、功能性、高亮度,实现更好的近红外二区荧光成像效果。
6.技术方案:为解决上述技术问题,本发明采用的技术方案为:
7.第一方面,提供一种化合物,为式(i)化合物或其盐:
[0008][0009]
其中,
[0010]
r1表示h或
[0011]
环c表示或
[0012]
在一些实施例中,所述化合物为
[0013][0014]
在一些实施例中,所述化合物为
[0015][0016]
在一些实施例中,所述式a化合物的合成路线包括:
[0017][0018]
在一些实施例中,所述式b化合物的合成路线包括:
[0019][0020]
第三方面,提供上述的化合物的一些应用。
[0021]
一种诊断试剂,包含上述的化合物。
[0022]
一种诊断组合物,包含上述的化合物以及药学上可接受的载体或赋形剂。
[0023]
如上述的化合物在制备用作近红外二区荧光成像造影剂的诊断组合物中的应用。
[0024]
进一步的,所述的应用,将上述的化合物溶于水中,即得造影剂。
[0025]
优选的,所述近红外二区荧光成像造影剂中化合物的浓度为0.2~20mg/ml。
[0026]
有益效果:本发明设计并合成了一种苯硼酸修饰的离子型水溶性近红外二区荧光成像造影剂,该造影剂由苯硼酸修饰的近红外二区小分子在水溶液中组装而成。以近红外二区荧光电子供-受体结构为核,在芴的侧链连接有阳离子和苯硼酸。本发明制备方法简单,具有近红外二区成像荧光效果,可作为造影剂实现对小鼠血管或肿瘤的近红外二区荧光成像。较现在报道的近红外二区荧光成像造影剂具有更高的水溶性、功能性、高亮度,从而极大地提高了活体血管和肿瘤的成像质量。
[0027]
本发明的造影剂拥有良好的水溶性、生物相容性和对肿瘤的靶向识别能力,能够实现高清晰度的近红外二区荧光成像效果。更为重要的是苯硼酸结构可以负载多种药物,该造影剂在药物载运等方面也有应用前景。
附图说明
[0028]
图1为本发明实施例1所得造影剂的透射电镜照片;
[0029]
图2为本发明实施例2所得造影剂的透射电镜照片;
[0030]
图3为本发明实施例3所得造影剂的流体力学直径;
[0031]
图4为本发明实施例4所得造影剂的流体力学直径;
[0032]
图5为本发明实施例5所得造影剂的紫外吸收图谱;
[0033]
图6为本发明实施例6所得造影剂的荧光发射图谱;
[0034]
图7为本发明实施例7所得造影剂的紫外吸收图谱;
[0035]
图8为本发明实施例8所得造影剂的荧光发射图谱;
[0036]
图9为本发明实施例9所得造影剂的小鼠血管成像;
[0037]
图10为本发明实施例10所得造影剂的小鼠血管及肿瘤成像;
[0038]
图11为本发明实施例化合物a的核磁氢谱图;
[0039]
图12为本发明实施例化合物a的质谱图;
[0040]
图13为本发明实施例化合物b的核磁氢谱图;
[0041]
图14为本发明实施例化合物b的质谱图。
具体实施方式
[0042]
为了进一步阐明本发明,下面给出一系列实施例,这些实施例完全是例证性的,它们仅用来对本发明具体描述,不应当理解为对本发明的限制。
[0043]
1.近红外二区荧光化合物a的合成:
[0044]
合成路线为:
[0045][0046]
近红外二区荧光化合物a的合成方法:
[0047]
在100毫升的烧瓶中加入化合物1(100毫克,0.116毫摩尔),化合物2(50毫克,0.058毫摩尔),四(三苯基膦)钯(1毫克,0.000865毫摩尔)和正四丁基溴化铵(3毫克,0.0093毫摩尔),接上回流管,在避光条件下对整个体系进行抽真空充氮气,然后将鼓泡完的无水甲苯加入烧瓶中,在100摄氏度下搅拌24小时。反应结束后,二氯甲烷萃取得粗产物,
经过硅胶柱层析分离得到化合物3。
[0048]
在50毫升的烧瓶中加入化合物3(20毫克,0.0108毫摩尔)、8毫升二甲胺四氢呋喃溶液,常温搅拌24小时。反应结束后,减压蒸干溶剂得到化合物4。
[0049]
在50毫升的烧瓶中加入化合物4(20mg,0.00959毫摩尔),加入化合物5(7.65mg,0.0356毫摩尔),搅拌24小时过夜,透析冻干后得到化合物a。
[0050]
结构确证数据:制得的化合物a的核磁氢谱图见图11,质谱图见图12。
[0051]
2.近红外二区荧光化合物b的合成:
[0052]
合成路线为:
[0053][0054]
近红外二区荧光化合物b的合成方法:
[0055]
在50毫升的烧瓶中加入化合物1(10毫克,0.0116毫摩尔),化合物6(24.99毫克,0.0232毫摩尔),(二亚苄基丙酮)二钯(0.6毫克,0.000651毫摩尔)和三苯基膦(0.8毫克,0.00258毫摩尔),接上回流管,在避光条件下对整个体系进行抽真空充氮气,然后将鼓泡完的噻吩芴(49.21毫克,0.0646毫摩尔)与氯苯(2毫升)混合液加入烧瓶中,在135℃下回流搅拌24小时。反应结束后,经过硅胶柱层析分离得到化合物7。
[0056]
在50毫升的烧瓶中加入化合物7(20毫克,0.00969毫摩尔)、8毫升二甲胺四氢呋喃溶液,常温搅拌24小时。反应结束后,减压蒸干溶剂得到化合物8。
[0057]
在50毫升的烧瓶中加入化合物8(20mg,0.00869毫摩尔),加入化合物5(7.65mg,0.0356毫摩尔),搅拌24小时过夜,透析冻干得到化合物b。
[0058]
结构确证:制得的化合物b的核磁氢谱图见图13,质谱图见图14。
[0059]
实施例一:
[0060]
将近红外二区水溶性荧光化合物a溶于水中,制得浓度为1.0毫克/毫升的造影剂。
[0061]
如图1所示,测试其透射电镜图,可得该造影剂纳米粒子粒径为78纳米左右。
[0062]
实施例二:
[0063]
将近红外二区荧光化合物b溶于水中,制得浓度为3.0毫克/毫升的造影剂。
[0064]
如图2所示,测试其透射电镜图,可得该造影剂纳米粒子粒径为105纳米左右。
[0065]
实施例三:
[0066]
将近红外二区水溶性荧光化合物a溶于水中,制得浓度为2.0毫克/毫升的造影剂。
[0067]
如图3所示,根据动态光散射测定该造影剂纳米粒子的流体力学半径约为85纳米。
[0068]
实施例四:
[0069]
将近红外二区荧光化合物b溶于水中,制得浓度为5.0毫克/毫升的造影剂。
[0070]
如图4所示,根据动态光散射测定该造影剂纳米粒子的流体力学半径约为112纳米。
[0071]
实施例五:
[0072]
将近红外二区水溶性荧光化合物a溶于水中,制得浓度为7.0毫克/毫升的造影剂。
[0073]
如图5所示,可以看出其紫外-近红外吸收峰在740纳米波段。
[0074]
实施例六:
[0075]
将近红外二区水溶性荧光化合物a溶于水中,制得浓度为6.0毫克/毫升的造影剂。
[0076]
如图6所示,其发射光谱图,可以看出发射峰则在1125纳米波段,明显是近红外二区荧光发射材料。
[0077]
实施例七:
[0078]
将近红外二区荧光化合物b溶于水中,制得浓度为9.0毫克/毫升的造影剂。
[0079]
如图7所示,可以看出其紫外-近红外吸收峰在730纳米波段。
[0080]
实施例八:
[0081]
将近红外二区荧光化合物b溶于水中,制得浓度为4.0毫克/毫升的造影剂。
[0082]
如图8所示,其发射光谱图,可以看出发射峰则在1080纳米波段,明显是近红外二区荧光发射材料。
[0083]
实施例九:
[0084]
将近红外二区水溶性荧光化合物a溶于水中,制得浓度为1.5毫克/毫升的造影剂。
[0085]
如图9所示,选用携带有人乳腺癌细胞的荷瘤鼠,尾静脉注射150毫升造影剂后,使用近红外二区荧光成像仪进行血管系统成像,可以清晰的观察到血管分布,分辨率较高。
[0086]
实施例十:
[0087]
将近红外二区荧光化合物b溶于水中,制得浓度为0.5毫克/毫升的造影剂。
[0088]
如图10所示,选用携带有人乳腺癌细胞的荷瘤鼠,尾静脉注射150毫升造影剂后,使用近红外二区荧光成像仪进行血管系统成像,可以清晰的观察到血管分布,分辨率较高。
[0089]
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献