一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种大面积纳米线阵列膜及其制备方法

2022-06-01 12:39:46 来源:中国专利 TAG:


1.本发明属于纳米线技术领域,具体涉及一种大面积纳米线阵列膜及其制备方法。


背景技术:

2.纳米线阵列是由大量相互独立并垂直于基层的纳米线组成的有序整体,其中不仅保留了单根纳米线结构及功能,而且还具有大规模协同效应。纳米线阵列由于具有大比表面积,晶体取向稳定的特点而表现出极高的表面活性,提高了活性材料的利用率。此外,纳米线阵列结构还可以减轻电化学过程中体积变化引起的应力,因此在物理和化学领域有广阔的应用前景。
3.在众多制备纳米线阵列的方法中,模板法具有可控性高、制备过程简便、可大规模生产的优点而具有广阔的应用前景。然而,由于模板法制备的模板通常为氧化物膜,为获得纳米线阵列必须溶掉其氧化物膜,通常选择磷酸、氢氧化钠等溶液。但是溶解模板的过程是不稳定的,比如无法确定有效的溶解温度和溶解时间、无法完全去除模板、溶解得到的纳米线无法保持阵列结构等等。
4.目前,模板法制备的纳米线阵列过程如下。首先制备出纳米管阵列膜,再将含有基底的纳米管阵列膜放入溶液中,用水热法、溶胶-凝胶法填充金属、合金、氧化物等,然后在膜一侧沉积一层支撑物,最后用磷酸、氢氧化钠等溶液溶解模板得到纳米线阵列。但是,该方法存在诸多问题,如支撑物无法支撑纳米线得到阵列、模板的溶解难以掌控和操作不够安全等。
5.近年来,等离子清洗技术逐渐成熟,等离子体和固体、液体或气体一样,是物质的一种状态,也叫做物质的第四态。等离子清洗技术常用气氛有四氟化碳、三氟化氮、六氟化硫等氟化物气体。氟化物气体在真空腔体里,通过射频电源在一定的电压情况下起辉产生高能量的无序的等离子体,可通过等离子体轰击三氧化二铝、二氧化钛等氧化物膜,产生三氟化铝、四氟化钛等,其中三氟化铝遇强热易升华、四氟化钛本身具有284℃的低沸点,高能环境中两者易升华,从而达到去除氧化物膜的要求。


技术实现要素:

6.为解决现有技术的不足,本发明提供了一种大面积纳米线阵列膜及其制备方法。本发明在模板法的基础上,通过氟化物等离子体刻蚀三氧化二铝、二氧化钛或二氧化锆等氧化物纳米管膜,裸露出其中的沉积碳、金属、合金、氧化物等填充物,从而得到大面积纳米线阵列膜,而刻蚀副产物氟化物则升华脱离体系。该方法易于控制等离子体刻的进程,副产物易分离,降低了制备难度。
7.本发明所提供的技术方案如下:
8.一种大面积纳米线阵列膜的制备方法,该方法包括以下步骤:
9.步骤一、对经预处理的纯铝片、钛片或锆片进行阳极氧化,其包括以下步骤:
10.1)预处理纯铝片、钛片或锆片:
11.采用机械加工方式去除待处理纯钛片表面的氧化层,所述纯铝片、钛片或锆片为一平整且厚度为0.1~1mm的片材;
12.2)配制电解液:
13.分别配置0.2-0.5m草酸水溶液、0.25-1wt.%的nh4f的乙二醇溶液和0.5-2wt.%的nh4f甘油-丙三醇溶液,分别用于纯铝片、钛片或锆片的阳极氧化的电解液;
14.3)将经预处理的纯铝片、钛片、锆片置于所述电解液中进行阳极氧化反应后,制得三氧化二铝、二氧化钛或二氧化锆纳米管阵列膜的一级初步产品:
15.以经预处理的纯铝片、钛片或锆片作为阳极,不锈钢箔电极或铜箔或钛箔或铂箔或石墨电极作为阴极,且分别利用电压为10-50v、20-110v、20-80v的直流电源对预处理的纯铝片、钛片、锆片进行阳极氧化,氧化温度为0~30℃,氧化时间为1~168h;
16.步骤二、将所述一级初步产品从所述电解液中立即取出且用去离子水清洗后,放入液溴的甲醇溶液中,液溴与甲醇的体积比为1:1-1:9,常温下反应12-96h,溶解去除铝、钛、锆金属基体,获得三氧化二铝、二氧化钛或二氧化锆纳米管阵列膜;
17.步骤三、将得到的二级初步产品用无水乙醇清洗干净后,放入临界co2气氛干燥箱中进行干燥,获得底部带有阻挡层的三级初步产品;
18.步骤四、采用物理或化学方法向三氧化二铝、二氧化钛或二氧化锆纳米管阵列膜中沉积碳、金属、合金或氧化物填充物,获得管中有沉积填充物的纳米管阵列膜四级初步产品;
19.步骤五、将所述四级初步产品底部一面朝上放入含有氟化物气体的等离子体清洗仪中进行模板的刻蚀,功率1-50kw,放置时间为2h-24h,反应后既得所述大面积纳米线阵列膜。
20.上述技术方案在对三氧化二铝、二氧化钛或二氧化锆纳米管阵列膜进行沉积碳、金属、合金、氧化物等填充物后,采用氟化物气体进行等离子体刻蚀模板,该刻蚀方法进程易于控制,副产物易分离,降低了制备难度。
21.具体的,纯铝片、钛片或锆片的纯度大于99.9%,形状为长方形或圆形。
22.具体的,碳、金属、合金、氧化物中金属元素为镁、铟、锡、铅、砷、锑或铋中的一种或几种。
23.具体的,步骤4)中所述的用物理或化学方法为原子层气相沉积法、磁控溅射法、溶胶凝胶法、电沉积法、物理液压法中的一种。沉积后可以采用物理方法清除多余的沉积物,例如物理剥离、超声清洗、胶粘去除等方式或各方式的组合。
24.具体的,步骤4)中所述的氟化物气体为四氟化碳、三氟化氮、六氟化硫中的任一种或多种混合而成的混合气体。
25.具体的,步骤5)中所述的成品的面积为1-100cm2。
26.本发明还提供了上述制备方法制备得到的大面积纳米线阵列膜。
27.制得的成品可作为传感、光电转换或传导材料。
28.本发明通过氟化物气体的等离子体清洗的简单方法实现了对三氧化二铝、二氧化钛或二氧化锆模板的刻蚀。在氟化物气体的等离子体刻蚀中,因为氟离子的存在,氟离子会和al
3
、ti
4
、zr
4
生成易于气化的alf3、tif4、zrf4等物质,进而三氧化二铝、二氧化钛或二氧化锆阵列膜底部的阻挡层被去除,形成纳米线阵列膜结构。该方法制备过程简单,制备参数
容易控制,对模板的刻蚀效果好,从而降低了获得大面积纳米线阵列膜的制备难度。
附图说明
29.图1是本发明实施例1所得到的in
0.9
sn
0.1
纳米线阵列膜的扫描电镜图。
30.图2是本发明实施例2所得到的c纳米线阵列膜的扫描电镜图。
31.图3是本发明实施例3所得到的pbo2纳米线阵列膜的扫描电镜图。
具体实施方式
32.以下对本发明的原理和特征进行描述,所举实施例只用于解释本发明,并非用于限定本发明的范围。
33.实施例1
34.将长为5cm的正方形铝片(纯度大于等于99.9%,厚度为0.2mm)采用常规机械加工方式去除表面的氧化层。电解液由草酸、水配制而成,草酸的含量为0.3m。将处理好的铝片放入反应装置,暴露在电解液中的铝片直径为4cm。使用冰箱将电解液温度固定在5℃,使用铂箔作为阴极,在阳极电压为40v条件下阳极氧化2小时,得到平均孔径60nm的纳米管阵列膜。反应结束从电解液中立即取出样品且用去离子水清洗后,放入液溴的甲醇溶液中,液溴与甲醇的体积比为1:5,常温下反应12h,去除铝基底。从液溴的甲醇溶液中取出样品后,用无水乙醇清洗干净,放入临界co2气氛干燥箱中进行干燥,获得底部带有阻挡层的三氧化二铝纳米管阵列膜。
35.采用物理液压法制备的in
0.9
sn
0.1
纳米线阵列,具体步骤为:将先前制备的三氧化二铝纳米管阵列膜正面朝上放在真空液压装置中,再将熔炼好的in
0.9
sn
0.1
压成片状放置在阵列膜上方。打开真空泵,将装置温度升至170℃,略高于合金熔点,保持10分钟,合金熔化并散布在阵列膜表面,然后施加一个液压力,将合金注入纳米管阵列膜中。将至室温后剥离剩余的in
0.9
sn
0.1
片,再超声清洗16h。
36.将膜的底部朝上放入含有六氟化硫等离子体清洗仪中进行模板的刻蚀,功率40kw,放置时间为24h,反应后既得in
0.9
sn
0.1
纳米线阵列膜,结构如图1所示。
37.实施例2
38.将直径为2cm的圆形钛片(纯度大于等于99.9%,厚度为0.2mm)采用常规机械加工方式去除表面的氧化层。电解液由nh4f、乙二醇配制而成,nh4f的含量为0.5wt.%。将处理好的钛片放入反应装置,暴露在电解液中的钛片直径为1cm。使用冰箱将电解液温度固定在5℃,使用石墨电极作为阴极,在阳极电压为60v条件下阳极氧化12小时,得到平均孔径为80nm的纳米管阵列膜。反应结束从电解液中立即取出样品且用去离子水清洗后,放入液溴的甲醇溶液中,液溴与甲醇的体积比为1:5,常温下反应24h,去除钛基底。从液溴的甲醇溶液中取出样品后,用无水乙醇清洗干净,放入临界co2气氛干燥箱中进行干燥,获得底部带有阻挡层的二氧化钛纳米管阵列膜。
39.采用化学气相沉积法制备的c纳米线,具体步骤为:将二氧化钛纳米管阵列膜置于管式炉中,空气条件下,从室温以2℃/min升至设定温度450℃,然后保温3h,再以2℃/min降至室温。将晶化的二氧化钛纳米管样品和一定含量的尿素和聚乙烯醇放入石墨槽中,抽真空,在氮气的氛围中,从室温以1℃/min升至设定温度600℃,然后保温3h,再以1℃/min降至
室温,得到填充碳纳米线的二氧化钛纳米管阵列膜。然后超声清洗24h。
40.将膜的底部朝上放入含有六氟化硫等离子体清洗仪中进行模板的刻蚀,功率50kw,放置时间为16h,反应后既得c纳米线阵列膜,结构如图2所示。
41.实施例3
42.将长为4cm的正方形锆片(纯度大于等于99.9%,厚度为0.3mm)采用常规机械加工方式去除表面的氧化层。电解液由nh4f、甘油、丙三醇配制而成,甘油和丙三醇1:1混合,nh4f的含量为1wt.%。将处理好的锆片放入反应装置,暴露在电解液中的钛片直径为3cm。室温下,使用石墨电极作为阴极,在阳极电压为50v条件下阳极氧化3小时,得到平均孔径为100nm的纳米管阵列膜。反应结束从电解液中立即取出样品且用去离子水清洗后,放入液溴的甲醇溶液中,液溴与甲醇的体积比为1:6,常温下反应36h,去除锆基底。从液溴的甲醇溶液中取出样品后,用无水乙醇清洗干净,放入临界co2气氛干燥箱中进行干燥,获得底部带有阻挡层的二氧化锆纳米管阵列膜。
43.采用溶胶凝胶法沉积pbo2纳米线,具体步骤为:取0.005mol硝酸铅,经磁力搅拌将其溶于10ml去离子水中,形成溶液a;称取0.005mol柠檬酸,经磁力搅拌将其溶于10ml的去离子水中,形成溶液b;将溶液b缓慢滴加到溶液a中,形成混合溶液。该溶液在60℃条件下磁力搅拌1h,用氨水调节ph至5~6之间;继续加热蒸发溶液中的水分,待溶液变成水溶胶时,将清洗和干燥过的二氧化锆纳米管阵列膜浸入其中,并在60℃水浴条件下保温2h。取出二氧化锆纳米管阵列膜,擦去表面的溶胶,在80℃下干燥1h后,放入马弗炉中升温到800℃退火2h。得到pbo2纳米线沉积的二氧化锆纳米管阵列膜。然后超声清洗24h。
44.将膜的底部朝上放入含有四氟化碳等离子体清洗仪中进行模板的刻蚀,功率45kw,放置时间为18h,反应后既得pbo2纳米线阵列膜,结构如图3所示。
45.以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献