一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

耦合温控系统及方法与流程

2022-05-18 16:46:35 来源:中国专利 TAG:


1.本发明涉及半导体制造技术领域,尤其涉及一种耦合温控系统及方法。


背景技术:

2.在集成电路制造过程中产生的废气,国内外通常采用废气处理设备对废气进行处理,采用燃烧水洗、电加热、等离子体分解等处理方式对废气进行无害化处理,废气经过燃烧、电加热、等离子体分解等方式处理后具有很高的能量,在传统的废气处理设备中,经过处理后的废气直接通过喷淋系统进行降温,然后排出,能量极大的浪费。由于废气处理设备的废气能量巨大,废气的热量可以相当于20kw的加热器产生的热量,传统的半导体专用温控设备采用的加热器通常小于5kw,废气的热量远大于传统温控设备中加热器产生的热量,
3.刻蚀工艺的温控设备的制冷量是按刻蚀工艺过程中的最大负载量进行设计的,在集成电路制造的刻蚀工艺制程中,刻蚀的负载是按工艺步骤进行加载,在这个过程中有大量的时间并不是按最大工艺负载进行加载,同时还有部分时间是处于空载转态,在空载及未满负载的条件下,温控设备的制冷系统中的制冷量并未100%利用起来,因而也是一种能量的浪费。


技术实现要素:

4.本发明提供一种耦合温控系统及方法,用以解决现有技术中半导体制造的废气处理设备中,经过处理后的废气直接进行降温排出,造成能量极大的浪费,同时温控系统的快速升温速度慢的缺陷,实现温控设备的温度精确控制及快速升温控制。并且将废气处理设备的能量用于温控系统中进行循环液的加热,有效的实现能源的综合利用和节能控制的效果。
5.本发明提供一种耦合温控系统,包括制冷装置、加热装置和循环装置,所述制冷装置包括压缩机、冷凝器的放热通路、换热器的吸热通路依次连通形成的第一制冷回路,所述循环装置包括所述换热器的换热通路、水箱、第一泵体和负载依次连通形成的循环液回路,所述加热装置包括废气处理设备,所述废气处理设备与所述换热器的放热通路连通。
6.根据本发明提供的一种耦合温控系统,所述废气处理设备包括燃烧腔和喷淋塔,所述燃烧腔的出气口通过所述换热器的放热通路与所述喷淋塔的进口连通。
7.根据本发明提供的一种耦合温控系统,所述喷淋塔的进口与所述换热器的放热通路连通的管路上设有第一阀体。
8.根据本发明提供的一种耦合温控系统,所述喷淋塔的进口与所述换热器的放热通路连通的管路上还设有风机,所述第一阀体与所述风机沿所述管路内气体流向依次设置。
9.根据本发明提供的一种耦合温控系统,所述废气处理设备还包括水池,所述燃烧腔的出气口与所述喷淋塔的进气口还通过所述水池连通。
10.根据本发明提供的一种耦合温控系统,所述第一泵体与所述负载连通的管路上设有第一温度检测件。
11.根据本发明提供的一种耦合温控系统,所述冷凝器的放热通路的出口与所述换热器的吸热通路的进口连通的管路上设有第二阀体。
12.根据本发明提供的一种耦合温控系统,所述制冷装置还包括蒸发器,所述压缩机、所述冷凝器的放热通路、所述蒸发器的吸热通路依次连通形成第二制冷回路,所述喷淋塔内设有喷淋组件,所述水池、所述蒸发器的放热通路、第二泵体和所述喷淋组件依次连通。
13.根据本发明提供的一种耦合温控系统,所述冷凝器的放热通路的出口与所述蒸发器的吸热通路的进口连通的管路上设有第三阀体。
14.根据本发明提供的一种耦合温控系统,所述第二泵体与所述喷淋组件连通的管路上沿液体流向依次设有第四阀体和第二温度检测件。
15.根据本发明提供的一种耦合温控系统,所述换热器为多通道板式换热器。
16.本发明还提供一种耦合温控方法,应用上所述的耦合温控系统,包括:
17.s1,获取循环装置的出口的实际温度;
18.s2,根据所述循环装置的出口的实际温度与目标温度,获得出口温度的目标值差值;
19.s3,根据出口温度的目标值差值控制加热装置的第一阀体和制冷装置的第二阀体的开度。
20.本发明提供的耦合温控系统,在实现刻蚀工艺设备废气处理的同时将废气处理设备中废气的能量进行充分利用,将具有高能量的废气用于对温控系统的循环液的加热。传统的半导体专用温控系统采用的加热器通常小于5kw,而废气处理设备的废气能量巨大,废气的热量可以相当于20kw的加热器产生的热量,远大于传统温控系统中加热器产生的热量,在利用废气能量的过程中,可以实现温控系统的快速升温的效果,而且循环液流入换热器中实现快速升温的控制时,快速升温的速度可以提高3倍以上,比传统温控系统的快速升温速度更快,实现温控设备的温度精确控制及快速升温控制。本发明在实现了温控系统的功能及废气处理设备的功能的基础上,将废气处理设备的能量用于温控系统中进行循环液的加热,有效的实现能源的综合利用和节能控制。
21.除了上面所描述的本发明解决的技术问题、构成的技术方案的技术特征以及有这些技术方案的技术特征所带来的优点之外,本发明的其他技术特征及这些技术特征带来的优点,将结合附图作出进一步说明,或通过本发明的实践了解到。
附图说明
22.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
23.图1是本发明提供的耦合温控系统的结构示意图之一;
24.图2是本发明提供的耦合温控系统的结构示意图之二;
25.附图标记:
26.100、制冷装置;110、压缩机;120、冷凝器;130、换热器;140、第二阀体;150、蒸发器;160、第二泵体;170、第三阀体;180、第四阀体;190、第二温度检测件;
27.200、循环装置;210、水箱;220、第一泵体;230、负载;250、第一温度检测件;260、第三温度检测件;
28.300、加热装置;320、废气处理设备;330、第一阀体;340、风机;321、燃烧腔;322、喷淋塔;323、水池;324、喷淋组件。
具体实施方式
29.下面结合附图和实施例对本发明的实施方式作进一步详细描述。以下实施例用于说明本发明,但不能用来限制本发明的范围。
30.在本发明实施例的描述中,需要说明的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明实施例的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
31.在本发明实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明实施例中的具体含义。
32.在本发明实施例中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
33.此外,在本发明实施例的描述中,除非另有说明,“多个”、“多根”、“多组”的含义是两个或两个以上,“若干个”、“若干根”、“若干组”的含义是一个或一个以上。
34.在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
35.如图1所示,本发明实施例提供的耦合温控系统,包括制冷装置100、加热装置300和循环装置200,制冷装置100包括压缩机110、冷凝器120的放热通路、换热器130的吸热通路依次连通形成的第一制冷回路,循环装置200包括换热器130的换热通路、水箱210、第一泵体220和负载230依次连通形成的循环液回路,加热装置300包括废气处理设备320,废气处理设备320与换热器130的放热通路连通。
36.本发明实施例的耦合温控系统,作为半导体集成电路制造刻蚀工艺制程中的重要
设备,在集成电路制造中对刻蚀工艺设备的废气进行无害化处理,同时精确的控制刻蚀工艺设备反应腔中的温度,确保反应腔的温度精确控制。
37.负载230为刻蚀工艺设备,冷却液在制冷装置100的第一制冷回路中循环流动,压缩机110输出的高温高压冷却液经过冷凝器120的放热通路放热,冷却降温后经过换热器130的吸热通路,与换热器130的换热通路中的循环液进行热交换,使循环液温度降低,而后冷却液回到压缩机110,循环液冷却后进入水箱210,通过第一泵体220泵出输送至刻蚀工艺设备中,对刻蚀工艺设备的反应腔进行降温,由刻蚀工艺设备中流出高温循环液再次流入换热器130的换热通路,循环液在循环液回路中循环流动,实现对刻蚀工艺设备的反应腔的降温控制。
38.废气处理设备320的废气进入换热器130的放热通路,与换热通路中的循环液进行热交换,使循环液的温度升高,而后废气回到废气处理设备320,循环液升温后进入水箱210,通过第一泵体220泵出输送至刻蚀工艺设备中,对刻蚀工艺设备的反应腔进行升温,循环液在循环液回路中循环流动,实现对刻蚀工艺设备的反应腔的升温控制。
39.循环液在换热器130中既能够吸热升温又能够放热降温,即在升温过程中,换热器130的换热通道作为吸热通道,在降温的过程中,换热器130的换热通道作为放热通道。当刻蚀工艺设备的反应腔需要快速升温控制时,第一制冷回路关闭,加热装置300打开,即换热器130中仅有由刻蚀工艺设备流出的循环液与由废气处理设备320排出的废气进行热交换,循环液在换热器130中进行加热,实现快速的升温作用。当刻蚀工艺设备的反应腔需要快速降温控制时,第一制冷回路打开,加热装置300,即换热器130中仅有由刻蚀工艺设备流出的循环液与由冷凝器120中流出的冷却液进行热交换,循环液在换热器130中进行冷却,实现快速的降温作用。
40.本发明在实现刻蚀工艺设备废气处理的同时将废气处理设备320中废气的能量进行充分利用,将具有高能量的废气用于对温控系统的循环液的加热。传统的半导体专用温控系统采用的加热器通常小于5kw,而废气处理设备320的废气能量巨大,废气的热量可以相当于20kw的加热器产生的热量,远大于传统温控系统中加热器产生的热量,在利用废气能量的过程中,可以实现温控系统的快速升温的效果,而且循环液流入换热器130中实现快速升温的控制时,快速升温的速度可以提高3倍以上,比传统温控系统的快速升温速度更快,实现温控设备的温度精确控制及快速升温控制。本发明在实现了温控系统的功能及废气处理设备320的功能的基础上,将废气处理设备320的能量用于温控系统中进行循环液的加热,有效的实现能源的综合利用和节能控制。
41.根据本发明提供的一个实施例,废气处理设备320包括燃烧腔321和喷淋塔322,燃烧腔321的出气口通过换热器130的放热通路与喷淋塔322的进口连通。本实施例中,刻蚀工艺设备的废气进入燃烧腔321燃烧反应后,产生大量热随着废气进入换热器130的放热通路,与换热器130中循环液进行热交换,循环液加热升温流入水箱210,废气经过换热器130后进入喷淋塔322,喷淋塔322对废气进行喷淋,废气得到降温和净化后由喷淋塔322排出。
42.根据本发明提供的一个实施例,喷淋塔322的进口与换热器130的放热通路连通的管路上设有第一阀体330。本实施例中,通过控制第一阀体330的开度,实现对进入换热器130的废气量的精确控制,从而对循环液在换热器130内与废气进行的热交换量的控制,以达到对刻蚀工艺设备的反应腔温度的精确控制。
43.本实施例中,第一阀体330可采用电动阀。
44.根据本发明提供的一个实施例,喷淋塔322的进口与换热器130的放热通路连通的管路上还设有风机340,第一阀体330与风机340沿管路内气体流向依次设置。本实施例中,风机340为废气由换热器130的放热通路到喷淋塔322的流动提供动力,即为废气在废气处理设备320与换热器130之间的流通提供动力。
45.根据本发明提供的一个实施例,废气处理设备320还包括水池323,燃烧腔321的出气口与喷淋塔322的进气口还通过水池323连通。本实施例中,燃烧腔321的出气口与喷淋塔322的进气口下方设置水池323,喷淋塔322对废气进行喷淋,喷淋液体落入水池323中储存沉淀。燃烧腔321的出气口侧壁另外开设出口连接出气管路的一端,出气管路的另一端连接换热器130的放热通路的进口,换热器130的放热通路的出口连接进气管路的一端,进气管路的另一端穿过水池323到达喷淋塔322的进气口,风机340与第一阀体330均设置于该进气管路位于水池323外的管段上。
46.根据本发明提供的一个实施例,第一泵体220与负载230连通的管路上设有第一温度检测件250。本实施例中,第一温度检测件250用于检测循环液由第一泵体220泵出后进入刻蚀工艺设备前的温度,即第一温度检测件250检测循环装置200的出口温度,通过第一温度检测件250检测温度可对第一阀体330进行开度调节,进而控制进入刻蚀工艺设备的循环液温度。
47.本实施例中,第一温度检测件250可采用温度传感器。负载230与换热器130的换热通路连通的管路上还设有第三温度检测件260,同样可以采用温度传感器,拥有检测流出刻蚀工艺设备的循环液温度,即循环装置200的回口温度。
48.根据本发明提供的一个实施例,冷凝器120的放热通路的出口与换热器130的吸热通路的进口连通的管路上设有第二阀体140。本实施例中,由压缩机110中输送出的冷却液在冷凝器120的放热通路中与冷凝器120的吸热通路中的冷媒进行热交换后,冷却液温度降低,通过第二阀体140降压并控制冷却液其进入换热器130的吸热通路的流量大小,进而控制换热器130内冷却液与循环液的换热量。第一温度检测件250检测温度可对第二阀体140进行开度调节。
49.本实施例中,第二阀体140可采用电子膨胀阀。
50.如图2所示,根据本发明提供的一个实施例,制冷装置100还包括蒸发器150,压缩机110、冷凝器120的放热通路、蒸发器150的吸热通路依次连通形成第二制冷回路,喷淋塔322内设有喷淋组件324,水池323、蒸发器150的放热通路、第二泵体160和喷淋组件324依次连通。本实施例中,制冷装置100中压缩机110输送高温高压的冷却液经过冷凝器120降温冷却后分为两路,一路经过第二阀体140后进入换热器130与循环液进行换热,换热后回到压缩机110构成第一制冷回路,另一路经过蒸发器150的吸热通路,水池323中的喷淋液进入蒸发器150的放热通路,与冷却液进行热交换,经过热交换的冷却液回到压缩机110构成第二制冷回路,喷淋液冷却降温后通过第二泵体160泵入喷淋塔322内布置的喷淋组件324内,对进入喷淋塔322的废气进行喷淋降温净化。
51.本发明通过蒸发器150的设置在制冷装置100中形成第二制冷回路,将制冷装置100多余的制冷量充分利用起来,用于对废气处理设备320中水池323的喷淋液进行降温处理,处理后的喷淋液再对废气进行喷淋降温,以此将温控系统的多余制冷量进行综合利用。
本发明在实现了温控系统的功能及废气处理设备320的功能的基础上,将废气处理设备320的废气的热量用于温控设备中对循环液加热,将制冷装置100中的多余制冷量用于废气处理设备320中对废气的降温喷淋,进一步实现能源的综合利用。将制冷装置100的多余的制冷量充分利用起来,用于废气处理设备320的废气的降温,有效的将温控系统的多余的制冷量总和利用起来,避免了在温控系统中多余的制冷量在制冷装置100中反复循环蒸发、压缩,未能有效的利用的问题。
52.根据本发明提供的一个实施例,冷凝器120的放热通路的出口与蒸发器150的吸热通路的进口连通的管路上设有第三阀体170。本实施例中,制冷系统中冷却液经过冷凝器120后,一路经过第二阀体140进入换热器130中进行蒸发,对循环装置200中的循环液进行降温;另一路经过第三阀体170进入蒸发器150中进行蒸发,对来自废气处理设备320中的水池323里的喷淋液进行降温。本实施例中,第三阀体170的开度为100%-第二阀体140的开度,既实现了温控系统的精确温度控制过程所需的制冷量,又充分的将温控系统的多余制冷量充分利用起来,做到能源的充分利用。
53.本实施例中,第三阀体170可采用电子膨胀阀。
54.根据本发明提供的一个实施例,第二泵体160与喷淋组件324连通的管路上沿液体流向依次设有第四阀体180和第二温度检测件190。本实施例中,水池323中的高温喷淋液进入蒸发器150的放热通路,与蒸发器150的吸热通路中的冷却液进行热交换,喷淋液降温后通过第二泵体160泵出,流经第四阀体180和第二温度检测件190后,流入喷淋塔322中的喷淋组件324对废气进行喷淋降温。第四阀体180可控制喷淋液的流量以及防止喷淋液回流至蒸发器150,第二温度检测件190用于检测向由第二泵体160泵出的喷淋液的温度,即进入喷淋组件324前的喷淋液温度,从而控制第三阀体170的开度,实现对蒸发器150出换热量的调节,进而对喷淋液温度进行控制。
55.本实施例中,第四阀体180可采用电动阀。第二温度检测件190可采用温度传感器。
56.根据本发明提供的一个实施例,换热器130为多通道板式换热器。本实施例中,多通道板式换热器中具有三个换热板体位于壳体内部,可以为盘管板形式,一个换热板为换热器130的换热通路,内部流通循环液,一个换热板为换热器130的的放热通路,内部流通废气,另一个换热板为换热器130的吸热通路,内部流通冷却液。在其它实施例中,换热器130还可采用其它换热设备,能够满足多通路气液热量交换条件即可。
57.本发明实施例还提供一种耦合温控方法,应用上的耦合温控系统,包括:
58.s1,获取循环装置200的出口的实际温度;
59.s2,根据循环装置200的出口的实际温度与目标温度,获得出口温度的目标值差值;
60.s3,根据出口温度的目标值差值控制加热装置300的第一阀体330和制冷装置100的第二阀体140的开度。
61.本发明的耦合温控方法,设定循环装置200的出口的循环液目标温度sv,通过第一温度检测件250检测循环装置200的出口的循环液实际温度pv,实际温度pv与目标温度sv求差值,获得循环装置200的出口的循环液温度的目标值差值e=sv-pv。基于循环装置200的出口的循环液温度的目标值差值调用pid算法计算控制输出aout的数值,将aout进行调节分别计算eout和mout,其中eout用于调节第二阀体140的开度,mout用于调节第一阀体330
的开度,其中eout加大时mout减小,反之eout减小时mout加大,从而控制循环液进行不同的制冷、升温的环节,实现进入刻蚀工艺设备的循环液温度的精确控制。通过修正系数的改变,可以实现耦合温控系统的不同带载能力,可以实现温度的快速稳定控制。
62.使用时,不限定上述阀体是截止阀、电动阀、电磁阀或其他形式可通断的阀类。
63.最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献