一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种PDA@CRISPR/Cas9/sgHMGA2NPs复合体、制备方法及应用与流程

2022-05-06 08:54:29 来源:中国专利 TAG:

一种pda@crispr/cas9/sghmga2 nps复合体、制备方法及应用
技术领域
1.本发明属于生物技术领域,特别涉及一种pda@crispr/cas9/sghmga2 nps复合体、制备方法及应用。


背景技术:

2.高迁移率基因a2(hmga2)是一种由hmga2编码的非组蛋白染色体蛋白。它的作用是通过影响染色质结构来调节转录。生理条件下,hmga2在胚胎发生过程中表达较高,在正常成体组织中基本不表达或表达量极低;病理情况下,它在多种类型的癌组织中重新表达,故推测hmga2在癌变过程中必不可少。据报道,hmga2可以通过参与细胞凋亡、细胞周期、血管生成、上皮-间质转化(emt)以及耐药性来调节肿瘤发生、转移和复发。hmga2这种在癌组织中重新表达的特征及其在癌症中的重要作用,决定其将成为癌症精准治疗的新候选靶基因。
3.crispr/cas9系统是一种强大的基因组编辑工具。在sgrna的定向引导下,crispr/cas9核酸内切酶对基因组dna特定位点进行靶向切割,实现靶基因序列突变或缺失。这一技术为遗传性疾病以及恶性肿瘤的靶向治疗带来新的希望。然而,将该生物技术转化为临床治疗方法却难以实现,原因如下:难以同时高效递送crispr/cas9蛋白和sgrna(crispr/cas9系统的两个关键成分)至靶细胞细胞核中并保持活性、到达细胞核后难以实现快速发挥靶向切割作用。迄今为止,crispr/cas9系统的细胞内递送形式主要包括质粒dna(pdna)、信使rna(mrna)及核糖核蛋白复合物(rnp)。其中cas9 rnp形式是最快速的基因编辑递送形式,将crispr/cas9蛋白和sgrna的复合物(crispr/cas9/sgrna)直接递送到细胞内,避免了前两种递送形式必须经历的细胞内转录及翻译过程。同时,cas9 rnp可实现瞬时基因组编辑,减少了pdna形式中由于质粒dna的长期存在引起的脱靶效应、插入突变及免疫原性反应。上述特点决定cas9 rnp成为crispr/cas9基因编辑系统的首选递送形式。遗憾的是,裸露的cas9 rnp在递送过程中难以抵抗体液中核酸酶和蛋白酶对其降解作用。寻找一种既可抵抗酶作用又可安全高效地将cas9 rnp送入细胞内或体内递送方法成为这一生物技术临床转化的关键。到目前为止,虽然诸多研究开发了大量的递送策略(主要包括物理递送方法和化学递送方法),并有少量已经进入临床实验阶段,但因适用范围受限,准备过程繁杂,亦或基因编辑效率低下等原因未能顺利进入临床iii期的递送策略。故,寻找新的更安全高效的cas9 rnp细胞内递送系统迫在眉睫。
4.聚多巴胺(pda)是多巴胺在弱碱性条件下(ph 8.5)的氧化产物,为可涂覆所有已知材料表面的多功能聚合物。由于其强大的粘附能力、光热性能、生物相容性及其在酸性环境下的可生物降解性,被广泛应用于医疗粘合剂、诊断、成像、药物载体等领域。然而,到目前为止,尚未见关于pda作为载体,递送cas9 rnp复合物的相关报道。


技术实现要素:

5.本发明的目的在于提供一种pda@crispr/cas9/sghmga2 nps复合体,用以实现对
靶基因hmga2进行编辑,用于开发crispr/cas9基因编辑系统的精确靶向治疗方法。
6.为实现上述目的,本发明采用以下技术方案:
7.一种pda@crispr/cas9/sghmga2 nps复合体,所述复合体是由聚多巴胺包裹crispr/cas9核糖核蛋白复合物构成的一种纳米颗粒,所述crispr/cas9核糖核蛋白复合物包括crispr/cas9-3nls
和sghmga2,所述crispr/cas9-3nls
为带有3个核定位信号系统的核酸内切酶,所述sghmga2为三个特异性靶向hmga2基因的单链向导rna,sghmga2对应的dna序列为seq id no.:4、5、6中任意一条所示。
8.一种pda@crispr/cas9/sghmga2 nps复合体的制备方法,所述复合体的制备方法包括以下步骤:
9.s1、crispr/cas9-3nls
的制备;
10.s1.1、根据pet28a/cas9-cys载体序列,设计seq id no.:1所示特异性引物n3-f,设计seq id no.:2所示特异性引物n3-r;
11.s1.2、使用n3-f和n3-r引物及高保真酶pod-plus-neo对底物pet28a/cas9-cys进行pcr扩增;
12.s1.3、扩增产物经琼脂糖凝胶电泳纯化后回收目的pcr产物;
13.s1.4、pcr产物经磷酸化及自连,亚克隆到大肠杆菌dh5α中,再经菌落pcr及测序,鉴定筛选包含可编码三个nls的核苷酸序列的载体;
14.s1.5、以感受态细胞rosetta为原核表达系统,诱导crispr/cas9-3nls
的表达,回收纯化浓缩获得高纯度的crispr/cas9-3nls

15.s2、sghmga2的制备;
16.s2.1、针对seq id no.:3所示的hmga2基因片段设计seq id no.:4、seq id no.:5和seq id no.:6所示的crispr/cas9靶标序列;
17.s2.2、合成seq id no.:7、seq id no.:8、seq id no.:9、seq id no.:10、seq id no.:11和seq id no.:12所示的带接头的靶标序列及其互补序列;
18.s2.3、再经退火处理获得三个针对hmga2基因的sgrna双链dna片段作为插入片段,将其分别与内切酶处理过的dr274载体重组连接,形成三个可转录sghmga2的重组原核表达质粒:dr274-sghmga2-1、dr274-sghmga2-2和dr274-sghmga2-3;
19.s2.4、用限制性核酸内切酶对上述三个质粒进行酶切,电泳纯化回收含有t7启动子及可转录sghmga2序列的消化产物并将其作为模板,体外转录并提取纯化后获得的三个靶向hmga2的sgrna,分别为sghmga2-1、sghmga2-2和sghmga2-3;
20.s3、pda@crispr/cas9/sghmga2 nps复合体的制备;
21.s3.1、将s1.5所述的crispr/cas9-3nls
与s2.4所述的sghmga2以终浓度160nm:320nm的比列在37℃条件下静置于ne buffer 2中30分钟,形成crispr/cas9-3nls
/sghmga2复合物;
22.s3.2、将27mg/ml的盐酸多巴胺与上述crispr/cas9-3nls
/sghmga2复合物以3:2的体积比共孵育,形成pda@crispr/cas9/sghmga2 nps复合体。
23.进一步地,s1所述n3-f的5’端包含可编码一个nls的核苷酸序列,s1所述n3-r的5’端包含可编码两个nls的核苷酸序列。
24.进一步地,s2.3所述内切酶选用bbsi限制性内切酶。
25.进一步地,s2.4所述限制性内切酶选用drai限制性内切酶。
26.进一步地,s3.1所述的sghmga2包括sghmga2-1、sghmga2-2和sghmga2-3,用量比为sghmga2-1:sghmga2-2:sghmga2-3=1:1:1。
27.进一步地,s3.2所述共孵育的溶液ph值为8.5。
28.进一步地,s3.2所述复合体形态为核壳状的纳米颗粒。
29.一种crispr/cas9基因编辑系统的靶向治疗应用,所述应用采用所述的pda@crispr/cas9/sghmga2 nps复合体来实现。
30.本发明具有以下有益效果:
31.本发明提供的pda@crispr/cas9/sghmga2 nps复合体对hmga2基因切割具有高效性及准确性高的特点,所述复合体入胞效率高达95%以上,能够实现对癌细胞基因组hmga2的靶向敲除,敲除率可达85%以上,该复合体可用于开发crispr/cas9基因编辑系统的精确靶向治疗方法,作为一种针对hmga2高表达型癌症的新型靶向治疗手段进行研究,可用于揭示crispr/cas9基因编辑系统对hmga2高表达型癌症治疗过程中的功能作用,为pda包裹crispr/cas9基因编辑系统对hmga2高表达的癌症患者进行精准靶向生物治疗提供临床前数据依据。
32.本发明涉及的序列如下:
33.为pet28a/cas9-cys载体引入可编码另外两个nls核苷酸序列设计特异性引物:
34.seq id no.:1tacctttctcttcttttttggtacttttctctttttctttggaggtccgga
35.seq id no.:2ccaaaaaagaagagaaaggtaccaaaaaagaagagaaaggtataagcggccgcactcgagcac
36.hmga2基因片段(基因id:8091):
37.seq id no.:3acgtccggtgttgatggtggcagcggcggcagcctaagcaacagcagccctcgcagcccgccagctcgcgctcgccccgccggcgtccccagccctatcacctcatctcccgaaaggtgctgggcagctccggggcggtcgaggcgaagcggctgcagcggcggtagcggcggcgggaggcaggatgagcgcacgcggtgagggcgcggggcagccgtccacttcagcccagggacaacctgccgccccagcgcctcagaagagaggacgcggccgccccaggaagcagcagcaagaaccaaccggtgagccctctcctaagagacccaggggaagacccaaaggcagcaaaaacaagagtccctctaaagcagctcaaaagaaagcagaagccactggagaaaaacggccaagaggcagacctaggaaatggccacaacaagttgttcagaagaagcctgctcaggaggaaactgaagagacatcctcacaagagtctgccgaagaggactagggggcgccaacgttcgatttctacctcagcagcagttggat
38.三个sghmga2序列分别为:
39.seq id no.:4agcgcctcagaagagagga
40.seq id no.:5cagcgcctcagaagagagga
41.seq id no.:6agggacaacctgccgccccac
42.在seq id no.:4序列加上接头,合成得到插入片段sghmga2-1:
43.seq id no.:7grna1-f:5-cacctcctctcttctgaggcgctg
44.seq id no.:8grna1-r:5-aaaccagcgcctcagaagagagga
45.在seq id no.:5序列加上接头,合成得到插入片段sghmga2-2:
46.seq id no.:9grna2-f:5-caccggtcctctcttctgaggcgct(seq id no.:8)
47.seq id no.:10grna2-r:5-aaacagcgcctcagaagagaggacc(seq id no.:9)
48.在seq id no.:6序列加上接头,合成得到插入片段sghmga2-3:
49.seq id no.:11grna3-f:5-caccgtggggcggcaggttgtccct(seq id no.:10)
50.seq id no.:12grna3-r:5-aaacagggacaacctgccgccccac(seq id no.:11)
51.为获得cy5标记目标hmga2 dna片段所设计引物hmga2-f/r
52.seq id no.:13hmga2-f:acgtccggtgttgatggtg
53.seq id no.:14hmga2-r:ctcccttcaaaagatccaactg
附图说明
54.图1:含有可编码3个nls(pkkkrkv)的核苷酸序列的pet28a/cas9-n3载体的部分测序结果;
55.图2:crispr/cas9-3nls
纯化浓缩结果;
56.图3:三个sghmga2的纯化结果,m:marker、g1:sghmga2-1、g2:sghmga2-2、g3:sghmga2-3;
57.图4:crispr/cas9-3nls
/sghmga2复合物对hmga2基因的细胞外切割效率验证图,cn:cy5-hmga2 dna片段;
58.图5:pda@crispr/cas9/sghmga2 nps复合体的透射电子显微镜图;
59.图6:pda@crispr/cas9/sghmga2 nps复合体入胞率及入核率的验证图
60.图7:pda@crispr/cas9/sghmga2 nps复合体对hmga2基因的细胞内切割效率验证图。
具体实施方式
61.本发明公开了一种针对hmga2高表达型癌症靶向治疗的pda@crispr/cas9/sghmga2 nps复合体、制备方法及应用,该复合体是由聚多巴胺(pda)直接包裹crispr/cas9核糖核蛋白复合物(crispr/cas9-ribonucleoprotein,crispr/cas9-rnp)形成的一种纳米颗粒(nps)。其中pda是多巴胺在弱碱性条件下(ph 8.5)的氧化产物;crispr/cas9-rnp是带有3个核定位信号系统(nls)的核酸内切酶(crispr/cas9)和三个特异性靶向hmga2基因的单链向导rna(single-guide rna,sgrna)随机组合而成的核糖核蛋白复合物。该复合体被命名为pda@crispr/cas9/sghmga2 nps。所述复合体利用聚多巴胺的生物分子转运功能及其良好的生物相容性,高效且安全地将crispr/cas9核糖核蛋白复合物运送到细胞内,实现对靶基因hmga2的高效编辑,该复合体不仅可实现crispr/cas9基因编辑系统的高效率细胞内递送(95%以上)及高效的靶基因编辑(约85%)功能、还具有抵抗核酸酶和蛋白酶降解的能力、以及高的生物相容性及在酸性环境中的生物降解性等特点。该复合体能够实现对crispr/cas9基因编辑系统的高效递送及对癌细胞基因组hmga2的高效靶向敲除,可用于开发crispr/cas9基因编辑系统的精确靶向治疗方法,作为一种针对hmga2高表达型癌症的新型靶向治疗手段进行研究,用于揭示crispr/cas9基因编辑系统对hmga2高表达型癌症治疗过程中的功能作用,为pda包裹crispr/cas9基因编辑系统对hmga2高表达的癌症患者进行精准靶向生物治疗提供临床前数据依据。
62.下面结合附图和实施例对本专利的技术方案作进一步说明。
63.实施例1
64.crispr/cas9-3nls
核酸内切酶的制备:在骨架载体pet28a/cas9-cys(addgene,
plasmid 53261)的cas9编码区(编码sv40核定位信号序列(nls)(pkkkrkv)的核苷酸序列之前)额外引入两个编码sv40 nls的核苷酸序列,最终得到含有可编码3个sv40 nls的核苷酸序列的重组原核表达载体,命名为pet28a/cas9-n3.具体操作步骤如下:根据pet28a/cas9-cys载体序列,设计如seq id no.:1、seq id no.:2所示特异性引物n3-f和n3-r:其中n3-f的5’端包含可编码一个nls的核苷酸序列,n3-r的5’端包含可编码两个nls的核苷酸序列。使用上述n3-f/-r引物及高保真酶pod-plus-neo(1u/ul)对100ng底物pet28a/cas9-cys进行pcr扩增(条件如下),琼脂糖凝胶电泳后纯化回收目的pcr产物(9546bp)。纯化后pcr产物经磷酸化及自连,亚克隆到大肠杆菌dh5α中,再经菌落pcr及sanger测序,鉴定筛选包含可编码三个nls的核苷酸序列的载体(如图1所示)即为pet28a/cas9-n3重组原核表达载体。以感受态细胞rosetta为原核表达系统,以0.5mm iptg、50ug/ml kanamycin、37℃8小时为诱导条件,诱导crispr/cas9-3nls
核酸内切酶的表达,回收纯化浓缩最终获得cas9n3核酸内切酶(如图2所示)。
65.实施例2
66.sghmga2,靶向hmga2的crispr sgrna:针对seq id no.:3所示的hmga2基因片段设计如seq id no.:4、seq id no.:5和seq id no.:6所示的crispr/cas9靶标序列,接着合成seq id no.:7、seq id no.:8、seq id no.:9、seq id no.:10和seq id no.:11、seq id no.:12所示的带接头的靶标序列及其互补序列,再经退火处理获得三个crispr sgrna双链dna片段作为插入片段,将其分别与内切酶(优选bbsi内切酶)处理过的dr274载体重组连接,形成三个靶向hmga2基因不同位点的重组原核表达质粒:dr274-sghmga2-1、dr274-sghmga2-2和dr274-sghmga2-3;用限制性核酸内切酶(drai)对上述三个质粒进行酶切,电泳纯化回收含有t7启动子及靶向hmga2的crispr sgrna的消化产物并将其作为模板,体外转录并经trizol提取纯化后获得三个靶向hmga2的crispr sgrna,分别为sghmga2-1(g1)、sghmga2-2(g2)和sghmga2-3(g3)(如图3所示)。
67.实施例3
68.pda@crispr/cas9/sghmga2 nps复合体的制备方法:
69.s1、crispr/cas9-3nls
的制备;
70.s1.1、根据pet28a/cas9-cys载体序列,设计如seq id no.:1所示特异性引物n3-f,设计如seq id no.:2所示特异性引物n3-r,n3-f的5’端包含可编码一个nls的核苷酸序列,n3-r的5’端包含可编码两个nls的核苷酸序列;
71.s1.2、使用n3-f和n3-r引物及高保真酶pod-plus-neo对底物pet28a/cas9-cys进行pcr扩增;
72.s1.3、琼脂糖凝胶电泳后纯化回收目的pcr产物;
73.s1.4、pcr产物经磷酸化及自连,亚克隆到大肠杆菌dh5α中,再经菌落pcr及测序,鉴定筛选包含可编码三个nls的核苷酸序列的载体;
74.s1.5、以感受态细胞rosetta为原核表达系统,诱导crispr/cas9-3nls
的表达,回收纯化浓缩获得高纯度的crispr/cas9-3nls

75.s2、sghmga2的制备;
76.s2.1、针对seq id no.:3所示的hmga2基因片段设计如seq id no.:4、seq id no.:5和seq id no.:6所示的crispr/cas9靶标序列;
77.s2.2、合成seq id no.:7、seq id no.:8、seq id no.:9、seq id no.:10、seq id no.:11和seq id no.:12所示的带接头的靶标序列及其互补序列;
78.s2.3、再经退火处理获得三个针对hmga2基因的sgrna双链dna片段作为插入片段,将其分别与bbsi限制性内切酶处理过的dr274载体重组连接,形成三个可转录sghmga2的重组原核表达质粒:dr274-sghmga2-1、dr274-sghmga2-2和dr274-sghmga2-3;
79.s2.4、用drai限制性内切酶对上述三个质粒进行酶切,电泳纯化回收含有t7启动子及可转录sghmga2序列的消化产物并将其作为模板,体外转录并提取纯化后获得的三个靶向hmga2的sgrna,分别为sghmga2-1、sghmga2-2和sghmga2-3;
80.s3、pda@crispr/cas9/sghmga2 nps复合体的制备;
81.s3.1、将s1.5所述的crispr/cas9-3nls
与s2.4所述的sghmga2以终浓度160nm:320nm的比列在37℃条件下静置于ne buffer 2中30分钟,形成crispr/cas9-3nls
/sghmga2复合物,sghmga2包括sghmga2-1、sghmga2-2和sghmga2-3,用量比为sghmga2-1:sghmga2-2:sghmga2-3=1:1:1;
82.s3.2、在ph值8.5的环境下,将27mg/ml的盐酸多巴胺与上述crispr/cas9-3nls
/sghmga2复合物以3:2的体积比共孵育,形成pda@crispr/cas9/sghmga2 nps复合体,透射电子显微镜(tem)检测其形态为核壳状的纳米颗粒(如图5所示)。
83.利用实施例1中crispr/cas9-3nls
核酸内切酶、实施例2中sghmga2以及市购的盐酸多巴胺构建所述的pda@crispr/cas9/sghmga2 nps复合体。
84.将实施例1中的crispr/cas9-3nls
核酸内切酶与实施例2中所述sghmga2(sghmga2-1:sghmga2-2:sghmga2-3=1:1:1)以终浓度160nm:320nm的比列在37℃条件下静置于1xne buffer 2中30分钟,形成crispr/cas9-3nls
/sghmga2复合物储液。在ph8.5条件下,将27mg/ml的盐酸多巴胺与上述crispr/cas9-3nls
/sghmga2复合物以3:2的体积比共孵育,形成pda@crispr/cas9/sghmga2 nps复合体。所述的盐酸多巴胺购买于美国sigma公司,货号为#h8502-25g。为验证盐酸多巴胺与crispr/cas9-3nls
/sghmga2的结合情况,我们使用透射电子显微镜分别检测了与盐酸多巴胺结合前后的crispr/cas9-3nls
/sghmga2的结构,结果表明pda@crispr/cas9/sghmga2 nps复合体的结构为核壳状的纳米颗粒(如图5所示)。
85.实施例4
86.crispr/cas9-3nls
/sghmga2复合物对hmga2基因敲除效率的体外验证。
87.crispr/cas9-3nls
/sghmga2的酶切效率的体外验证,针对seq id no.:3所示的hmga2基因片段设计如seq id no.:13、seq id no.:14所示的引物hmga2-f/r,使用cy5标记hmga2-f,形成hmga2-f-cy5。以人胃癌细胞系mkn-45的cdna为模板,使用上述hmga2-f-cy5/r引物进行pcr扩增,琼脂糖凝胶电泳后纯化回收大小为568bp的目标pcr产物,该pcr产物为cy5标记的目标hmga2(cy5-hmga2)dna片段。将crispr/cas9-3nls
核酸内切酶分别与sghmga2以160nm:320nm的比置于1xne buffer 2中,37℃反应30分钟,再与150nm的cy5标记的目标hmga2 dna片段共孵育30分钟。使用2%琼脂糖凝胶电泳系统和荧光及可见光发光成像分析系统分析复合物对hmga2基因的切割效率,结果如图4所示,对照cy5-hmga2 dna片段(cn)大小与预测的568bp相符;与cn相比,经crispr/cas9-3nls
/sghmga2-1、crispr/cas9-3nls
/sghmga2-2、crispr/cas9-3nls
/sghmga2-3切割后的cy5-hmga2 dna片段在568bp大小位置仅有少量残留,切割效率90%以上,且切割后的dna片段大小分别与预测的250/318、248/320、
235/333相符(如图4所示)。以上实验结果说明了crispr/cas9-3nls
/sghmga2对hmga2基因切割具有高效性及准确性高的特点。
88.实施例5
89.pda负载crispr/cas9-3nls
/sghmga2进入胃癌细胞系(mkn-45)的效率验证。
90.为了可视化复合物进入细胞质及细胞核的过程,我们使用alexa fluor488nhs标记了crispr/cas9-3nls
核酸内切酶,形成crispr/cas9-3nls/af488
核酸内切酶。具体地,按照实施例3方法制备crispr/cas9-3nls
后,按照alexa fluor 488nhs染料说明书标记crispr/cas9-3nls
形成crispr/cas9-3nls/af488
。按照实施例3中pda@crispr/cas9/sghmga2 nps复合体制备方法,制备pda@crispr/cas9-3nls/a488
/sghmga2 nps复合体。
91.将pda@crispr/cas9-3nls/a488
/sghmga2 nps复合体与处于对数期增殖期的人胃癌细胞系mkn-45共孵育,48小时后,分别使用流式细胞分析仪和激光共聚焦显微镜观察复合物进入细胞质及细胞核的比例。结果如图6所示,在95%细胞的胞质中均可观察到绿色荧光复合物,说明该复合物的入胞效率高达95%以上。同时,将pda@crispr/cas9/sghmga2nps复合体与处于对数期增殖期的人胃癌细胞系mkn-45共孵育,提取孵育48小时后细胞的dna,使用seq id no.:13与seq id no.:14引物,扩增包含3个sghmga2靶向的dna序列,凝胶电泳后纯化pcr产物,ta克隆pcr产物,随机挑选50个单克隆使用m13-f/r通用引物pcr扩增后sanger测序法检测hmga2基因敲除情况,结果显示该复合物对hmga2基因成功敲除效率高达85%,部分测序结果如图7所示。这一效率高于现有绝大部分递送系统的基因敲除水平。
92.以上实施例对本发明公开的pda@crispr/cas9/sghmga2 nps复合体,进行了进一步阐述和说明,以上实施例的说明只是用于帮助理解本技术的方法及其核心思想,对于本领域的一般技术人员,依据本技术的思想,在具体实施方式及应用范围上均会有改变之处,本说明书内容不应理解为对本技术的限制。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献