一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种Ni/Ti非周期多层膜及其制备方法和应用、Ni/Ti非周期多层膜中子超反射镜与流程

2022-05-06 08:48:59 来源:中国专利 TAG:

一种ni/ti非周期多层膜及其制备方法和应用、ni/ti非周期多层膜中子超反射镜
技术领域
1.本发明涉及中子超反射镜技术领域,尤其涉及一种ni/ti非周期多层膜及其制备方法和应用、ni/ti非周期多层膜中子超反射镜。


背景技术:

2.随着中子检测技术的快速发展和广泛应用,现在对于入射到样品表面中子强度的要求越来越高,中子多层膜光学元件是提高中子反射率和利用率的有效手段之一。中子超反射镜是由中子光学常数相差较大的两种材料构成的非周期多层膜。这种非周期多层膜在膜系的不同位置具有不同的周期厚度,可以使具有不同波数的入射中子在多层膜反射镜的不同位置得到反射,从而拓展中子超反射镜的反射临界角。在中子超反射镜研究方面,人们将超反射镜的反射临界角与ni单层膜的全反射临界角之间的比值定义为超反射镜的m值,m值越大,超反射镜的性能越高,所需多层膜的层数越多,制作难度也越大。折射率差异大的两种材料组成的多层膜,有利于中子在界面处的反射,可以用比较少的膜对数达到接近100%的峰值反射率。由这样的材料对构成的超反射镜,达到相同的m值所需要的膜对数会比较少。ni和ti这两种材料折射率差异很大并且吸收都比较小,因此ni和ti是目前制备非磁化中子多层膜反射镜的主要材料。
3.同时,多层膜的光学性能还取决于膜层微结构与界面效应,但目前制备得到的ni/ti非周期多层膜在生长过程中会生成较大的晶粒尺寸,同时ni向ti的显著扩散容易形成粗糙和扩散的界面,造成其膜层微结构与界面效应的质量较差。


技术实现要素:

4.本发明的目的在于提供一种ni/ti非周期多层膜及其制备方法和应用、ni/ti非周期多层膜中子超反射镜。所述ni/ti非周期多层膜的制备方法可以降低界面粗糙度,提高成膜质量。
5.为了实现上述发明目的,本发明提供以下技术方案:
6.本发明提供了一种ni/ti非周期多层膜的制备方法,包括以下步骤:
7.在n2、o2和ar的混合气氛中,在基底表面溅射ni层,得到nin
x
oy层;所述x的取值范围为0≤x《1,所述y的取值范围为0≤y《1;
8.在ar气氛中,在所述nin
x
oy层的表面溅射ti层,得到ti层;
9.重复上述溅射ni层和溅射ti层的过程,得到所述ni/ti非周期多层膜;
10.所述重复的次数≥1。
11.优选的,所述n2、o2和ar的混合气氛中n2和o2的总体积百分含量为10~50%。
12.优选的,所述溅射ni层和溅射ti层的方式为直流磁控溅射。
13.优选的,所述溅射ni层的条件参数为:n2的流量为10~40sccm,o2的流量为2.5~7.5sccm,ar的流量为100sccm;本底真空度为(2~7)
×
10-4
pa;工作气压为0.1~0.8pa。
14.优选的,所述nin
x
oy层的厚度为1~20nm。
15.优选的,所述溅射ti层的条件参数为:ar的流量为100sccm;本底真空度为(2~7)
×
10-4
pa;工作气压0.1~0.8pa。
16.优选的,所述ti层的厚度为1~20nm。
17.本发明还提供了上述技术方案所述的制备方法制备得到的ni/ti非周期多层膜,包括交替层叠设置的nin
x
oy层和ti层;所述交替的次数≥2;
18.所述nin
x
oy层和ti层之间的界面粗糙度为1~3nm。
19.本发明还提供了上述技术方案ni/ti非周期多层膜在中子超反射镜中的应用。
20.本发明还提供了一种ni/ti非周期多层膜中子超反射镜,包括依次层叠设置的衬底、打底层、ni/ti非周期多层膜和ni帽层;
21.所述ni/ti非周期多层膜为上述技术方案所述的ni/ti非周期多层膜。
22.本发明提供了一种ni/ti非周期多层膜的制备方法,包括以下步骤:在n2、o2和ar的混合气氛中,在基底表面溅射ni层,得到nin
x
oy层;所述x的取值范围为0≤x《1,所述y的取值范围为0≤y《1;在ar气氛中,在所述nin
x
oy层的表面溅射ti层,得到ti层;重复上述溅射ni层和溅射ti层的过程,得到所述ni/ti非周期多层膜;所述重复的次数≥1。本发明所述制备方法在生长ni层的过程中通入氮气、氧气和氩气的混合气体,形成n和o掺杂的ni层,所述n和o的掺杂能够抑制ni层的结晶,并通过ni/ti界面处由于ti氧化在界面生成的阻隔层来减少ni和ti之间的扩散,从而降低界面粗糙度,得到高反射率的中子超反射镜。根据实施例的记载,利用本发明所述的制备方法制备得到的ni/ti非周期多层膜的界面粗糙度为1~3nm,反射率为大于90%。
附图说明
23.图1为本发明所述中子超反射镜的结构示意图,1-衬底,2-打底层,3-nin
x
oy层,4-ti层,5-ni/ti非周期多层膜,6-ni帽层;
24.图2为按照实施例1所述的制备方法制备得到ni/ti周期多层膜(记为[nino/ti]10)和按照对比例1所述制备方法制备制备得到ni/ti周期多层膜(记为[ni/ti]10)的x射线掠入射衍射谱图;
[0025]
图3为按照实施例1所述的制备方法制备得到ni/ti周期多层膜(记为[nino/ti]10)和按照对比例1所述制备方法制备制备得到ni/ti周期多层膜(记为[ni/ti]10)的x射线掠入射反射图。
具体实施方式
[0026]
本发明提供了一种ni/ti非周期多层膜的制备方法,包括以下步骤:
[0027]
在n2、o2和ar的混合气氛中,在基底表面溅射ni层,得到nin
x
oy层;所述x的取值范围为0≤x《1,所述y的取值范围为0≤y《1;
[0028]
在ar气氛中,在所述nin
x
oy层的表面溅射ti层,得到ti层;
[0029]
重复上述溅射ni层和溅射ti层的过程,得到所述ni/ti非周期多层膜;
[0030]
所述重复的次数≥1。
[0031]
在本发明中,若无特殊说明,所有制备原料均为本领域技术人员熟知的市售产品。
[0032]
本发明在n2、o2和ar的混合气氛中,在基底表面溅射ni层,得到nin
x
oy层;所述x的取值范围为0≤x《1,所述y的取值范围为0≤y《1。
[0033]
在本发明中,所述n2、o2和ar的混合气氛中n2和o2的总体积百分含量优选为10~50%,更优选为20~40%,最优选为30%。在本发明中,所述n2和o2的体积比优选为(10~40):(2.5~7.5),更优选为(20~30):(2.5~7.5),最优选为4:1。
[0034]
本发明对所述基底没有特殊的限定,采用本领域技术人员熟知的基底即可。当所述ni/ti非周期多层膜应用于中子超反射镜时,所述基底优选为带有打底层的衬底,所述打底层优选为ti层,所述衬底为浮法玻璃。
[0035]
在本发明中,溅射ni层的方式优选为直流磁控溅射。在本发明中,所述直流磁控溅射采用的靶材优选为ni靶,纯度优选≥99.95%;在本发明中,所述溅射ni层的条件参数优选为:n2的流量优选为10~40sccm,更优选为20~30sccm,最优选为24sccm;o2的流量优选为2.5~7.5sccm,更优选为5~7.5sccm,最优选为6sccm;ar的流量优选为100sccm;本底真空度优选为(2~7)
×
10-4
pa,更优选为(4~6)
×
10-4
pa,最优选为5
×
10-4
pa;工作气压优选为0.1~0.8pa,更优选为0.3~0.6pa,最优选为0.5pa;
[0036]
在本发明中,所述nin
x
oy层为掺杂有n和o的ni层。所述nin
x
oy层的厚度优选为1~20nm。在本发明中,以接触基底表面的nin
x
oy层为最内层计,所述nin
x
oy层由内到外厚度逐层增加。在本发明中,各层nin
x
oy层的厚度优选根据hayter-mook算法确定。
[0037]
得到nin
x
oy层后,本发明在ar气氛中,在所述nin
x
oy层的表面溅射ti层,得到ti层。
[0038]
在本发明中,溅射ti层的方式优选为直流磁控溅射。在本发明中,所述直流磁控溅射采用的靶材优选为ti靶,纯度优选≥99.99%;在本发明中,所述溅射ti层的条件参数优选为:ar的流量优选为100sccm;本底真空度优选为(2~7)
×
10-4
pa,更优选为(4~6)
×
10-4
pa,最优选为5
×
10-4
pa;工作气压优选为0.1~0.8pa,更优选为0.3~0.6pa,最优选为0.5pa。
[0039]
在本发明中,所述ti层的厚度优选为1~20nm。在本发明中,以接触最内层nin
x
oy层的ti层为最内层计,所述ti层由内到外厚度逐层增加;在本发明中,各ti层的厚度优选根据hayter-mook算法确定。在本发明中,所述重复的次数≥1,优选为90~1000。
[0040]
在本发明中,所述ni/ti非周期多层膜的总厚度优选为1.3~7.8μm。
[0041]
本发明还提供了上述技术方案所述制备方法制备得到的ni/ti非周期多层膜,包括交替层叠设置的nin
x
oy层和ti层;所述交替的次数≥2;
[0042]
所述nin
x
oy层和ti层之间的界面粗糙度为1~3nm。
[0043]
本发明还提供了上述技术方案所述ni/ti非周期多层膜在中子超反射镜中的应用。
[0044]
本发明还提供了一种中子超反射镜,包括依次层叠设置的衬底、打底层、ni/ti非周期多层膜和ni帽层;
[0045]
所述ni/ti非周期多层膜为上述技术方案所述ni/ti非周期多层膜(如图1所示)。
[0046]
在本发明中,所述衬底优选为浮法玻璃;所述衬底的厚度优选为5mm
[0047]
在本发明中,所述打底层优选为ti层,所述打底层的厚度优选为10nm。
[0048]
在本发明中,所述ni/ti非周期多层膜为上述技术方案所述的ni/ti非周期多层膜。
[0049]
在本发明中,所述ni帽层的厚度优选为40~60nm。
[0050]
在本发明中,所述中子超反射镜的制备方法优选包括以下步骤:
[0051]
在衬底的表面依次溅射打底层、ni/ti非周期多层膜和ni帽层,得到所述中子超反射镜。
[0052]
溅射所述打底层前,本发明优选对所述衬底表面进行预处理,本发明对所述预处理没有任何特殊的限定,采用本领域技术人员熟知的预处理过程进行即可。
[0053]
在本发明中,溅射打底层的方式优选为直流磁控溅射。本发明对所述溅射打底层的过程和条件参数没有任何特殊的限定,采用本领域技术人员熟知的过程和条件参数即可。
[0054]
在本发明中,溅射ni/ti非周期多层膜的过程优选参考上述技术方案所述的制备方法制备得到,在此不再进行赘述。
[0055]
在本发明中,溅射ni帽层的方式优选为直流磁控溅射。本发明对所述溅射打底层的过程和条件参数没有任何特殊的限定,采用本领域技术人员熟知的过程和条件参数即可。
[0056]
下面结合实施例对本发明提供的ni/ti非周期多层膜及其制备方法和应用、ni/ti非周期多层膜中子超反射镜进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
[0057]
实施例1
[0058]
ni/ti非周期多层膜中子超反射镜:
[0059]
衬底:厚度为5mm的浮法玻璃;
[0060]
打底层:厚度为10nm的ti层;
[0061]
ni/ti非周期多层膜:交替层叠设置的nin
x
oy层和ti层,交替的次数为90,nin
x
oy层的厚度为7~19nm(由内到外逐层增加,最内层的厚度为7nm,最外层的厚度为19nm),ti层的厚度为7~27nm(由内到外逐层增加,最内层的厚度为7nm,最外层的厚度为27nm),0≤x《1,0≤y《1;
[0062]
ni帽层:厚度为50nm的ni层;
[0063]
制备过程:
[0064]
将所述厚度为5mm的浮法玻璃进行预处理去除表面的杂质后,溅射厚度为10nm的ti层,得到打底层;
[0065]
在所述打底层表面,在n2、o2和ar的混合气氛中溅射nin
x
oy层,采用靶材为纯度为99.95%的ni靶,n2的流量为24sccm;o2的流量为6sccm;ar的流量为100sccm;本底真空度为2
×
10-4
pa;工作气压为0.5pa;采用纯度为99.99%的ti靶,在ar气氛中,在所述nin
x
oy层的表面溅射ti层,ar的流量为100sccm;本底真空度为2
×
10-4
pa;工作气压为0.5pa;重复上述溅射nin
x
oy层和ti层的过程90次,得到ni/ti非周期多层膜;
[0066]
在所述ni/ti非周期多层膜的表面溅射厚度为50nm的ni层,得到ni帽层,得到所述ni/ti非周期多层膜中子超反射镜。
[0067]
实施例2
[0068]
ni/ti非周期多层膜中子超反射镜:
[0069]
衬底底:厚度为5nm的浮法玻璃;
[0070]
打底层:厚度为10nm的ti层;
[0071]
ni/ti非周期多层膜:交替层叠设置的nin
x
oy层和ti层,交替的次数为199,nin
x
oy层的厚度为5~14nm(由内到外逐层增加,最内层的厚度为5nm,最外层的厚度为14nm),ti层的厚度为4~12nm(由内到外逐层增加,最内层的厚度为4nm,最外层的厚度为12nm),0≤x《1,0≤y《1;
[0072]
ni帽层:厚度为60nm的ni层;
[0073]
制备过程:
[0074]
将所述厚度为5mm的浮法玻璃进行预处理去除表面的杂质后,溅射厚度为10nm的ti层,得到打底层;
[0075]
在所述打底层表面,在n2、o2和ar的混合气氛中溅射nin
x
oy层,采用靶材为纯度为99.95%的ni靶,n2的流量为24sccm;o2的流量为6sccm;ar的流量为100sccm;本底真空度为2
×
10-4
pa;工作气压为0.5pa;;采用纯度为99.99%的ti靶,在ar气氛中,在所述nin
x
oy层的表面溅射ti层,ar的流量为100sccm;本底真空度为2
×
10-4
pa;工作气压为0.5pa;重复上述溅射nin
x
oy层和ti层的过程199次,得到ni/ti非周期多层膜;
[0076]
在所述ni/ti非周期多层膜的表面溅射厚度为60nm的ni层,得到ni帽层,得到所述ni/ti非周期多层膜中子超反射镜。
[0077]
实施例3
[0078]
ni/ti非周期多层膜中子超反射镜:
[0079]
衬底:厚度为5mm的浮法玻璃;
[0080]
打底层:厚度为10nm的ti层;
[0081]
ni/ti非周期多层膜:交替层叠设置的nin
x
oy层和ti层,交替的次数为450,nin
x
oy层的厚度为3~15nm(由内到外逐层增加,最内层的厚度为3nm,最外层的厚度为15nm),ti层的厚度为3~13nm(由内到外逐层增加,最内层的厚度为3nm,最外层的厚度为13nm),0≤x《1,0≤y《1;
[0082]
ni帽层:厚度为50nm的ni层;
[0083]
制备过程:
[0084]
将所述厚度为5mm的浮法玻璃进行预处理去除表面的杂质后,溅射厚度为10nm的ti层,得到打底层;
[0085]
在所述打底层表面,在n2、o2和ar的混合气氛中溅射nin
x
oy层,采用靶材为纯度为99.95%的ni靶,n2的流量为24sccm;o2的流量为6sccm;ar的流量为100sccm;本底真空度为2
×
10-4
pa;工作真空度为0.5pa;;采用纯度为99.99%的ti靶,在ar气氛中,在所述nin
x
oy层的表面溅射ti层,ar的流量为100sccm;本底真空度为2
×
10-4
pa;工作真空度为0.5pa;重复上述溅射nin
x
oy层和ti层的过程450次,得到ni/ti非周期多层膜;
[0086]
在所述ni/ti非周期多层膜的表面溅射厚度为50nm的ni层,得到ni帽层,得到所述ni/ti非周期多层膜中子超反射镜。
[0087]
实施例4
[0088]
ni/ti非周期多层膜中子超反射镜:
[0089]
衬底:厚度为5mm的浮法玻璃;
[0090]
打底层:厚度为10nm的ti层;
[0091]
ni/ti非周期多层膜:交替层叠设置的nin
x
oy层和ti层,交替的次数为1000,nin
x
oy层的厚度为2~14nm(由内到外逐层增加,最内层的厚度为2nm,最外层的厚度为14nm),ti层的厚度为2~18nm(由内到外逐层增加,最内层的厚度为2nm,最外层的厚度为18nm),x=0≤x《1,0≤y《1;
[0092]
ni帽层:厚度为40nm的ni层;
[0093]
制备过程:
[0094]
将所述厚度为5mm的浮法玻璃进行预处理去除表面的杂质后,溅射厚度为10nm的ti层,得到打底层;
[0095]
在所述打底层表面,在n2、o2和ar的混合气氛中溅射nin
x
oy层,采用靶材为纯度为99.95%的ni靶,n2的流量为24sccm;o2的流量为6sccm;ar的流量为100sccm;本底真空度为2
×
10-4
pa;工作真空度为0.5pa;采用纯度为99.99%的ti靶,在ar气氛中,在所述nin
x
oy层的表面溅射ti层,ar的流量为100sccm;本底真空度为2
×
10-4
pa;工作真空度为0.5pa;重复上述溅射nin
x
oy层和ti层的过程1000次,得到ni/ti非周期多层膜;
[0096]
在所述ni/ti非周期多层膜的表面溅射厚度为40nm的ni层,得到ni帽层,得到所述ni/ti非周期多层膜中子超反射镜。
[0097]
对比例1
[0098]
参考实施例1,区别在于,ni/ti非周期多层膜为交替层叠设置的ni层和ti层;以及在制备过程中溅射ni和ti层时的气氛为ar气氛,ar的流量为100sccm。
[0099]
测试例
[0100]
由于非周期膜无法进行xrr和xrd表征,为了证明本发明所述的制备方法制备的得到的ni/ti非周期多层膜中nin
x
oy层和ti层的界面粗糙度,按照实施例1所述的制备方法制备得到ni/ti周期多层膜(记为[nino/ti]10),重复周期数为10次(即各层nin
x
oy层的厚度相同,各层ti层的厚度相同);
[0101]
按照对比例1所述的制备方法制备得到ni/ti周期多层膜(记为[ni/ti]10),重复周期数为10次(即各层ni层的厚度相同,各层ti层的厚度相同);
[0102]
将所述[nino/ti]10和[ni/ti]10进行x射线掠入射衍射(gixrd)测试和x射线掠入射反射(gixrr)测试,测试结果如图2~3所示,图2为衍射谱图,由图2可知,所述[nino/ti]10的晶粒尺寸较所述[ni/ti]10的晶粒尺寸更加细小且能抑制ni的结晶;
[0103]
图3为x射线掠入射反射图,所述[nino/ti]10的界面粗糙度较所述[ni/ti]10的界面粗糙度小;
[0104]
因此,利用本发明所述的制备方法制备得到的ni/ti非周期多层膜的晶粒尺寸和界面粗糙度更小,多层膜的质量更好。
[0105]
利用实施例2~5所述制备方法制备ni/ti周期多层膜并进行gixrd测试,测试结果与实施例1的测试结果类似。
[0106]
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献