一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种可改善前表面光子反射损失问题的倒结构钙钛矿电池结构

2022-05-06 06:28:17 来源:中国专利 TAG:

一种可改善前表面光子反射损失问题的倒结构钙钛矿电池结构
【技术领域】
1.本发明属于薄膜太阳电池领域,尤其是倒结构钙钛矿薄膜太阳电池。


背景技术:

2.由于有机-无机杂化钙钛矿材料具有高载流子迁移率,低激子结合能,双极电荷传输和高光吸收系数等优异的光电特性,已成为学术界广泛研究的重点。有机-无机杂化钙钛矿被引入光伏领域,miyasaka等人早在2009年就报道了这种光伏器件。在接下来的几年中,光电转换效率(pce)迅速提高,目前已超过25%。钙钛矿太阳能电池(pscs)主要分为正结构(n-i-p)和倒结构(p-i-n)。倒置结构具有低温溶液制备,适用于柔性衬底,较弱的jv滞后现象等优势,并能够制备高效的叠层电池。参见文献:d.luo,w.yang, z.wang,et al,science 2018,360(6396),1442-1446;x.zheng,y.deng,b.chen,et al, advanced materials 2018,30(52),1803428;q.jiang,y.zhao,x.zhang,et al,nature photonics 2019,13(7),460-466.
3.钙钛矿电池效率不断提高,其内量子效率(iqe)已接近100%,这意味着光生载流子以及随后的载流子输运和抽取不再是限制钙钛矿电池光电转换效率的主要因素。然而,器件的最佳效率仍然远远低于shockley-queisser极限,其外量子效率约为85%左右,这意味着光损耗而非电性能已成为进一步提高钙钛矿太阳能电池效率的最重要瓶颈之一。参见文献:j.jeong,h.b.kim,h.kim,et al,acs energy lett.2016,1,712-718;w.peng, l.wang,b.murali,et al,adv.mater.2016,28,3383-3390;h.zhang,j.toudert,adv. mater.2018,19,411-424.
4.在倒结构钙钛矿电池中,p型有机材料(如pedot:pss,ptaa和spiro-ttb)由于具有优良的光电性能、合适的能级、有效的载流子提取和传输,通常被用来夹在ito 玻璃和钙钛矿吸收层之间作为空穴传输层(htls)。但是,有机材料通常具有1.35~1.7 范围内的相对较低的折射率,小于ito(~1.64)和钙钛矿薄膜(~2.55)的值。因此,折射率沿光入射路径不匹配,这将增强ito/htl/钙钛矿界面周围的光反射,进而增大器件的光学损失。对于高效率器件,光学优化是降低电池成本的关键,一块普通的太阳电池板反射了三分之一的太阳辐射,造成了反射损耗。
5.为解决这一问题,可通过在基底与空气之间添加具有折射梯度的平面材料来减少光子反射损失。拉夫堡大学电子、电气和系统工程学院pm kaminski等人采用交替生长的 zro2和sio2的薄膜形成了介电抗反射层,并将其置于钙钛矿电池的玻璃基底上表面,使玻璃基底的平均透过率增长了2%到5%,平均积分反射率减了0.8%。然而,采用平面的干涉结构,通过光子在平面反射层上表面的相位差实现反射相消,非常依赖于入射角度,不具有光入射角度使用范围上的普适性。一种可行的解决方案是在入射光表面引入可见光波长范围内的透明陷光结构,使可见光在纳米陷光结构界面处发生散射,从而降低反射几率。参见文献p.kaminski,g.womack,j.walls,2014ieee 40th photovoltaic specialist
conference(pvsc),2778-2783。
6.因此,引入可见光波长范围内的陷光结构是更为有效的方法。陷光结构不仅可以增加光的散射、衍射,延长光的传播路径。还可明显减少入射光的干涉相消现象,提高太阳电池的吸收利用率,使得电池转换效率得到提升。高效的光管理结构有望在不增加有源层厚度的条件下,获得宽谱域、宽入射角范围的良好光子吸收性能,同时具有重复性好,便于模拟和易于改变结构等优点。
7.基于此,本发明提出一种可改善前表面光子反射损失问题的倒结构钙钛矿电池结构,将二维六角密堆积球状纳米陷光阵列引入倒结构钙钛矿电池前表面。该结构的采用,一方面可以利用二维六角密堆积球状纳米阵列的弧面结构,构成入射光前表面折射率的梯度分布,从而起到降低菲尼尔反射损耗的效果;另一方面,二维六角密堆积球状纳米阵列的采用,具有腔谐振和米式散射效应,可改变吸收层内的电磁场分布,增加入射光的散射及吸收几率。该结构可以在不改变电池电学参数的基础上,在宽入射角度范围内实现入射光子反射损失的有效降低,获得电池光吸收效率及器件效率的有效提升。


技术实现要素:

8.本发明目的旨在进一步提升倒结构钙钛矿太阳电池的有效光利用率,设计了一种可改善前表面光子反射损失问题的倒结构钙钛矿电池结构,通过二维六角密堆积球状纳米阵列的引入,改善倒结构钙钛矿电池入射光通路中的折射率失配问题,抑制入射界面处的菲尼尔反射损失,并通过纳米结构的量子效应,改变吸收层内的电磁场分布,从而实现器件光利用率及能量转换效率的提升。
9.本发明的技术方案:
10.一种可改善前表面光子反射损失问题的倒结构钙钛矿电池结构,包括以下两个部分:第一部分为二维六角密堆积球状纳米阵列;第二部分为倒结构钙钛矿太阳电池;其特征在于:所述的二维六角密堆积球状纳米阵列直接覆盖于倒结构钙钛矿太阳电池的最外层衬底的前表面,可以在不影响电池电学结构的前提下,构成降低因折射率失配造成的菲涅尔反射,且纳米结构量子效应可改变吸收层中的电磁场分布;所述可改善前表面光子反射损失问题的倒结构钙钛矿电池结构具有显著的光吸收增强效果。
11.所述的二维六角密堆积球状纳米阵列,所选用的材料为二氧化硅,二氧化钛,二氧化硒,氧化锌,氧化铟中至少一种,该材料在300-800nm范围内具有低吸收系数。
12.所述的二维六角密堆积球状纳米阵列,其粒径范围在50nm-500nm之间变化,占空比在30%-100%之间变化。
13.所述的倒结构钙钛矿太阳电池,包含透明电极,空穴传输层,钙钛矿吸收层,缓冲层,电子传输层,金属电极。
14.所述的倒结构钙钛矿太阳电池,包含玻璃衬底的刚性钙钛矿电池及聚酰亚胺等衬底的柔性钙钛矿电池。
【附图说明】
15.图1为一种可改善前表面光子反射损失问题的倒结构钙钛矿电池结构示意图。
16.图2为一种可改善前表面折射率失配问题的倒结构钙钛矿电池结构中钙钛矿吸收
层 xy平面上电磁场分布数值模拟结果。
17.图3为一种可改善前表面折射率失配问题的倒结构钙钛矿电池在不同入射角度下数值模拟反射率与平面结构对比结果。
18.图4为一种可改善前表面折射率失配问题的倒结构钙钛矿电池结构外量子效率。
【具体实施方式】
19.实施例1:
20.一种可改善前表面折射率失配问题的倒结构钙钛矿电池,结构如下:
21.1)在玻璃外表面沉积二氧化硅二维六角密堆积球状纳米阵列,粒径为100nm,占空比为100%。
22.2)在玻璃上先后沉积倒结构钙钛矿太阳电池,包含:ito透明导电电极、pedot: pss空穴传输层,mapbi3吸收层,pcbm电子传输层,bcp缓冲层,au金属电极。
23.所得一种可改善前表面折射率失配问题的倒结构钙钛矿电池结构示意图如图1所示,其中钙钛矿吸收层xy平面上电磁场分布数值模拟结果如图2所示,在不同入射角度下反射率与平面结构反射率对比结果如图3所示,获得的倒结构钙钛矿电池外量子效率对比结果如图4所示。
24.应用结果显示:一种可改善前表面折射率失配问题的倒结构钙钛矿电池结构,可以在钙钛矿吸收中激发出谐振共振模式,并在宽入射角度条件下将350-700nm波段上的反射率显著降低,在入射角度为0度,15度和30度条件下,将平均反射率由22.97%,22.17%和21%分别降低至11.06%,10.96%及11.24%,相应的电池的外量子效率在全波段范围内均获得提升,短路电流由19.24ma/cm2提升至20.63ma/cm2,具有明显应用效果。
25.实施例2:
26.一种可改善前表面折射率失配问题的倒结构钙钛矿电池,结构如下:
27.1)在聚对苯二甲酸乙二醇酯衬底外表面沉积二氧化钛二维六角密堆积球状纳米阵列,粒径为300nm,占空比为70%。
28.2)在聚对苯二甲酸乙二醇酯衬底上先后沉积倒结构钙钛矿太阳电池,包含:izo透明导电电极、ptaa空穴传输层,fa
0.85
ma
0.15
pbi3吸收层,bcp缓冲层,pcbm电子传输层,au金属电极。
29.应用结果显示:一种可改善前表面折射率失配问题的倒结构钙钛矿电池结构,可以在钙钛矿吸收中激发出谐振共振模式,并在宽入射角度条件下将350-700nm波段上的反射率显著降低,在入射角度为0度,15度和30度条件下,将平均反射率由22.97%,22.17%和21%分别降低至12.91%,12.43%及12.50%,相应的电池的外量子效率在全波段范围内均获得提升,短路电流由19.24ma/cm2提升至20.09ma/cm2,具有明显应用效果。
30.以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
31.下面对本技术中的英文缩写进行说明:
32.pedot:pss(poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate))
33.ptaa(poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine)
[0034]
pcbm(phenyl-c61-butyric acid methyl ester)
[0035]
bcp(bathocuproine)。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献