一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

潜在气体排放源检测方法、装置、设备及可读存储介质与流程

2022-04-30 15:33:10 来源:中国专利 TAG:


1.本发明涉及大气环境监测领域,尤其涉及一种潜在气体排放源检测方法、装置、设备及可读存储介质。


背景技术:

2.大型工矿企业是温室气体、工业废气的重要排放源。温室气体排放是造成全球变暖和气候恶化的重要根源,其他工业废气也是造成环境污染的重要来源。目前主要排放源监测方法采用在线监测方式对已知点状排放源进行监测,无法对未知排放源和非法排放源进行监测。


技术实现要素:

3.本发明的主要目的在于提供一种潜在气体排放源检测方法、装置、设备及可读存储介质,旨在解决现有技术中,无法对大气环境中潜在的工业污染气体排放源进行监测的技术问题。
4.第一方面,本发明提供一种潜在气体排放源检测方法,所述潜在气体排放源检测方法包括以下步骤:
5.获取监测区域的若干大气观测数据影像;
6.对所述若干大气观测数据影像进行处理,得到目标大气观测数据影像;
7.确定所述目标大气观测数据影像中的高排放像元,并基于所述高排放像元输出目标大气观测数据影像对应的二值图;
8.对所述二值图进行形态学处理,得到连通分量标记的二值图,其中,每个连通分量即代表一个潜在的污染气体排放源;
9.基于所述连通分量标记的二值图提取得到连通分量,并计算得到每个连通分量的中心坐标。
10.可选的,所述对所述若干大气观测数据影像进行处理,得到目标大气观测数据影像的步骤包括:
11.计算得到所述若干大气观测数据影像中同一区域对应像元的像元值均值,其中,所述像元值为所述像元对应区域的待监测污染气体的大气含量;
12.基于所述像元值均值,得到目标大气观测数据影像。
13.可选的,所述确定所述目标大气观测数据影像中的高排放像元的步骤包括:
14.对所述目标大气观测数据影像进行背景补偿,得到背景补偿后的目标大气观测数据影像;
15.当所述背景补偿后的目标大气观测数据影像中存在像元的像元值大于第一阈值,则确定所述像元为高排放像元;
16.当所述背景补偿后的目标大气观测数据影像中存在像元的像元值小于第一阈值但大于第二阈值,则确定所述像元为潜在高排放像元;
17.以所述潜在高排放像元为中心,建立预设大小比例的背景窗口,其中,所述背景窗口包括背景高排放像元与有效背景像元;
18.当所述背景窗口中有效背景像元的数量大于预设比例且大于预设个数时,则计算得到所述背景窗口内所有有效背景像元的像元值均值与像元值标准差;
19.当所述背景窗口中的潜在高排放像元的像元值大于所述像元值均值与预设倍数的所述像元值标准差之和时,确定所述潜在高排放像元为高排放像元。
20.可选的,所述对所述二值图进行形态学处理,得到连通分量标记的二值图的步骤包括:
21.使用开闭运算对所述二值图进行处理,去除所述二值图上的孤立点,填充所述二值图上的孔洞;
22.对所述二值图上小于预设距离阈值的目标像素值的区域进行连通处理,得到连通分量,其中,所述目标像素值的区域对应所述目标大气观测数据影像中的高排放像元;
23.使用扫描算法对所述连通分量进行标记,得到连通分量标记的二值图。
24.可选的,所述基于所述连通分量标记的二值图提取得到连通分量,并计算得到每个连通分量的中心坐标的步骤包括:
25.对所述连通分量标记的二值图进行连通分量提取;
26.使用所述目标大气观测数据影像中连通分量对应像元的像元值作为权值,基于加权平均欧式距离方式计算得到每个连通分量的中心坐标。
27.第二方面,本发明还提供一种潜在气体排放源检测装置,所述潜在气体排放源检测装置包括:
28.获取模块,用于获取监测区域的若干大气观测数据影像;
29.第一处理模块,用于对所述若干大气观测数据影像进行处理,得到目标大气观测数据影像;
30.确定模块,用于确定所述目标大气观测数据影像中的高排放像元,并基于所述高排放像元输出目标大气观测数据影像对应的二值图;
31.第二处理模块,用于对所述二值图进行形态学处理,得到连通分量标记的二值图,其中,每个连通分量即代表一个潜在的污染气体排放源;
32.计算模块,用于基于所述连通分量标记的二值图提取得到连通分量,并计算得到每个连通分量的中心坐标。
33.可选的,所述第一处理模块,用于:
34.计算得到所述若干大气观测数据影像中同一区域对应像元的像元值均值,其中,所述像元值为所述像元对应区域的待监测污染气体的大气含量;
35.基于所述像元值均值,得到目标大气观测数据影像。
36.可选的,所述确定模块,用于:
37.对所述目标大气观测数据影像进行背景补偿,得到背景补偿后的目标大气观测数据影像;
38.当所述背景补偿后的目标大气观测数据影像中存在像元的像元值大于第一阈值,则确定所述像元为高排放像元;
39.当所述背景补偿后的目标大气观测数据影像中存在像元的像元值小于第一阈值
但大于第二阈值,则确定所述像元为潜在高排放像元;
40.以所述潜在高排放像元为中心,建立预设大小比例的背景窗口,其中,所述背景窗口包括背景高排放像元与有效背景像元;
41.当所述背景窗口中有效背景像元的数量大于预设比例且大于预设个数时,则计算得到所述背景窗口内所有有效背景像元的像元值均值与像元值标准差;
42.当所述背景窗口中的潜在高排放像元的像元值大于所述像元值均值与预设倍数的所述像元值标准差之和时,确定所述潜在高排放像元为高排放像元。
43.可选的,所述第二处理模块,用于:
44.使用开闭运算对所述二值图进行处理,去除所述二值图上的孤立点,填充所述二值图上的孔洞;
45.对所述二值图上小于预设距离阈值的目标像素值的区域进行连通处理,得到连通分量,其中,所述目标像素值的区域对应所述目标大气观测数据影像中的高排放像元;
46.使用扫描算法对所述连通分量进行标记,得到连通分量标记的二值图。
47.可选的,所述计算模块,用于:
48.对所述连通分量标记的二值图进行连通分量提取;
49.使用所述目标大气观测数据影像中连通分量对应像元的像元值作为权值,基于加权平均欧式距离方式计算得到每个连通分量的中心坐标。
50.第三方面,本发明还提供一种潜在气体排放源检测设备,所述潜在气体排放源检测设备包括处理器、存储器、以及存储在所述存储器上并可被所述处理器执行的潜在气体排放源检测程序,其中所述潜在气体排放源检测程序被所述处理器执行时,实现如上述所述的潜在气体排放源检测方法的步骤。
51.第四方面,本发明还提供一种可读存储介质,所述可读存储介质上存储有潜在气体排放源检测程序,其中所述潜在气体排放源检测程序被处理器执行时,实现如上述所述的潜在气体排放源检测方法的步骤。
52.本发明中,获取监测区域的若干大气观测数据影像;对所述若干大气观测数据影像进行处理,得到目标大气观测数据影像;确定所述目标大气观测数据影像中的高排放像元,并基于所述高排放像元输出目标大气观测数据影像对应的二值图;对所述二值图进行形态学处理,得到连通分量标记的二值图,其中,每个连通分量即代表一个潜在的污染气体排放源;基于所述连通分量标记的二值图提取得到连通分量,并计算得到每个连通分量的中心坐标。通过本发明可以监测到大气环境中潜在的工业污染气体排放源,且能够快速定位工业污染气体排放源所在的位置坐标。
附图说明
53.图1为本发明实施例方案中涉及的潜在气体排放源检测设备的硬件结构示意图;
54.图2为本发明潜在气体排放源检测方法一实施例的流程示意图;
55.图3为本发明潜在气体排放源检测装置一实施例的功能模块示意图。
56.本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
57.应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
58.第一方面,本发明实施例提供一种潜在气体排放源检测设备。
59.参照图1,图1为本发明实施例方案中涉及的潜在气体排放源检测设备的硬件结构示意图。本发明实施例中,潜在气体排放源检测设备可以包括处理器1001(例如中央处理器central processing unit,cpu),通信总线1002,用户接口1003,网络接口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信;用户接口1003可以包括显示屏(display)、输入单元比如键盘(keyboard);网络接口1004可选的可以包括标准的有线接口、无线接口(如无线保真wireless-fidelity,wi-fi接口);存储器1005可以是高速随机存取存储器(random access memory,ram),也可以是稳定的存储器(non-volatile memory),例如磁盘存储器,存储器1005可选的还可以是独立于前述处理器1001的存储装置。本领域技术人员可以理解,图1中示出的硬件结构并不构成对本发明的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
60.继续参照图1,图1中作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及潜在气体排放源检测程序。其中,处理器1001可以调用存储器1005中存储的潜在气体排放源检测程序,并执行本发明实施例提供的潜在气体排放源检测方法。
61.第二方面,本发明实施例提供了一种潜在气体排放源检测方法。
62.参照图2,图2为本发明潜在气体排放源检测方法一实施例的流程示意图。
63.在本发明潜在气体排放源检测方法一实施例中,潜在气体排放源检测方法包括:
64.步骤s10,获取监测区域的若干大气观测数据影像;
65.本实施例中,工业生产中在所在区域进行污染气体排放时,所排放的污染气体大气含量的时空差异比较大,且排放是不连续的以及会在一定区域扩散。在遥感卫星观测空间区域时,每次观测同一区域所得到的大气观测数据影像是不同的,受到遥感卫星观测时间的限制。针对稳定的工业污染气体排放源,一次观测所得的大气观测数据影像是不足以作为输入来进行后续潜在的污染气体排放源识别的。因此,为了降低排放不连续性以及不确定性对大气观测数据影像中污染气体大气含量数据的影响,需要获取遥感卫星在对应监测区域进行连续观测所得的若干大气观测数据影像来作为输入来进行后续潜在的污染气体排放源识别的。
66.步骤s20,对所述若干大气观测数据影像进行处理,得到目标大气观测数据影像;
67.本实施例中,遥感卫星在对应监测区域进行连续观测,观测所得的所述若干大气观测数据影像中每一像元都包含对应区域的污染气体大气含量的数据。以s5p/tropomi-co数据影像为例,其时间分辨率为16天,空间分辨率为0.1弧度,约1000m,即s5p/tropomi连续两次对同一区域观测的时间间隔为16天,约1平方千米的空间区域对应所得大气观测数据影像中的一个像元,每一像元都包含对应区域的co大气含量的数据。在获取监测区域的若干大气观测数据影像之后,对所述获取的若干大气观测数据影像进行处理,可以得到目标大气观测数据影像。
68.进一步,一实施例中,所述步骤s20包括:
69.计算得到所述若干大气观测数据影像中同一区域对应像元的像元值均值,其中,
所述像元值为所述像元对应区域的待监测污染气体的大气含量;
70.基于所述像元值均值,得到目标大气观测数据影像。
71.本实施例中,将所获取的若干大气观测数据影像进行叠加,对若干大气观测数据影像中同一区域的对应像元的像元值作均值计算,得到每一区域对应像元的像元值均值,以此降低排放不连续性以及不确定性对大气观测数据影像中污染气体大气含量数据的影响。其中,所述像元值为所述像元对应区域的待监测污染气体的大气含量。以s5p/tropomi-co数据影像为例,则所述像元值为所述像元对应区域的co大气含量的数据。
72.基于所计算得到的像元值均值,可以得到目标大气观测数据影像。其中,目标大气观测数据影像中每一像元对应的像元值为上述根据均值计算所得的像元值均值,即所述像元对应区域的待监测污染气体的大气含量。其中,为了降低数据质量对检测结果的影响,在若干大气观测数据影像进行叠加时,检查像元值的数据质量波段,将数据质量不大于预设数据质量阈值的像元值数据排除。同时,为了进一步提升像元值数据的有效性,排除秋冬季取暖以及生物质燃烧的影响,在数据影像获取时选择春夏季节大气观测数据影像。
73.步骤s30,确定所述目标大气观测数据影像中的高排放像元,并基于所述高排放像元输出目标大气观测数据影像对应的二值图;
74.本实施例中,通过对所获取的若干大气观测数据影像进行叠加的均值运算,来降低排放不连续性以及不确定性对大气观测数据影像中污染气体大气含量数据的影响后,得到了目标大气观测数据影像。此时,目标大气观测数据影像中每一像元所包含的对应区域的污染气体大气含量的数据是可以代表所对应区域的,因此可以通过对目标大气观测数据影像中每一像元的像元值进行阈值判断,来确定哪些像元是高排放像元,高排放像元对应的区域的污染气体大气含量处于高排放的数值范围内。同时为了区分高排放像元与非高排放像元,基于所得的高排放像元输出目标大气观测数据影像对应的二值图,以便于后续的处理运算。
75.进一步,一实施例中,所述确定所述目标大气观测数据影像中的高排放像元的步骤包括:
76.对所述目标大气观测数据影像进行背景补偿,得到背景补偿后的目标大气观测数据影像;
77.当所述背景补偿后的目标大气观测数据影像中存在像元的像元值大于第一阈值,则确定所述像元为高排放像元;
78.当所述背景补偿后的目标大气观测数据影像中存在像元的像元值小于第一阈值但大于第二阈值,则确定所述像元为潜在高排放像元;
79.以所述潜在高排放像元为中心,建立预设大小比例的背景窗口,其中,所述背景窗口包括背景高排放像元与有效背景像元;
80.当所述背景窗口中有效背景像元的数量大于预设比例且大于预设个数时,则计算得到所述背景窗口内所有有效背景像元的像元值均值与像元值标准差;
81.当所述背景窗口中的潜在高排放像元的像元值大于所述像元值均值与预设倍数的所述像元值标准差之和时,确定所述潜在高排放像元为高排放像元。
82.本实施例中,由于地形地貌影响,工业污染气体的空间分布差异性很大,在国内区域,北高南低、东高西低。此时根据阈值来判断目标大气观测数据影像中的高排放像元时,
难以设置合适的阈值。因此可以通过顶帽变换或者低通高斯滤波方式对目标大气观测数据影像进行背景补偿,形成较均一的背景值,得到背景补偿后的目标大气观测数据影像后,再基于背景补偿后的目标大气观测数据影像来进行阈值判断。其中,以顶帽变换为例。顶帽变换是一系列形态学操作的组合,顶帽变换的公式定义为t
hat
(f)=f-(f
°
b),其中,t
hat
(f)为顶帽变换后的目标大气观测数据影像,f为目标大气观测数据影像中每个像元的原始像元值,b为结构元,
°
为开运算,为腐蚀运算,为膨胀运算。
83.因为基于局部阈值进行高排放像元检测时,对背景补偿后的目标大气观测数据影像中所有像元进行检测,计算量很大。为减少待检测的像元数目,可以设置一个全局阈值先进行初步检测,后续只需对这些检测出来的像元进行检测即可。此时可以设置第一阈值与第二阈值作为全局阈值,筛除掉背景补偿后的目标大气观测数据影像中像元值不大于第二阈值的像元,剩余的像元为待检测像元。其中,像元值大于第一阈值的像元确定为高排放像元,像元值小于第一阈值但大于第二阈值的像元为潜在高排放像元,后续对潜在高排放像元再进行检测。
84.以所述潜在高排放像元为中心,建立预设大小比例的背景窗口。其中,所述背景窗口包括背景高排放像元与有效背景像元。像元值高于当前背景窗口内的潜在高排放像元的像元值的像元为背景高排放像元,或像元值高于背景窗口内所有像元的像元值均值与对应的2倍的所有像元的像元值标准差之和的像元为背景高排放像元。像元值低于当前背景窗口内的潜在高排放像元的像元值的像元为有效背景像元。当所述背景窗口中有效背景像元的数量大于预设比例且大于预设个数时,则计算得到所述背景窗口内所有有效背景像元的像元值均值与像元值标准差。当所述背景窗口中的潜在高排放像元的像元值大于所述像元值均值与预设倍数的所述像元值标准差之和时,确定所述潜在高排放像元为高排放像元。
85.步骤s40,对所述二值图进行形态学处理,得到连通分量标记的二值图,其中,每个连通分量即代表一个潜在的污染气体排放源;
86.本实施例中,根据目标大气观测数据影像所确定的高排放像元是分散的单个像元,而一个潜在的工业污染气体排放源导致的高排放像元会有多个。因此需要将距离接近的高排放像元进行聚类,并以单一点要素表示。为了避免聚类类别数目错误,需要先使用图像形态学处理方法对所述二值图进行形态学处理,得到连通分量标记的二值图,其中,每个连通分量即代表一个潜在的工业污染气体排放源。
87.进一步,一实施例中,所述步骤s40包括:
88.使用开闭运算对所述二值图进行处理,去除所述二值图上的孤立点,填充所述二值图上的孔洞;
89.对所述二值图上小于预设距离阈值的目标像素值的区域进行连通处理,得到连通分量,其中,所述目标像素值的区域对应所述目标大气观测数据影像中的高排放像元;
90.使用扫描算法对所述连通分量进行标记,得到连通分量标记的二值图。
91.本实施例中,在所述基于所述高排放像元所输出的目标大气观测数据影像对应的二值图上,可能存在一些孤立点和孔洞和一些距离接近而不连通的高排放像元,因此需要使用图像形态学处理方法对所述二值图进行处理。具体地,使用图像形态学处理方法对所述二值图进行处理的步骤包括:使用开闭运算对所述二值图进行处理,去除所述二值图上
的孤立点,填充所述二值图上的孔洞;对所述二值图上小于预设距离阈值的目标像素值的区域进行连通处理,得到连通分量,其中,所述目标像素值的区域对应所述目标大气观测数据影像中的高排放像元;使用扫描算法对所述连通分量进行标记,得到连通分量标记的二值图。
92.步骤s50,基于所述连通分量标记的二值图提取得到连通分量,并计算得到每个连通分量的中心坐标。
93.本实施例中,基于所述连通分量标记的二值图提取得到连通分量,并计算得到每个连通分量的中心坐标。其中,所述连通分量的中心坐标即对应潜在的工业污染气体排放源所在的位置坐标。
94.进一步,一实施例中,所述步骤s50包括:
95.对所述连通分量标记的二值图进行连通分量提取;
96.使用所述目标大气观测数据影像中连通分量对应像元的像元值作为权值,基于加权平均欧式距离方式计算得到每个连通分量的中心坐标。
97.本实施例中,对经过图像形态学处理所得的所述连通分量标记的二值图进行连通分量提取,每个连通分量代表一个潜在的工业污染气体排放源。则此时所提取到的连通分量所包含的像元即对应每个潜在的工业污染气体排放源所覆盖的范围。此时,为了让所得的潜在的工业污染气体排放源所在的位置坐标更靠近高排放像元所对应的区域。先从每个连通分量所包含的若干像元中选取前预设比例左右的像元的像元值作为权值,像元的坐标作为数值;再基于加权平均欧式距离方式计算得到每个连通分量的中心坐标,该中心坐标即对应潜在的工业污染气体排放源所在的位置坐标。在得到潜在的工业污染气体排放源所在的位置坐标后,可以将所得的每个潜在的工业污染气体排放源所在的位置坐标转化为gis平台可识别的csv、shp等格式数据,以便于后续监测分析。其中,所述像元值为基于对所述若干大气观测数据影像进行处理所得的目标大气观测数据影像中每一像元的像元值。
98.本实施例中,获取监测区域的若干大气观测数据影像;对所述若干大气观测数据影像进行处理,得到目标大气观测数据影像;确定所述目标大气观测数据影像中的高排放像元,并基于所述高排放像元输出目标大气观测数据影像对应的二值图;对所述二值图进行形态学处理,得到连通分量标记的二值图,其中,每个连通分量即代表一个潜在的污染气体排放源;基于所述连通分量标记的二值图提取得到连通分量,并计算得到每个连通分量的中心坐标。通过本发明可以监测到大气环境中潜在的工业污染气体排放源,且能够快速定位工业污染气体排放源所在的位置坐标。
99.第三方面,本发明实施例还提供一种潜在气体排放源检测装置。
100.参照图3,潜在气体排放源检测装置一实施例的功能模块示意图。
101.本实施例中,所述潜在气体排放源检测装置包括:
102.获取模块10,用于获取监测区域的若干大气观测数据影像;
103.第一处理模块20,用于对所述若干大气观测数据影像进行处理,得到目标大气观测数据影像;
104.确定模块30,用于确定所述目标大气观测数据影像中的高排放像元,并基于所述高排放像元输出目标大气观测数据影像对应的二值图;
105.第二处理模块40,用于对所述二值图进行形态学处理,得到连通分量标记的二值
图,其中,每个连通分量即代表一个潜在的污染气体排放源;
106.计算模块50,用于基于所述连通分量标记的二值图提取得到连通分量,并计算得到每个连通分量的中心坐标。
107.进一步,一实施例中,所述第一处理模块20,用于:
108.计算得到所述若干大气观测数据影像中同一区域对应像元的像元值均值,其中,所述像元值为所述像元对应区域的待监测污染气体的大气含量;
109.基于所述像元值均值,得到目标大气观测数据影像。
110.可选的,所述确定模块30,用于:
111.对所述目标大气观测数据影像进行背景补偿,得到背景补偿后的目标大气观测数据影像;
112.当所述背景补偿后的目标大气观测数据影像中存在像元的像元值大于第一阈值,则确定所述像元为高排放像元;
113.当所述背景补偿后的目标大气观测数据影像中存在像元的像元值小于第一阈值但大于第二阈值,则确定所述像元为潜在高排放像元;
114.以所述潜在高排放像元为中心,建立预设大小比例的背景窗口,其中,所述背景窗口包括背景高排放像元与有效背景像元;
115.当所述背景窗口中有效背景像元的数量大于预设比例且大于预设个数时,则计算得到所述背景窗口内所有有效背景像元的像元值均值与像元值标准差;
116.当所述背景窗口中的潜在高排放像元的像元值大于所述像元值均值与预设倍数的所述像元值标准差之和时,确定所述潜在高排放像元为高排放像元。
117.可选的,所述第二处理模块40,用于:
118.使用开闭运算对所述二值图进行处理,去除所述二值图上的孤立点,填充所述二值图上的孔洞;
119.对所述二值图上小于预设距离阈值的目标像素值的区域进行连通处理,得到连通分量,其中,所述目标像素值的区域对应所述目标大气观测数据影像中的高排放像元;
120.使用扫描算法对所述连通分量进行标记,得到连通分量标记的二值图。
121.可选的,所述计算模块50,用于:
122.对所述连通分量标记的二值图进行连通分量提取;
123.使用所述目标大气观测数据影像中连通分量对应像元的像元值作为权值,基于加权平均欧式距离方式计算得到每个连通分量的中心坐标。
124.其中,上述潜在气体排放源检测装置中各个模块的功能实现与上述潜在气体排放源检测方法实施例中各步骤相对应,其功能和实现过程在此处不再一一赘述。
125.第四方面,本发明实施例还提供一种可读存储介质。
126.本发明可读存储介质上存储有潜在气体排放源检测程序,其中所述潜在气体排放源检测程序被处理器执行时,实现如上述的潜在气体排放源检测方法的步骤。
127.其中,潜在气体排放源检测程序被执行时所实现的方法可参照本发明潜在气体排放源检测方法的各个实施例,此处不再赘述。
128.需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而
且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个
……”
限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
129.上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
130.通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如rom/ram、磁碟、光盘)中,包括若干指令用以使得一台终端设备执行本发明各个实施例所述的方法。
131.以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献