一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种智能机器人避障方法及装置与流程

2022-04-30 09:41:43 来源:中国专利 TAG:


1.本技术涉及机器人避障技术领域,尤其涉及一种智能机器人避障方法及装置。


背景技术:

2.随着机器人在工厂、仓库、酒店、商场、餐厅等环境中的使用,人们对机器人的移动能力越为重视,以至于避障成为一个极为关键且必要的功能。人们希望机器人能根据采集的障碍物的状态信息,在行走过程中通过传感器感知到妨碍其通行的静态或动态物体,然后按照一定的方法进行有效避障,最终到达目标点。
3.实现避障的必要条件是环境感知,在未知或者是部分未知的环境下避障需要通过传感器获取周围环境信息,包括障碍物的尺寸、形状和位置等信息,因此传感器测距技术在移动机器人避障中起着十分重要的作用。


技术实现要素:

4.本技术提供了一种智能机器人避障方法及装置,使得能够适应于多种不同的环境下的机器人避障。
5.有鉴于此,本技术第一方面提供了一种智能机器人避障方法,所述方法包括:
6.采用超声波检测机器人多个方向的障碍物,并计算机器人与所述障碍物之间的第一距离;
7.若所述第一距离小于预置第一安全距离,则执行超声波避障策略;
8.若所述第一距离大于等于所述预置第一安全距离,则采用激光雷达检测机器人多个方向的障碍物,并计算机器人与所述障碍物之间的第二距离;
9.若存在所述第二距离大于等于所述预置第一安全距离且小于预置第二安全距离,则执行激光雷达避障策略;
10.若所述第二距离大于等于所述预置第二安全距离,则机器人按照原规划路线前行。
11.可选的,所述采用超声波检测机器人多个方向的障碍物,并计算机器人与所述障碍物之间的第一距离,包括:
12.采用机器人正前方、左侧和右侧的超声波传感器分别测量机器人的正前方、左侧和右侧是否存在障碍物,并计算机器人与障碍物之间的第一距离,所述第一距离包括机器人与正前方障碍物、左侧障碍物以及右侧障碍物之间的距离。
13.可选的,所述若所述第一距离小于预置第一安全距离,则执行超声波避障策略,具体为:
14.若机器人与正前方障碍物、左侧障碍物以及右侧障碍物的距离均小于所述预置第一安全距离,则机器人原地调转180度后直行;
15.若机器人与左侧障碍物以及右侧障碍物的距离小于所述预置第一安全距离,与正前方障碍物的距离大于等于所述预置第一安全距离,则机器人继续往前直行;
16.若机器人与左侧障碍物的距离小于所述预置第一安全距离,与正前方障碍物和右侧障碍物的距离大于或等于所述预置第一安全距离,则机器人往右旋转预置弧度后往前直行;
17.若机器人与左侧障碍物和正前方障碍物的距离小于所述预置第一安全距离,与右侧障碍物的距离大于或等于所述预置第一安全距离,则机器人往右快旋转预置弧度后直行;
18.若机器人与右侧障碍物的距离小于所述预置第一安全距离,与正前方障碍物和左侧障碍物的距离大于或等于所述预置第一安全距离,则机器人往左旋转预置弧度后直行;
19.若机器人与右侧障碍物和正前方障碍物的距离小于所述预置第一安全距离,与左侧障碍物的距离大于或等于所述预置第一安全距离,则机器人往左旋转预置弧度后直行;
20.若机器人与正前方障碍物的距离小于所述预置第一安全距离,与右侧障碍物和左侧障碍物的距离大于或等于所述预置第一安全距离;当与左侧障碍物的距离大于与右侧障碍物的距离,则往左旋转预置弧度后直行;当与左侧障碍物的距离小于与右侧障碍物的距离,往右旋转预置弧度后直行。
21.可选的,所述若所述第一距离大于等于所述预置第一安全距离,则采用激光雷达检测机器人多个方向的障碍物,并计算机器人与所述障碍物之间的第二距离,包括:
22.当采用超声波检测机器人与多个方向障碍物烦人第一距离大于等于所述预置第一安全距离;
23.则采用激光雷达检测机器人正前方-90
°
~90
°
是否存在障碍物,并计算机器人与所述障碍物之间的所述第二距离,-90
°
~-45
°
为1区,-45
°
~0
°
为2区,0
°
~45
°
为3区,45
°
~90
°
为4区。
24.可选的,所述若存在所述第二距离大于等于所述预置第一安全距离且小于预置第二安全距离,则执行激光雷达避障策略,包括:
25.当测得1区内存在的障碍物与机器人的实际最小距离值小于所述预置第二安全距离,其余三个区的障碍物与机器人的实际最小距离都大于所述预置第二安全距离时,则机器人原地左旋转预置角度;
26.当测得4区内存在的障碍物与机器人的实际最小距离值小于所述预置第二安全距离,其余三个区的障碍物与机器人的实际最小距离都大于所述预置第二安全距离,原地右旋转预置角度;
27.当测得1区和2区内存在的障碍物与机器人的实际最小距离值小于所述预置第二安全距离值,3区和4区存在的障碍物与机器人的实际最小距离都大于所述预置第二安全距离,则机器人原地左快旋转预置角度;
28.当测得3和4区域内存在的障碍物与机器人的实际最小距离值小于所述预置第二安全距离值,1区和2区内存在的障碍物与机器人的实际最小距离都大于所述预置第二安全距离,则机器人原地右快旋转预置角度;
29.当2区存在的障碍物与机器人的实际最小距离值小于所述预置第二安全距离值,其余三个区的障碍物与机器人的实际最小距离都大于所述预置第二安全距离,则机器人左旋转预置角度;
30.当3区存在的障碍物与机器人的实际最小距离值小于所述预置第二安全距离值,
其余三个区存在的障碍物与机器人的实际最小距离都大于所述预置第二安全距离,则机器人右旋转预置角度;
31.当2区和3区存在的障碍物与机器人的实际最小距离值小于所述预置第二安全距离值,1区和4区存在的障碍物与机器人的实际最小距离都大于所述预置第二安全距离,且2区存在的障碍物与机器人的实际最小距离大于3区内的障碍物与机器人的实际最小距离,则机器人右旋转预置角度;
32.当2区和3区内的障碍物与机器人的实际最小距离值小于所述预置第二安全距离值,1区和4区的障碍物与机器人的实际最小距离都大于所述预置第二安全距离,且2区存在的障碍物与机器人的实际最小距离小于3区内的障碍物与机器人的实际最小距离,则机器人左旋转预置角度;
33.当只有1区的障碍物与机器人的实际最小距离值大于所述预置第二安全距离值,其余三个区内的障碍物与机器人的实际最小距离都小于所述预置第二安全距离,机器人右旋转预置角度;
34.当只有4区内的障碍物与机器人的实际最小距离值大于所述预置第二安全距离值,其余三个区内的障碍物与机器人的实际最小距离都小于所述预置第二安全距离,则机器人左旋转预置角度;
35.当四个区内的障碍物与机器人的实际最小距离值小于所述预置第二安全距离值,且1区内的障碍物与机器人的实际最小距离值大于4区内的障碍物与机器人的实际最小距离值,机器人右旋转预置角度;
36.当四个区内的障碍物与机器人的的实际最小距离值小于所述预置第二安全距离值,且1区内的障碍物与机器人的实际最小距离值小于4区内的障碍物与机器人的实际最小距离值,则机器人左旋转预置角度。
37.本技术第二方面提供一种智能机器人避障装置,所述装置包括:
38.超声测距单元,用于采用超声波检测机器人多个方向的障碍物,并计算机器人与所述障碍物之间的第一距离;
39.第一执行单元,用于若所述第一距离小于预置第一安全距离,则执行超声波避障策略;
40.激光雷达测距单元,用于若所述第一距离大于等于所述预置第一安全距离,则采用激光雷达检测机器人多个方向的障碍物,并计算机器人与所述障碍物之间的第二距离;
41.第二执行单元,用于若存在所述第二距离大于等于所述预置第一安全距离且小于预置第二安全距离,则执行激光雷达避障策略;
42.第三执行单元,用于若所述第二距离大于等于所述预置第二安全距离,则机器人按照原规划路线前行。
43.可选的,所述超声测距单元具体用于采用机器人正前方、左侧和右侧的超声波传感器分别测量机器人的正前方、左侧和右侧是否存在障碍物,并计算机器人与障碍物之间的第一距离,所述第一距离包括机器人与正前方障碍物、左侧障碍物以及右侧障碍物之间的距离。
44.可选的,所述第一执行单元包括:
45.第一运行单元,用于当机器人与正前方障碍物、左侧障碍物以及右侧障碍物的距
离均小于所述预置第一安全距离时,则机器人原地调转180度后直行;
46.第二运行单元,用于当机器人与左侧障碍物以及右侧障碍物的距离小于所述预置第一安全距离时,与正前方障碍物的距离大于等于所述预置第一安全距离,则机器人继续往前直行;
47.第三运行单元,用于当机器人与左侧障碍物的距离小于所述预置第一安全距离,与正前方障碍物和右侧障碍物的距离大于或等于所述预置第一安全距离时,则机器人往右旋转预置弧度后往前直行;
48.第四运行单元,用于当机器人与左侧障碍物和正前方障碍物的距离小于所述预置第一安全距离,与右侧障碍物的距离大于或等于所述预置第一安全距离时,则机器人往右快旋转预置弧度后直行;
49.第五运行单元,用于当机器人与右侧障碍物的距离小于所述预置第一安全距离,与正前方障碍物和左侧障碍物的距离大于或等于所述预置第一安全距离时,则机器人往左旋转预置弧度后直行;
50.第六运行单元,用于当机器人与右侧障碍物和正前方障碍物的距离小于所述预置第一安全距离,与左侧障碍物的距离大于或等于所述预置第一安全距离时,则机器人往左旋转预置弧度后直行;
51.第三运行单元,用于当机器人与正前方障碍物的距离小于所述预置第一安全距离,与右侧障碍物和左侧障碍物的距离大于或等于所述预置第一安全距离;当与左侧障碍物的距离大于与右侧障碍物的距离时,则往左旋转预置弧度后直行;当与左侧障碍物的距离小于与右侧障碍物的距离时,往右旋转预置弧度后直行。
52.可选的,所述激光雷达测距单元具体用于当采用超声波检测机器人与多个方向障碍物烦人第一距离大于等于所述预置第一安全距离时;则采用激光雷达检测机器人正前方-90
°
~90
°
是否存在障碍物,并计算机器人与所述障碍物之间的所述第二距离,-90
°
~-45
°
为1区,-45
°
~0
°
为2区,0
°
~45
°
为3区,45
°
~90
°
为4区。
53.可选的,所述第二执行单元,包括:
54.第一旋转单元,用于当测得1区内存在的障碍物与机器人的实际最小距离值小于所述预置第二安全距离,其余三个区的障碍物与机器人的实际最小距离都大于所述预置第二安全距离时,则机器人原地左旋转预置角度;
55.第二旋转单元,用于当测得4区内存在的障碍物与机器人的实际最小距离值小于所述预置第二安全距离,其余三个区的障碍物与机器人的实际最小距离都大于所述预置第二安全距离,原地右旋转预置角度;
56.第三旋转单元,用于当测得1区和2区内存在的障碍物与机器人的实际最小距离值小于所述预置第二安全距离值,3区和4区存在的障碍物与机器人的实际最小距离都大于所述预置第二安全距离,则机器人原地左快旋转预置角度;
57.第四旋转单元,用于当测得3和4区域内存在的障碍物与机器人的实际最小距离值小于所述预置第二安全距离值,1区和2区内存在的障碍物与机器人的实际最小距离都大于所述预置第二安全距离,则机器人原地右快旋转预置角度;
58.第五旋转单元,用于当2区存在的障碍物与机器人的实际最小距离值小于所述预置第二安全距离值,其余三个区的障碍物与机器人的实际最小距离都大于所述预置第二安
全距离,则机器人左旋转预置角度;
59.第六旋转单元,用于当3区存在的障碍物与机器人的实际最小距离值小于所述预置第二安全距离值,其余三个区存在的障碍物与机器人的实际最小距离都大于所述预置第二安全距离,则机器人右旋转预置角度;
60.第七旋转单元,用于当2区和3区存在的障碍物与机器人的实际最小距离值小于所述预置第二安全距离值,1区和4区存在的障碍物与机器人的实际最小距离都大于所述预置第二安全距离,且2区存在的障碍物与机器人的实际最小距离大于3区内的障碍物与机器人的实际最小距离,则机器人右旋转预置角度;
61.第八旋转单元,用于当2区和3区内的障碍物与机器人的实际最小距离值小于所述预置第二安全距离值,1区和4区的障碍物与机器人的实际最小距离都大于所述预置第二安全距离,且2区存在的障碍物与机器人的实际最小距离小于3区内的障碍物与机器人的实际最小距离,则机器人左旋转预置角度;
62.第九旋转单元,用于当只有1区的障碍物与机器人的实际最小距离值大于所述预置第二安全距离值,其余三个区内的障碍物与机器人的实际最小距离都小于所述预置第二安全距离,机器人右旋转预置角度;
63.第十旋转单元,用于当只有4区内的障碍物与机器人的实际最小距离值大于所述预置第二安全距离值,其余三个区内的障碍物与机器人的实际最小距离都小于所述预置第二安全距离,则机器人左旋转预置角度;
64.第十一旋转单元,用于当四个区内的障碍物与机器人的实际最小距离值小于所述预置第二安全距离值,且1区内的障碍物与机器人的实际最小距离值大于4区内的障碍物与机器人的实际最小距离值,机器人右旋转预置角度;
65.第十二旋转单元,用于当四个区内的障碍物与机器人的的实际最小距离值小于所述预置第二安全距离值,且1区内的障碍物与机器人的实际最小距离值小于4区内的障碍物与机器人的实际最小距离值,则机器人左旋转预置角度。
66.从以上技术方案可以看出,本技术具有以下优点:
67.本技术中,提供了一种智能机器人避障方法,包括:采用超声波检测机器人多个方向的障碍物,并计算机器人与障碍物之间的第一距离;若第一距离小于预置第一安全距离,则执行超声波避障策略;若第一距离大于等于预置第一安全距离,则采用激光雷达检测机器人多个方向的障碍物,并计算机器人与障碍物之间的第二距离;若存在第二距离大于等于预置第一安全距离且小于预置第二安全距离,则执行激光雷达避障策略;若第二距离大于等于预置第二安全距离,则机器人按照原规划路线前行。
68.本技术首先通过超声波检测机器人近距离范围内的障碍物位置,并计算障碍物到机器人的距离,当存在障碍物到机器人的距离小于安全距离时,则及时控制机器人偏转,使得机器人能够避开存在玻璃、镜面等物体的场景;而当近距离范围内没有障碍物时,可以采用激光雷达进行测量,实现对较大范围内的障碍物的测量,其测量精度更高且能使机器人进行快速的反馈,完成高精度的机器人避障。
附图说明
69.图1为本技术一种智能机器人避障方法的一个实施例的方法流程图;
70.图2为本技术一种智能机器人避障装置的一个实施例的装置结构图;
71.图3为本技术实施例中超声测距的原理图;
72.图4为本技术实施例中激光雷达测距的电路原理图;
73.图5为本技术实施例中激光传感器测距的三角测量原理示意图;
74.图6为本技术实施例中采用激光雷达测距时对应的激光雷达避障区域示意图。
具体实施方式
75.本技术首先通过超声波检测机器人近距离范围内的障碍物位置,并计算障碍物到机器人的距离,当存在障碍物到机器人的距离小于安全距离时,则及时控制机器人偏转,使得机器人能够避开存在玻璃、镜面等物体的场景;而当近距离范围内没有障碍物时,可以采用激光雷达进行测量,实现对较大范围内的障碍物的测量,其测量精度更高且能使机器人进行快速的反馈,完成高精度的机器人避障。
76.超声波测距的原理如下图3所示,超声波的发射端发射一束超声波,在发射的同时,计时开始,发射出去的超声波在介质中传播,声波具有反射特性,当遇到障碍物时就会反射回来,当超声波的接收端接收到反射回来的超声波时,计时停止。介质为空气时,声速为340m/s,根据记录的时间t,利用公式计算出发射位置与障碍物之间的距离l。
77.l=340t/2
78.超声波传感器一般作用距离较短,普通的有效探测距离都在几米,但是会有一个几十毫米左右的最小探测盲区。另外,超声波的测量周期较长,比如3米左右的物体,声波传输这么远的距离需要约20ms的时间。再者,不同材料对声波的反射或者吸引是不相同的,还有多个超声传感器之间有可能会互相干扰,因此其抗干扰能力较差。但是超声波传感器可以识别玻璃、镜面等激光雷达难以识别的物体。
79.激光雷达的电路原理图如图4所示,包括发射器和接收器,发射器用激光照射目标,接收器接收反向回的光波。机械式的激光雷达还包括一个带有镜子的机械机构,镜子的旋转使得光束可以覆盖一个平面,可以测量到一个平面上的距离信息。
80.激光避障与红外线类似,也是发射激光然后接收。激光传感器的测量方式有很多种,有类似红外的三角测量原理示意图5,也有类似于超声波的时间差 速度。其测量公式为:
81.d=f
×
s/(l
×
sinβ)
82.无论选择那一种方式,激光避障的精度、反馈速度、抗干扰能力和有效范围都要显优于红外和超声波。
83.激光雷达的测量距离可以达到几十米甚至上百米,角度分辨率高,通常可以达到零点几度,测距的精度也高。但是黑体或者远距离的物体距离测量不会像光亮的、近距离的物体那么好的估计,并且对于透明材料,比如玻璃,激光雷达就无能为力了。还由于结构的复杂、器件成本高,激光雷达的成本也很高。
84.为了使本技术领域的人员更好地理解本技术方案,下面将结合本技术实施例中的附图,对本技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本技术一部分实施例,而不是全部的实施例。基于本技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本技术保护的范围。
85.图1为本技术一种智能机器人避障方法的一个实施例的方法流程图,如图1所示,图1中包括:
86.101、采用超声波检测机器人多个方向的障碍物,并计算机器人与障碍物之间的第一距离;
87.需要说明的是,可以采用超声波测距传感器测量机器人周围多个方向的障碍物,并计算机器人到障碍物之间的距离。
88.在一种具体的实施方式中,可以采用机器人正前方、左侧和右侧的超声波传感器分别测量机器人的正前方、左侧和右侧是否存在障碍物,并计算机器人与障碍物之间的第一距离,第一距离包括机器人与正前方障碍物、左侧障碍物以及右侧障碍物之间的距离。
89.假设超声波测距传感器与运动控制器相连接,通过串口通信的方式与运动控制器进行数据传输的。运动控制器读取到超声波测距传感器的检测数据,并对检测数据进行数据转换,再通过串口通讯协议将数据发送到主控器上,由主控制器根据获取的数据进行计算,得到障碍物与机器人的距离。
90.102、若第一距离小于预置第一安全距离,则执行超声波避障策略;
91.需要说明的是,智能机器人在沿直线运行过程中,超声波检测到障碍物时,底盘控制节点(mobile_base)将获取到三个方向的超声波测距值,把三个超声波的测距值与安全距离值进行比较分析,推算出智能机器人绕开障碍物的方向(左转、右转、掉头、直走)和速度。当机器人与障碍物之间的距离小于预置的安全距离时,机器人需要进行及时的避障,具体的避障策略如下:
92.在一种具体的实施方式中,若机器人与正前方障碍物、左侧障碍物以及右侧障碍物的距离均小于预置第一安全距离,则机器人原地调转180度后直行;
93.若机器人与左侧障碍物以及右侧障碍物的距离小于预置第一安全距离,与正前方障碍物的距离大于等于预置第一安全距离,则机器人继续往前直行;
94.若机器人与左侧障碍物的距离小于预置第一安全距离,与正前方障碍物和右侧障碍物的距离大于或等于预置第一安全距离,则机器人往右旋转预置弧度后往前直行;
95.若机器人与左侧障碍物和正前方障碍物的距离小于预置第一安全距离,与右侧障碍物的距离大于或等于预置第一安全距离,则机器人往右快旋转预置弧度后直行;
96.若机器人与右侧障碍物的距离小于预置第一安全距离,与正前方障碍物和左侧障碍物的距离大于或等于预置第一安全距离,则机器人往左旋转预置弧度后直行;
97.若机器人与右侧障碍物和正前方障碍物的距离小于预置第一安全距离,与左侧障碍物的距离大于或等于预置第一安全距离,则机器人往左旋转预置弧度后直行;
98.若机器人与正前方障碍物的距离小于预置第一安全距离,与右侧障碍物和左侧障碍物的距离大于或等于预置第一安全距离;当与左侧障碍物的距离大于与右侧障碍物的距离,则往左旋转预置弧度后直行;当与左侧障碍物的距离小于与右侧障碍物的距离,往右旋转预置弧度后直行。
99.103、若第一距离大于等于预置第一安全距离,则采用激光雷达检测机器人多个方向的障碍物,并计算机器人与障碍物之间的第二距离;
100.需要说明的是,当测得障碍物与机器人的距离大于等于超声检测的安全距离时,即近距离的范围内不存在障碍物(重点包括玻璃、镜面等)时,可以采用激光雷达检测机器
人多个方向的障碍物,并计算机器人与障碍物之间的第二距离;
101.在一种具体的实施方式中,当采用超声波检测机器人与多个方向障碍物烦人第一距离大于等于预置第一安全距离;则采用激光雷达检测机器人正前方-90
°
~90
°
是否存在障碍物,并计算机器人与障碍物之间的第二距离,-90
°
~-45
°
为1区,-45
°
~0
°
为2区,0
°
~45
°
为3区,45
°
~90
°
为4区。
102.可以假设激光雷达传感器与运动控制器相连接,通过串口通信的方式与运动控制器进行数据传输的,运动控制器读取到超声波测距传感器的检测数据,并对检测数据进行数据转换,再通过串口通讯协议将数据发送到主控器上,由主控器对接收到的数据进行计算,计算机器人到障碍物的实际最小距离。
103.104、若存在第二距离大于等于预置第一安全距离且小于预置第二安全距离,则执行激光雷达避障策略;
104.需要说明的是,若通过激光雷达测量机器人到障碍物之间的距离大于超声波测量对应的安全距离,且小于激光雷达测量时对应的理论安全距离时,则可以执行激光雷达避障策略。
105.由于激光雷达的测距角度一般为0~360
°
,需要根据实际使用设置开始扫描的角度和结束扫描的角度。如下图6,以图的上半部分为例,假设使用激光雷达正前方的180
°
测距角度,设置为-90
°
~90
°
。l1为智能机器人横向安全距离,大于底盘半径r,l2为智能机器人纵向避障距离,纵向距离小于该值划为避障区域。根据安全避障的横向/纵向安全距离,划分为1、2、3、4四个区域的激光雷达角度检测值,区域内为需要避障区域。
106.根据四个区域中,激光雷达检测到的实际最小距离值和预置第二安全距离值(l/sinθ或l/cosθ)的关系来确定机器人的运动控制策略,其具体的避障策略为:
107.当测得1区内存在的障碍物与机器人的实际最小距离值小于预置第二安全距离,其余三个区的障碍物与机器人的实际最小距离都大于预置第二安全距离时,则机器人原地左旋转预置角度;
108.当测得4区内存在的障碍物与机器人的实际最小距离值小于预置第二安全距离,其余三个区的障碍物与机器人的实际最小距离都大于预置第二安全距离,原地右旋转预置角度;
109.当测得1区和2区内存在的障碍物与机器人的实际最小距离值小于预置第二安全距离值,3区和4区存在的障碍物与机器人的实际最小距离都大于预置第二安全距离,则机器人原地左快旋转预置角度;
110.当测得3和4区域内存在的障碍物与机器人的实际最小距离值小于预置第二安全距离值,1区和2区内存在的障碍物与机器人的实际最小距离都大于预置第二安全距离,则机器人原地右快旋转预置角度;
111.当2区存在的障碍物与机器人的实际最小距离值小于预置第二安全距离值,其余三个区的障碍物与机器人的实际最小距离都大于预置第二安全距离,则机器人左旋转预置角度;
112.当3区存在的障碍物与机器人的实际最小距离值小于预置第二安全距离值,其余三个区存在的障碍物与机器人的实际最小距离都大于预置第二安全距离,则机器人右旋转预置角度;
113.当2区和3区存在的障碍物与机器人的实际最小距离值小于预置第二安全距离值,1区和4区存在的障碍物与机器人的实际最小距离都大于预置第二安全距离,且2区存在的障碍物与机器人的实际最小距离大于3区内的障碍物与机器人的实际最小距离,则机器人右旋转预置角度;
114.当2区和3区内的障碍物与机器人的实际最小距离值小于预置第二安全距离值,1区和4区的障碍物与机器人的实际最小距离都大于预置第二安全距离,且2区存在的障碍物与机器人的实际最小距离小于3区内的障碍物与机器人的实际最小距离,则机器人左旋转预置角度;
115.当只有1区的障碍物与机器人的实际最小距离值大于预置第二安全距离值,其余三个区内的障碍物与机器人的实际最小距离都小于预置第二安全距离,机器人右旋转预置角度;
116.当只有4区内的障碍物与机器人的实际最小距离值大于预置第二安全距离值,其余三个区内的障碍物与机器人的实际最小距离都小于预置第二安全距离,则机器人左旋转预置角度;
117.当四个区内的障碍物与机器人的实际最小距离值小于预置第二安全距离值,且1区内的障碍物与机器人的实际最小距离值大于4区内的障碍物与机器人的实际最小距离值,机器人右旋转预置角度;
118.当四个区内的障碍物与机器人的的实际最小距离值小于预置第二安全距离值,且1区内的障碍物与机器人的实际最小距离值小于4区内的障碍物与机器人的实际最小距离值,则机器人左旋转预置角度。
119.105、若第二距离大于等于预置第二安全距离,则机器人按照原规划路线前行。
120.需要说明的是,当机器人周围一定距离的范围内都不存在障碍物时,则机器人可以可以按照正常的规划路线执行原既定任务。
121.本技术首先通过超声波检测机器人近距离范围内的障碍物位置,并计算障碍物到机器人的距离,当存在障碍物到机器人的距离小于安全距离时,则及时控制机器人偏转,使得机器人能够避开存在玻璃、镜面等物体的场景;而当近距离范围内没有障碍物时,可以采用激光雷达进行测量,实现对较大范围内的障碍物的测量,其测量精度更高且能使机器人进行快速的反馈,完成高精度的机器人避障。
122.本技术还提供了一种智能机器人避障装置的一个实施例,如图2所示,图2中包括:
123.超声测距单元201,用于采用超声波检测机器人多个方向的障碍物,并计算机器人与障碍物之间的第一距离;
124.第一执行单元202,用于若第一距离小于预置第一安全距离,则执行超声波避障策略;
125.激光雷达测距单元203,用于若第一距离大于等于预置第一安全距离,则采用激光雷达检测机器人多个方向的障碍物,并计算机器人与障碍物之间的第二距离;
126.第二执行单元204,用于若存在第二距离大于等于预置第一安全距离且小于预置第二安全距离,则执行激光雷达避障策略;
127.第三执行单元205,用于若第二距离大于等于预置第二安全距离,则机器人按照原规划路线前行。
128.在一种具体的实施方式中,超声测距单元具体用于采用机器人正前方、左侧和右侧的超声波传感器分别测量机器人的正前方、左侧和右侧是否存在障碍物,并计算机器人与障碍物之间的第一距离,第一距离包括机器人与正前方障碍物、左侧障碍物以及右侧障碍物之间的距离。
129.在一种具体的实施方式中,第一执行单元202包括:
130.第一运行单元,用于当机器人与正前方障碍物、左侧障碍物以及右侧障碍物的距离均小于预置第一安全距离时,则机器人原地调转180度后直行;
131.第二运行单元,用于当机器人与左侧障碍物以及右侧障碍物的距离小于预置第一安全距离时,与正前方障碍物的距离大于等于预置第一安全距离,则机器人继续往前直行;
132.第三运行单元,用于当机器人与左侧障碍物的距离小于预置第一安全距离,与正前方障碍物和右侧障碍物的距离大于或等于预置第一安全距离时,则机器人往右旋转预置弧度后往前直行;
133.第四运行单元,用于当机器人与左侧障碍物和正前方障碍物的距离小于预置第一安全距离,与右侧障碍物的距离大于或等于预置第一安全距离时,则机器人往右快旋转预置弧度后直行;
134.第五运行单元,用于当机器人与右侧障碍物的距离小于预置第一安全距离,与正前方障碍物和左侧障碍物的距离大于或等于预置第一安全距离时,则机器人往左旋转预置弧度后直行;
135.第六运行单元,用于当机器人与右侧障碍物和正前方障碍物的距离小于预置第一安全距离,与左侧障碍物的距离大于或等于预置第一安全距离时,则机器人往左旋转预置弧度后直行;
136.第三运行单元,用于当机器人与正前方障碍物的距离小于预置第一安全距离,与右侧障碍物和左侧障碍物的距离大于或等于预置第一安全距离;当与左侧障碍物的距离大于与右侧障碍物的距离时,则往左旋转预置弧度后直行;当与左侧障碍物的距离小于与右侧障碍物的距离时,往右旋转预置弧度后直行。
137.在一种具体的实施方式中,激光雷达测距单元203具体用于当采用超声波检测机器人与多个方向障碍物烦人第一距离大于等于预置第一安全距离时;则采用激光雷达检测机器人正前方-90
°
~90
°
是否存在障碍物,并计算机器人与障碍物之间的第二距离,-90
°
~-45
°
为1区,-45
°
~0
°
为2区,0
°
~45
°
为3区,45
°
~90
°
为4区。
138.在一种具体的实施方式中,第二执行单元204包括:
139.第一旋转单元,用于当测得1区内存在的障碍物与机器人的实际最小距离值小于预置第二安全距离,其余三个区的障碍物与机器人的实际最小距离都大于预置第二安全距离时,则机器人原地左旋转预置角度;
140.第二旋转单元,用于当测得4区内存在的障碍物与机器人的实际最小距离值小于预置第二安全距离,其余三个区的障碍物与机器人的实际最小距离都大于预置第二安全距离,原地右旋转预置角度;
141.第三旋转单元,用于当测得1区和2区内存在的障碍物与机器人的实际最小距离值小于预置第二安全距离值,3区和4区存在的障碍物与机器人的实际最小距离都大于预置第二安全距离,则机器人原地左快旋转预置角度;
142.第四旋转单元,用于当测得3和4区域内存在的障碍物与机器人的实际最小距离值小于预置第二安全距离值,1区和2区内存在的障碍物与机器人的实际最小距离都大于预置第二安全距离,则机器人原地右快旋转预置角度;
143.第五旋转单元,用于当2区存在的障碍物与机器人的实际最小距离值小于预置第二安全距离值,其余三个区的障碍物与机器人的实际最小距离都大于预置第二安全距离,则机器人左旋转预置角度;
144.第六旋转单元,用于当3区存在的障碍物与机器人的实际最小距离值小于预置第二安全距离值,其余三个区存在的障碍物与机器人的实际最小距离都大于预置第二安全距离,则机器人右旋转预置角度;
145.第七旋转单元,用于当2区和3区存在的障碍物与机器人的实际最小距离值小于预置第二安全距离值,1区和4区存在的障碍物与机器人的实际最小距离都大于预置第二安全距离,且2区存在的障碍物与机器人的实际最小距离大于3区内的障碍物与机器人的实际最小距离,则机器人右旋转预置角度;
146.第八旋转单元,用于当2区和3区内的障碍物与机器人的实际最小距离值小于预置第二安全距离值,1区和4区的障碍物与机器人的实际最小距离都大于预置第二安全距离,且2区存在的障碍物与机器人的实际最小距离小于3区内的障碍物与机器人的实际最小距离,则机器人左旋转预置角度;
147.第九旋转单元,用于当只有1区的障碍物与机器人的实际最小距离值大于预置第二安全距离值,其余三个区内的障碍物与机器人的实际最小距离都小于预置第二安全距离,机器人右旋转预置角度;
148.第十旋转单元,用于当只有4区内的障碍物与机器人的实际最小距离值大于预置第二安全距离值,其余三个区内的障碍物与机器人的实际最小距离都小于预置第二安全距离,则机器人左旋转预置角度;
149.第十一旋转单元,用于当四个区内的障碍物与机器人的实际最小距离值小于预置第二安全距离值,且1区内的障碍物与机器人的实际最小距离值大于4区内的障碍物与机器人的实际最小距离值,机器人右旋转预置角度;
150.第十二旋转单元,用于当四个区内的障碍物与机器人的的实际最小距离值小于预置第二安全距离值,且1区内的障碍物与机器人的实际最小距离值小于4区内的障碍物与机器人的实际最小距离值,则机器人左旋转预置角度。
151.所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
152.本技术的说明书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本技术的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
153.应当理解,在本技术中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两
个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“a和/或b”可以表示:只存在a,只存在b以及同时存在a和b三种情况,其中a,b可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
154.在本技术所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
155.所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
156.另外,在本技术各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
157.以上所述,以上实施例仅用以说明本技术的技术方案,而非对其限制;尽管参照前述实施例对本技术进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本技术各实施例技术方案的精神和范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献