一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种带触觉反馈的血管介入手术机器人主端装置的制作方法

2022-03-26 13:05:50 来源:中国专利 TAG:


1.本发明涉及医疗器械技术领域,特别是涉及一种带触觉反馈的血管介入手术机器人主端装置。


背景技术:

2.近些年来,由于环境恶化与人不良的生活习惯,心血管疾病患病率与致死率逐年升高,已经成为人类生命安全的最大威胁,而血管栓塞是常见的心血管疾病症状。目前治疗血管栓塞最有效的方法是血管介入手术,通过人为干预,利用导管导丝进行导航,介入至病灶处放置支架来疏通血管、消除病灶。为避免传统手术医生长时间暴露在辐射下的问题,目前已经已有医疗公司和高校开发了主从式血管介入手术机器人系统,用于医生在远端通过操纵机器人完成手术。由于使用主从式机器人进行介入手术,医生在远端缺乏对导管介入环境的直接感知,因此为保障手术的安全进行,需要在主端为医生提供更多的临场真实环境细节。国内外的医疗企业与高校科研机构所设计机器人采用的力反馈方案多为电机提供力反馈、电流变液提供力反馈,均存在一定的缺陷。且机器人主端操作器多采用操作杆、操纵按钮等机械结构,无法适用传统介入手术的操作方式。


技术实现要素:

3.本发明的目的是提供一种带触觉反馈的血管介入手术机器人主端装置,应用磁流变液技术提供触觉力反馈,为医生提供临场沉浸式手术阻力环境;采用操作导管与动作采集机构进行动作采集,最大程度保留了传统介入手术中医生的操作经验。
4.为实现上述目的,本发明提供了如下方案:
5.本发明提供了一种带触觉反馈的血管介入手术机器人主端装置,包括触觉力输出机构、动作采集机构、操作导管和控制器;
6.所述触觉力输出机构包括套筒结构和活塞结构,所述操作导管的一端与所述活塞结构连接,所述操作导管的另一端与所述动作采集机构位置对应,所述活塞结构设置在所述套筒结构中,所述活塞结构与所述套筒结构滑动连接,所述套筒结构包括电磁线圈,所述活塞结构和所述套筒结构之间填充有磁流变液;
7.所述动作采集机构包括轴向信息采集结构和周向信息采集结构,所述轴向信息采集结构用于采集所述操作导管的轴向位置信息,所述周向信息采集结构用于采集所述操作导管的周向位置信息;
8.所述电磁线圈、所述轴向信息采集结构和所述周向信息采集结构均分别与所述控制器电连接。
9.优选地,所述套筒结构包括螺旋结构、外壳、第一端盖和第二端盖,所述螺旋结构包括螺旋本体和第一阻挡本体,所述第一阻挡本体设置在所述螺旋本体的凹槽中,所述第一阻挡本体用于改变磁感线的路径,所述螺旋结构设置在所述外壳的内侧,所述电磁线圈位于所述螺旋结构和所述外壳之间,所述第一端盖位于所述螺旋结构和所述外壳的一端,
所述第二端盖位于所述螺旋结构和所述外壳的另一端,所述操作导管贯穿所述第二端盖设置。
10.优选地,所述螺旋本体采用铁磁材料制成;所述第一阻挡本体采用非铁磁材料制成。
11.优选地,所述活塞结构包括活塞本体结构、第一密封结构和第二密封结构,所述活塞本体结构包括活塞本体和第二阻挡本体,所述活塞本体的外壁上沿所述活塞本体的轴向开设有若干环形槽,所述第二阻挡本体设置在所述环形槽中,所述第二阻挡本体用于改变磁感线的路径,所述第一密封结构设置在所述活塞本体的一端,所述第二密封结构设置在所述活塞本体的另一端,所述操作导管的一端与所述活塞本体连接,所述操作导管的另一端贯穿所述第二密封结构设置,磁流变液填充在所述活塞本体结构的外壁、所述套筒结构的内壁、所述第一密封结构和所述第二密封结构之间的空腔中。
12.优选地,所述活塞本体采用铁磁材料制成;所述第二阻挡本体采用非铁磁材料制成。
13.优选地,所述轴向信息采集结构与所述操作导管之间存在间隙,所述轴向信息采集结构包括激光发射器和光电传感器,所述激光发射器用于发射激光,所述激光发射器发射的激光传送至所述操作导管的表面,所述光电传感器检测所述操作导管的沿所述操作导管轴向的图像变化,进而得到所述操作导管的轴向位置信息。
14.优选地,所述周向信息采集结构包括编码器,所述编码器位于所述操作导管的外侧,所述编码器用于采集所述操作导管的周向位置信息。
15.优选地,所述带触觉反馈的血管介入手术机器人主端装置还包括第一支架和第二支架,所述触觉力输出机构位于所述第一支架上,所述动作采集机构位于所述第二支架上。
16.本发明相对于现有技术取得了以下技术效果:
17.本发明应用磁流变液在磁场下粘度增加的特性,通过触觉力输出机构,由触觉力输出机构的活塞结构将阻力输出,提供力反馈,为操作者在操作手术中提供拟真的手术环境,能够反映术中的介入阻力,保障手术的安全顺利完成。本发明采用操作导管与动作采集机构进行动作采集,最大程度保留了传统介入手术中医生的操作经验。
附图说明
18.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
19.图1为本发明的带触觉反馈的血管介入手术机器人主端装置示意图;
20.图2为本发明的触觉力输出机构示意图;
21.图3为本发明的螺旋本体示意图;
22.图4为本发明的活塞本体示意图;
23.图5为活塞结构剪切磁流变液示意图;
24.图6为本发明的触觉力输出机构原理示意图;
25.图7为使用ansys仿真验证磁场方向示意图;
26.图8为本发明的轴向信息采集结构示意图;
27.图9为本发明的控制器控制关系示意图;
28.图10为本发明的带触觉反馈的血管介入手术机器人主端装置的原理图;
29.图11为导丝在人体血管中的介入过程;
30.其中:100-带触觉反馈的血管介入手术机器人主端装置,1-触觉力输出机构,2-动作采集机构,3-操作导管,4-磁流变液,5-外壳,6-第一端盖,7-第二端盖,8-电磁线圈,9-螺旋本体,10-第一阻挡本体,11-活塞本体,12-第二阻挡本体,13-第一密封结构,14-第二密封结构,15-激光发射器,16-光电传感器,17-第一镜片,18-第二镜片,19-第三镜片,20-编码器,21-操作筒,22-第一支架,23-第二支架,24-病灶,25-导丝,26-区域ⅰ,27-区域ⅱ。
具体实施方式
31.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
32.本发明的目的是提供一种带触觉反馈的血管介入手术机器人主端装置,应用磁流变液技术提供触觉力反馈,为医生提供临场沉浸式手术阻力环境;采用操作导管与动作采集机构进行动作采集,最大程度保留了传统介入手术中医生的操作经验。
33.为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
34.如图1-图6以及图8-图10所示:本实施例提供了一种带触觉反馈的血管介入手术机器人主端装置100,包括触觉力输出机构1、动作采集机构2、操作导管3和控制器;
35.触觉力输出机构1包括套筒结构和活塞结构,操作导管3的一端与活塞结构连接,操作导管3的另一端与动作采集机构2位置对应,活塞结构设置在套筒结构中,活塞结构与套筒结构滑动连接,套筒结构包括电磁线圈8,活塞结构和套筒结构之间填充有磁流变液4;触觉力输出机构1通过建立的力-磁场模型能够根据从端采集的阻力信号,向电磁线圈8通入对应电流迅速建立磁场,输出阻力由人手感知;
36.动作采集机构2包括轴向信息采集结构和周向信息采集结构,轴向信息采集结构用于采集操作导管3的轴向位置信息,周向信息采集结构用于采集操作导管3的周向位置信息。本实施例的触觉力输出机构1能够为医生提供临场沉浸式手术环境,采用磁流变液4技术,将磁流变液4产生的剪切力通过活塞结构输出,并传递至操作导管3上,使操纵者在操作操作导管3时能够感知到临场真实的阻力变化,为应对复杂的血管环境所带来的操作挑战,要求介入手术具有轴向递送与径向旋转两个自由度,本实施例的轴向信息采集结构和周向信息采集结构负责检测和记录操作者在轴向和周向的位移量,并将信息传递至从端控制器作为从端执行器的控制信号;
37.电磁线圈8、轴向信息采集结构和周向信息采集结构均分别与控制器电连接,控制器采用stm32,控制器控制信号采集与信号控制,控制器采集轴向信息采集结构和周向信息采集结构的输出信号,并控制触觉力输出机构1的电磁线圈8的输入电流。
38.本实施例中,操作导管3为钢质导管。
39.本实施例中,套筒结构包括螺旋结构、外壳5、第一端盖6和第二端盖7,螺旋结构包括螺旋本体9和第一阻挡本体10,螺旋本体9包括筒形体和设置在筒形体外侧的螺旋体,第一阻挡本体10设置在螺旋本体9的螺旋状的凹槽中,第一阻挡本体10用于改变磁感线的路径,螺旋结构设置在外壳5的内侧,电磁线圈8位于螺旋结构和外壳5之间,外壳5采用金属材料制成,外壳5能够消除对电磁线圈8的磨损同时有利于散热,具体地,电磁线圈8缠绕在螺旋结构的外侧,通过向电磁线圈8通电进而提供可变磁场,通过改变通入的电流大小从而控制磁场强度,第一端盖6位于螺旋结构和外壳5的一端,第二端盖7位于螺旋结构和外壳5的另一端,操作导管3贯穿第二端盖7设置。反馈力的有效范围为螺旋本体9的长度,第一端盖6和第二端盖7是为了保证活塞结构位于力反馈区域中。
40.本实施例中,活塞结构包括活塞本体11结构、第一密封结构13和第二密封结构14,活塞本体11结构包括活塞本体11和第二阻挡本体12,活塞本体11的外壁上沿活塞本体11的轴向开设有若干环形槽,第二阻挡本体12设置在环形槽中,第二阻挡本体12用于改变磁感线的路径,第一密封结构13设置在活塞本体11的一端,第二密封结构14设置在活塞本体11的另一端,操作导管3的一端与活塞本体11通过螺纹连接,操作导管3的另一端贯穿第二密封结构14设置,磁流变液4填充在活塞本体11结构的外壁、螺旋本体9的内壁、第一密封结构13和第二密封结构14之间的空腔中,第一密封结构13和第二密封结构14用于将磁流变液4密封在活塞本体11结构的外壁和螺旋本体9的内壁之间,第一密封结构13和第二密封结构14采用u型活塞密封圈。由于磁流变液4是一种液体物质,在手术过程中会存在一定的损耗,为方便添加补充,可通过预留的加注口随时进行加注,加注口可设置在第一密封结构13或第二密封结构14上。本实施例的操作导管3的单次递送的最大行程为90mm,满足手术操作需求的同时,结构更为紧凑、精致。
41.在施加外部磁场时,磁流变液4呈现为宾汉流体特性,可用宾汉塑性模型进行描述。如图5所示,图中展示了活塞结构剪切磁流变液4的过程以及速度剖面。图5中,r为区域ⅱ27中磁流变液4沿磁场方向的宽度,u(r)为区域ⅱ27中磁流变液4的运动速度(速度方向垂直于磁场方向)。在区域ⅰ26中,这部分磁流变液4不发生剪切流动,因此区域ⅰ26的磁流变液4中只存在与磁场有关的动态屈服应力和与磁流变液4粘度有关的粘滞阻力,关系如所示:
[0042][0043]
其中τ为剪切应力,τd(h)为动态屈服应力,η为粘滞系数,为活塞结构运动方向上的速度梯度。
[0044]
在区域ⅱ27中,活塞结构发生了相对运动,因此区域ⅱ27的磁流变液4被剪切,此时的剪切力将超过屈服应力,磁流变液4开始流动。此时反馈至操作者指尖的反馈力可表示为:
[0045]fτ
=fd(h) f
η
ff[0046][0047]
fd(h)为可通过调节磁场强度进行控制的剪切力,f
η
为粘性阻力,ff为第一密封结
构13和第二密封结构14所带来的机械摩擦力,d为活塞本体11结构的直径,l为活塞结构的长度。
[0048]
由于磁流变液4的链化特性,想要获得水平方向的反馈力,那么就需要使得磁感线垂直穿过活塞本体11结构的外壁和螺旋本体9的内壁之间的磁流变液4。本实施例的螺旋本体9的外壁的螺旋体设计为螺旋式结构,整个螺旋体的匝数为5,保证了套筒结构的重力的均匀分布。本实施例中,通过分别改变套筒结构和活塞结构的材料的搭配,从而改变磁感线的路径。
[0049]
本实施例中,螺旋本体9和活塞本体11采用铁磁材料制成;第一阻挡本体10和第二阻挡本体12采用非铁磁材料制成。铁磁性物质包括:铁、钴、镍及其合金。非铁磁性物质包括:硅胶、橡胶、银、铜、金刚石等。非铁磁性物质的磁导率μ≈1,铁磁性物质的磁导率一般为几百甚至上万,要远远大于非铁磁性质的磁导率。本实施例中,选择q235钢作为螺旋本体9、外壳5以及活塞本体11的材料,第一阻挡本体10和第二阻挡本体12为硅胶。
[0050]
如图6所示,当电磁线圈8通电后,在没有添加活塞结构时磁感线从触觉力输出机构1的一端进入外壳5的螺旋结构,当磁通量通过螺旋的螺旋本体9的第一圈时,由于与下一圈螺旋之间的凹槽内填充了硅胶制成的第一阻挡本体10,磁通量无法传播,因此会沿着第一圈螺旋继续向前传递进入第二圈螺旋。以此类推,磁通方向会沿着导磁的螺旋本体9传播。当触觉力输出机构1内部加入活塞结构与磁流变液4后,当上述的磁感线经过磁流变液4和活塞结构处时,由于磁流变液4与活塞结构的导磁性,磁通会由外壳5的螺旋本体9穿过磁流变液4进入活塞结构。由于活塞结构设计为带多个环形槽结构,环形槽内设置有硅胶制成的第二阻挡本体12。磁通会从活塞本体11部分进入与穿出,多个环形槽设计为了磁通的多次通过,原理图如图6所示,图6为上半部分在活塞结构处磁通流向示意图。由于螺旋体的螺旋通路的存在,因此磁通量可多次穿过磁流变液4的同时,还可以保证触觉力输出机构1的尺寸足够精致。从图6中可以看出,活塞结构表面的磁流变液4可以被磁通量连续穿过四次,这使得提供的力反馈阻力范围更大。使用ansys仿真验证磁场方向,结果如图7。
[0051]
由图7可知,磁通量可以近乎垂直且均匀的穿过磁流变液4区域,形成了外壳5、磁流变液4、活塞结构、外壳5的闭合回路。同时磁通量能够多次的垂直穿过磁流变液4的工作区域,极大的提高了磁场的利用率,使磁流变液4的性能大大提高。
[0052]
动作采集机构2主要负责对操作者的操作信息进行获取,包括两个自由度的操作方式:轴向和周向。如图11所示,人体血管环境微小且复杂,根据介入的情形大体可以划分为平直血管与分叉血管两种。在手术介入中,医生在平直血管中仅需轴向方向操作导管导丝25,即可实现导丝25自由递送,无需周向旋转调整;当介入至分叉血管处时,需要根据介入目标位置选择最佳的介入分支,这需要执行周向旋转操作,调整导管导丝25尖端的姿态使其进入最优分支。在整个血管介入与旋转操作中,不可避免的会发生导管导丝25与血管壁接触的情况,从端的力传感器能够实时捕捉到尖端介入阻力的骤升变化,当阻力突变超过安全阈值,则会发生导管导丝25刺穿血管壁的危险情况。因此为了手术安全,在力传感器检测阻力发生骤变时,主端触觉力输出机构1能够迅速建立磁场产生阻力,提示预警操作者做出应当策略,包括短距离后撤导管导丝25、调整姿态等。
[0053]
本实施例中,动作采集机构2主要负责对操作者的操作信息进行获取,其中,轴向运动信息的采集采用了激光鼠标的图像传感器技术,如图8所示,轴向信息采集结构与操作
导管3之间存在4mm的间隙,轴向信息采集结构属于无接触式测量,有效的避免了因测量所带来的机械摩擦,从而避免了因过大的机械摩擦影响力反馈的效果,轴向信息采集结构包括激光发射器15和光电传感器16,激光发射器15为垂直腔表面发射激光器(vcsel),激光发射器15用于发射激光,激光发射器15发射的激光传送至第一镜片17,经第一镜片17折射至第二镜片18,并经第二镜片18折射至操作导管3的表面,操作导管3的表面的光线头过第三镜片19并传送给光电传感器16,光电传感器16接收到操作导管3的表面图像,当操作导管3进行递送时,光学传感器可以检测到操作导管3的两个相邻检测表面的图像变化,从而可以判断出操作导管3的运动趋势(前进或后退)。
[0054]
本实施例中,周向信息采集结构包括编码器20,编码器20为中空增量型编码器20,编码器20位于操作导管3的外侧,操作导管3与编码器20无接触,操作导管3的外侧设置有操作筒21,通过转动操作筒21即可转动操作导管3,操作导管3、操作筒21和编码器20同轴设置,编码器20用于采集操作导管3的周向位置信息。当操作者需要进行旋转操作导管3操作时,只需旋转操作筒21,这种操作方式符合医生在传统手术中的操作习惯。
[0055]
本实施例中,带触觉反馈的血管介入手术机器人主端装置100还包括第一支架22和第二支架23,触觉力输出机构1位于第一支架22上,动作采集机构2位于第二支架23上。
[0056]
本实施例应用磁流变液4在磁场下粘度增加的特性,通过触觉力输出机构1,由触觉力输出机构1的活塞结构将阻力输出,提供力反馈,为操作者在操作手术中提供拟真的手术环境,能够反映术中的介入阻力,保障手术的安全顺利完成。本实施例采用操作导管3与动作采集机构2进行动作采集,最大程度保留了传统介入手术中医生的操作经验。
[0057]
本说明书中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献