一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

模具底部填充密封用的多层片、模具底部填充密封方法、电子部件安装基板以及电子部件安装基板的制造方法与流程

2022-03-19 18:20:37 来源:中国专利 TAG:


1.本发明涉及模具底部填充密封用的多层片以及模具底部填充密封方法。


背景技术:

2.随着电子设备小型、薄型化的进展,对于安装于电路基板的集成电路也可以要求节省空间,另外,为了实现快速传递多信号,还需要实现高密度化。由于实现快速传递多信号的高密度化,半导体芯片等电子部件(以下称为“电子部件”)与封装基板等的连接近年来大多采用易于多引脚化、高速化的倒装芯片连接方式。为了阻隔外部尘埃和湿气等,使用密封树脂等对电子部件进行密封。对于采用倒装芯片连接方式连接的电子部件的密封,其常规方法是使用具有流动性的液体或浆状密封材料对电子部件与封装基板的间隙进行底部填充之后,使用其它液体或浆状密封材料或者密封膜进行包覆成型(overmold)。
3.实施这些底部填充之后进行包覆成型的方法工序繁多且耗费工时,因此提出了能够同时进行底部填充和包覆成型的模具底部填充(mold underfill encapsulation)材料(专利文献1)。
4.现有技术文献
5.专利文献
6.专利文献1:日本特开2015-71670号公报


技术实现要素:

7.发明要解决的问题
8.然而,近年来用于iot、自动驾驶等的集成电路为了进一步实现电子部件的高密度化,通过多个电极与基板等进行连接。因此,导致一个芯片等中电极间彼此的距离过窄,现有的模具底部填充密封材料无法充分渗入到电极之间。
9.因此,本发明的课题是提供一种电极间渗入性良好的模具底部填充密封用的多层片。
10.用于解决问题的手段
11.本发明人针对上述课题进行了深入研究,结果发现具备由具有特定tanδ(损耗角正切)的树脂组合物构成的(a)层作为最外层的多层片能够解决上述课题,从而完成了本发明。
12.即,本发明为以下多层片。
13.用于解决上述课题的本发明的多层片的特征在于,具备由测定温度125℃、测定时间0~100秒时的tanδ(损耗角正切)的极大值为3以上的树脂组合物构成的(a)层作为最外层。
14.tanδ(损耗角正切)表示树脂组合物的弹性质与粘性质的比例。对电极间彼此距离窄的半导体芯片等电子部件进行底部填充时,仅仅是粘度小,渗入性也不足以渗入到最深
部。为了进一步满足到最深部的渗入性,还需要将渗入的材料从后面挤出的力,即弹性力。本发明的含有由限定了上述tanδ(损耗角正切)极大值的树脂组合物构成的(a)层的多层片在对电极间距离更窄的电子部件进行模具底部填充时,能够发挥出优异的渗入性。
15.此外,由于是片状,在模具底部填充密封时不需要注入液体等的树脂。因此,与转移成型方式的模具底部填充密封相比,能够得到空洞更少的电子部件安装基板。
16.另外,作为本发明的多层片的一个实施方式,其特征在于,(a)层含有填料,所述填料的最大粒径为20μm以下。
17.根据该特征,能够对电极间的距离更窄的电子部件发挥出更优异的渗入性。
18.另外,作为本发明的多层片的一个实施方式,其特征在于,(a)层中含有体积粒度分布的累计体积为50%时的中值粒径(d50)(以下称为“中值粒径”)为10μm以下的固化促进剂。
19.根据该特征,能够对电极间的距离更窄的电子部件发挥出更优异的渗入性。
20.另外,作为本发明的多层片的一个实施方式,其特征在于,(a)层的厚度为10~500μm。
21.根据该特征,能够抑制电子部件的翘曲。此外,树脂容易渗入到电子部件以下,能够发挥出更优异的渗入性。
22.另外,作为本发明的多层片的一个实施方式,其特征在于,具备由满足下述式(1)的树脂组合物构成的(b)层。
23.下述式(1)中,“α”表示在175℃热固化处理1小时后的热固化物在80℃以下的热膨胀系数α[ppm/k]。“e
’”
表示该热固化物在25℃时的储能模量e’[gpa]。
[0024]
40000≦α
×
e’≦250000[pa/k]
ꢀꢀ
(1)
[0025]
电子部件有时会因树脂固化时的热量发生变形,但具备由满足式(1)的树脂组合物构成的(b)层的多层片能够追随所述电子部件的形状变化,发挥出优异的渗入性,并且抑制翘曲。
[0026]
具体而言,热膨胀系数表示随着温度上升,片材长度发生变化的比例,储能模量表示片材刚性。例如,在式(1)的数值范围内,热膨胀系数α大时储能模量e’小,能够减小片材的刚性。于是片材能够追随电子部件的形状变化,从而能够缓和由电子部件的热量产生的应力。由此能够抑制电子部件的翘曲。
[0027]
另外,作为本发明的多层片的一个实施方式,其特征在于多层片具备含有70质量%以上的填料的(b)层,(b)层的厚度与(a)层的厚度之比(b/a)为1.0~80。
[0028]
根据该特征,能够对电极间的距离更窄的电子部件发挥出更优异的密封性,能够对密封后的电子部件进一步发挥出低翘曲性。
[0029]
用于解决上述课题的本发明的模具底部填充密封方法是电子部件安装基板的模具底部填充密封方法,其特征在于具备如下工序:准备基板的工序,倒装安装有电子部件,该电子部件具备该基板电极的高度(h)为5~250μm、电极间宽度(w)为5~500μm的电极;准备多层片的工序,该多层片具备(a)层;以(a)层与电子部件和基板接触的方式载置所述多层片的工序;以及将载置后的多层片加热压缩的工序。
[0030]
应予说明,上述a层是由测定温度125℃、测定时间0~100秒时的tanδ(损耗角正切)的极大值为3以上的树脂组合物构成的层。
[0031]
本发明的模具底部填充密封方法使用具备上述(a)层的多层膜,因此能够更高效地渗入电子部件安装基板的电极间,能够提高更优异的密封方法。
[0032]
另外,作为本发明的模具底部填充密封方法的一个实施方式,其特征在于,(a)层含有填料,所述填料的最大粒径为所述电极的高度(h)和电极间宽度(w)以下。
[0033]
根据该特征,由于(a)层中填料的最大粒径为电极的高度(h)和电极间宽度(w)以下,所以能够使含有(a)层的多层膜更高效地渗入到电子部件安装基板的电极间,并且能够抑制电子部件安装基板的翘曲。
[0034]
用于解决上述课题的本发明的电子部件安装基板的特征在于,所述模具底部填充密封通过具备(a)层作为最外层的多层片进行密封。
[0035]
应予说明,上述a层是由测定温度125℃、测定时间0~100秒时的tanδ(损耗角正切)的极大值为3以上的树脂组合物构成的层。
[0036]
根据该特征,通过具备上述(a)层的多层片,能够更高效地渗入到安装有电子部件的电子部件安装基板的电极间,因此能够提供耐热性、耐湿性优异的电子部件安装基板。
[0037]
用于解决上述课题的本发明的电子部件安装基板的制造方法的特征在于,具备如下工序:准备倒装安装有电子部件的基板的工序;准备具备(a)层作为最外层的多层片的工序;以(a)层与电子部件和基板接触的方式载置所述多层片的工序;将载置后的多层片加热压缩的工序。
[0038]
应予说明,上述a层是由测定温度125℃、测定时间0~100秒时的tanδ(损耗角正切)的极大值为3以上的树脂组合物构成的层。
[0039]
根据该特征,采用具备上述(a)层的多层片,能够更高效地渗入到电子部件安装基板的电极间,能够提供耐热性、耐湿性优异的电子部件安装基板的制造方法。
[0040]
发明效果
[0041]
根据本发明,能够提供电极间的渗入性良好的模具底部填充密封用的多层片。
附图说明
[0042]
图1是本发明的多层片的示意说明图。
[0043]
图2是电子部件安装基板的示意说明图。
[0044]
图3是将本发明的多层片载置于电子部件安装基板上的状态的示意说明图。
[0045]
图4是用本发明的多层片进行模具底部填充密封的电子部件安装基板的示意说明图。
具体实施方式
[0046]
以下对本发明的优选实施方式进行说明。但是本发明并不限定于以下实施方式。
[0047]
[模具底部填充密封用的多层片]
[0048]
本发明的模具底部填充密封用的多层片的特征在于,具备由测定温度125℃、测定时间0~100秒时的tanδ(损耗角正切)的极大值为3以上的树脂组合物构成的(a)层作为最外层。
[0049]
模具底部填充密封是对通过倒装芯片连接等连接的电子部件与基板进行密封的方法之一,表示将进行电极部分密封的底部填充密封与进行包括电子部件在内的整体密封
的包覆成型密封一并进行的密封方法。
[0050]
《(a)层》
[0051]
本发明的多层片具备由测定温度125℃、测定时间0~100秒时的tanδ(损耗角正切)的极大值为3以上的树脂组合物构成的(a)层作为最外层。
[0052]
具备本发明的由规定了tanδ(损耗角正切)的极大值的树脂组合物构成的(a)层作为最外层的多层膜在对电极间距离更窄的电子部件进行模具底部填充时,能够发挥出优异的渗入性。
[0053]
这里,最外层是指多层片中最外面的层,例如是指与空气等大气接触的层。此时,脱模膜、片不称为最外层。而且,本发明的(a)层是在模具底部填充密封时以与电子部件和基板直接接触的方式载置的层。
[0054]
另外,由于具备(a)层作为最外层,通过将以(a)层与电子部件和基板接触的方式载置进行密封,能够发挥出优异的密封性。
[0055]
作为tanδ(损耗角正切)的极大值,优选为5以上,更优选为7以上。tanδ(损耗角正切)的极大值的上限没有特别限制,优选为60以下,更优选为50以下。
[0056]
构成(a)层的树脂组合物的tanδ的极大值可通过调整填料含量、热固化性树脂或固化剂的种类来控制。例如若增加填料含量,则极大值变小,通过减少填料含量,可增大极大值。另外,通过使用加热时成为低粘度的结晶性环氧树脂或液体环氧树脂等作为热固化性树脂,使用低分子量苯酚、结晶性酸酐、液体苯酚等低粘度固化剂,能够使tanδ的极大值为3以上。
[0057]
在本发明中,构成(a)层的树脂组合物的tanδ的极大值是对直径25mmφ的试件,使用粘弹性仪测定装置(例如tainstruments公司制、ares-ls2),在测定温度125℃、测定时间0~100秒、频率1hz的条件下测定得到的值。
[0058]
此外,(a)层优选含有填料。(a)层中使用的填料没有特别限定,可举出熔融二氧化硅、结晶性二氧化硅等二氧化硅、氧化铝、滑石粉、碳酸钙、钛白、红丹、碳化硅、氮化硼(bn)、玻璃珠等。这些可以单独使用也可以将2种以上并用。
[0059]
从提高电极间渗入性的方面考虑,优选使用二氧化硅粉末,二氧化硅粉末中更优选使用熔融二氧化硅粉末。作为熔融二氧化硅粉末,可举出球状熔融二氧化硅粉末、破碎熔融二氧化硅粉末,从流动性的观点考虑,特别优选使用球状熔融二氧化硅粉末,更优选使用真球度高的熔融二氧化硅粉末。
[0060]
另外,通过含有填料,能够抑制电子部件的翘曲。
[0061]
此外,上述填料还可以使用预先使表面与硅烷偶联剂反应的填料。通过使用使表面与硅烷偶联剂反应的填料,能够提高树脂组合物中的分散性。使用硅烷偶联剂时的配合量相对于填料100质量份优选为0.05~5质量份,更优选为0.1~3质量份。
[0062]
(a)层中,作为所述填料的含量,优选为30质量%以上。作为下限值,更优选为73质量%以上,进一步优选为76质量%以上。作为上限值,更优选为93质量%以下,进一步优选为85质量%以下。通过使填料的含量为上述范围,tanδ(损耗角正切)的极大值可以达到3以上。应予说明,填料的含量为30%以上时,树脂组合物的加工性有提高的倾向。
[0063]
所述填料的中值粒径例如优选为0.1~30μm。作为下限值,更优选为0.1μm以上,进一步优选为0.5μm以上。作为上限值,更优选为20μm以下,进一步优选为10μm以下。
[0064]
另外,(a)层中所述填料的最大粒径例如小于电极高度或电极宽度,优选为20μm以下。作为上限值,更优选为15μm以下,进一步优选为10μm以下。
[0065]
通过使(a)层中填料的最大粒径为20μm以下,能够进一步提高电极间的渗入性。
[0066]
应予说明,上述中值粒径和最大粒径例如为可使用从总体中任意抽选的试样采用激光衍射散射型粒度分布测定装置进行测定而导出的值。
[0067]
此外,构成(a)层的材料没有特别限定,优选为树脂,更优选为热固化性树脂。
[0068]
作为热固化性树脂,例如可举出环氧树脂、(甲基)丙烯酸树脂、酚醛树脂、三聚氰胺树脂、有机硅树脂、脲树脂、聚氨酯树脂、乙烯基酯树脂、不饱和聚酯树脂、邻苯二甲酸二烯丙酯树脂、聚酰亚胺树脂等。这些可单独使用1种也可以将2种以上组合使用。为了将构成(a)层的树脂组合物的tanδ的极大值控制在3以上,其中优选环氧树脂,更优选加热时成为低粘度的环氧树脂,例如萘型环氧树脂等结晶性环氧树脂或液体双酚a型环氧树脂等液体环氧树脂。
[0069]
环氧树脂没有特别限定,例如可举出双酚a型环氧树脂、双酚f型环氧树脂、双酚ad型环氧树脂、氢化双酚a型环氧树脂、氢化双酚f型环氧树脂等双酚型环氧树脂;联苯型或四甲基联苯型环氧树脂、苯酚酚醛清漆(phenol novolac)型环氧树脂、萘型环氧树脂、双环戊二烯型环氧树脂等脂环式脂肪族环氧树脂;缩水甘油胺型环氧树脂、有机羧酸类的缩水甘油醚等。这些可单独使用也可以组合2种以上使用。环氧树脂可以是预聚物,也可以是聚醚改性型环氧树脂、有机硅改性型环氧树脂这种环氧树脂与其它聚合物的共聚物。其中,优选双酚型环氧树脂、联苯型环氧树脂、双环戊二烯型环氧树脂、缩水甘油胺型环氧树脂、萘型环氧树脂、聚醚改性型环氧树脂等。
[0070]
为了调节树脂组合物的粘度,相对于环氧树脂整体可以含有0.1~30质量%左右的分子中具有1个环氧基的1官能环氧树脂。作为这样的1官能环氧树脂,可使用苯基缩水甘油醚、2-乙基己基缩水甘油醚、乙基二甘醇缩水甘油醚、双环戊二烯缩水甘油醚、2-羟乙基缩水甘油醚等。这些可以单独使用也可以组合2种以上使用。
[0071]
(a)层中上述热固化性树脂的含量没有特别限定,优选为5~50质量%。
[0072]
此外,(a)层中环氧树脂的含量没有特别限定,可以为5质量%以上且50质量%以下。作为下限值,优选为5质量%以上,更优选为10质量%以上。作为上限值,优选为40质量%以下,更优选为30质量%以下。
[0073]
此外,(a)层可以含有热固化性树脂的固化剂,固化剂的种类没有特别限定,例如可举出固体苯酚、固体苯酚酚醛清漆或液体苯酚酚醛清漆等酚系固化剂、双氰胺系固化剂(双氰胺等)、脲系固化剂、有机酸酰肼系固化剂、聚胺盐系固化剂、胺加成物系固化剂、固体酸酐或液体酸酐等酸酐系固化剂、咪唑系固化剂等,为了将(a)层的tanδ的极大值控制在3以上,优选使用液体苯酚酚醛清漆或液体酸酐等低粘度的固化剂。这些可以单独使用也可以组合2种以上使用。固化剂的种类可根据热固化性树脂适当选择。
[0074]
固化剂的量根据固化剂的种类而有所不同。使用环氧树脂时,例如优选使用每1当量环氧基,固化剂的官能团的当量数为0.001~2当量、进一步优选为0.005~1.5当量的量的固化剂。
[0075]
此外,(a)层优选含有固化促进剂。作为固化促进剂,例如可举出咪唑化合物等胺化合物、磷化合物、以及有机金属化合物等碱性化合物、微胶囊型固化促进剂。
[0076]
作为上述咪唑化合物,可举出咪唑、2-甲基咪唑、2-乙基咪唑、1-异丁基2-甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑、2-苯基-4-甲基咪唑、1-苄基-2-甲基咪唑、1-苄基-2-苯基咪唑、1,2-二甲基咪唑、1-氰基乙基-2-甲基咪唑、1-氰基乙基-2-乙基-4-甲基咪唑、1-氰基乙基-2-十一烷基咪唑、1-氰基乙基-2-苯基咪唑等2-取代咪唑化合物、1-氰基乙基-2-十一烷基咪唑鎓三苯甲酸酯、1-氰基乙基-2-苯基咪唑鎓偏苯三酸盐等偏苯三酸盐、2,4-二氰基-6-[2
’‑
甲基咪唑基-(1’)]-乙基-s-三嗪、2,4-二氰基-6-[2
’‑
十一烷基咪唑基-(1’)]-乙基-s-三嗪、2,4-二氰基-6-[2
’‑
乙基-4
’‑
甲基咪唑基-(1’)]-乙基-s-三嗪等三嗪加成物、2,4-二氰基-6-[2
’‑
甲基咪唑基-(1’)]-乙基-s-三嗪异氰尿酸加成物、2-苯基咪唑异氰尿酸加成物、2-甲基咪唑异氰尿酸加成物、2-苯基-4,5-二羟基甲基咪唑和2-苯基-4-甲基-5-二羟基甲基咪唑等。
[0077]
作为上述磷化合物,可举出三丁基膦等三烷基膦系化合物、三苯基膦等三芳基膦系化合物。
[0078]
作为上述胺化合物,可举出2,4,6-三(二甲基氨基甲基)苯酚、二乙胺、三乙胺、二乙烯四胺、三乙烯四胺和4,4-二甲氨基吡啶等。胺化合物可以为胺加成物。
[0079]
作为上述有机金属化合物,可举出环烷酸锌、环烷酸钴、辛酸锡、辛酸钴、双乙酰丙酮钴(ii)和三乙酰丙酮钴(iii)等。
[0080]
作为上述微胶囊型固化促进剂,例如可使用将胺系化合物粉末分散于环氧树脂中的微粒组合物等。作为上述胺系化合物,根据所需要的增粘倍率从以下例示的化合物中选择即可。作为上述胺系化合物,可举出脂肪族伯胺、脂环式伯胺、芳香族伯胺、脂肪族仲胺、脂环式仲胺、芳香族仲胺、咪唑化合物、咪唑啉化合物、或者这些化合物与羧酸、磺酸、异氰酸酯、环氧树脂等的反应产物等。这些可以使用1种或者将2种以上并用,例如可优选使用脂肪族伯胺、脂环式伯胺、芳香族伯胺、脂肪族仲胺、脂环式仲胺、芳香族仲胺、咪唑化合物,或者将咪唑啉化合物和这些化合物与上述羧酸、磺酸、异氰酸酯、环氧树脂等的反应产物并用。另外,从抑制25℃时的增粘的观点考虑,上述胺系化合物粉末优选熔点或软化点为60℃以上。
[0081]
此外,(a)层中含有的固化促进剂优选中值粒径为10μm以下。通过含有中值粒径为10μm以下的固化促进剂,能够对电极间距离更窄的电子部件发挥出更优异的渗入性。即,由于不含粒径大的粒子,所以能够抑制向窄电极间的渗入不良。另外,由于中值粒径小,所以体系中不分大粒子和小粒子,能够抑制渗入后的局部固化不良。
[0082]
作为上述固化促进剂的中值粒径的上限值,更优选为5μm以下,进一步优选为3μm以下。作为下限值,优选为0.1μm以上。
[0083]
(a)层中,固化促进剂的含量相对于热固化性树脂100质量份例如为0.1质量份以上且40质量份以下。作为下限值,优选为1质量份以上,更优选为5质量份以上。作为上限值,优选为30质量份以下,更优选为20质量份以下。通过使固化促进剂为上述含量,能够抑制固化不良的产生,并且能够抑制翘曲。
[0084]
此外,(a)层中使用环氧树脂时,固化促进剂的含量相对于环氧树脂100质量份例如为0.1质量份以上且40质量份以下。作为下限值,优选为1质量份以上,更优选为5质量份以上。作为上限值,优选为30质量份以下,更优选为20质量份以下。通过使固化促进剂为上述含量,能够抑制固化不良的产生和翘曲。
[0085]
只要不阻碍本发明目的,本发明的(a)层中还可以使用其它添加剂。作为这样的添加剂,可举出热塑性树脂、硅烷偶联剂、炭黑、离子捕捉剂等。
[0086]
作为热塑性树脂,可举出非反应性硅油或反应性硅油等硅油、丙烯酸树脂、苯氧基树脂、聚烯烃、聚氨酯、封端异氰酸酯、聚醚、聚酯、聚酰亚胺、聚乙烯醇、丁醛树脂、聚酰胺、氯乙烯、纤维素、热塑性环氧树脂、热塑性酚醛树脂等。
[0087]
作为非反应性硅油,可举出聚硅氧烷、聚醚改性硅油、烷基改性硅油等。作为反应性硅油,可举出环氧改性硅油、羧基改性硅油、氨基改性硅油等。
[0088]
作为硅烷偶联剂,例如可举出3-环氧丙氧基丙基三甲氧基硅烷、3-环氧丙氧基丙基三乙氧基硅烷、2-(3,4-环氧环己基)乙基三甲氧基硅烷、2-(3,4-环氧环己基)乙基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷等。使用预先使表面与硅烷偶联剂反应的二氧化硅时,也可以适当配合上述硅烷偶联剂。
[0089]
上述硅烷偶联剂的含量在(a)层中优选为0.1~10质量%,更优选为2~6质量%。
[0090]
上述炭黑的含量在(a)层中优选为0.1~5质量%,更优选为0.5~3质量%。
[0091]
作为上述离子捕捉剂,是具有捕捉密封组合物中杂质离子的能力的添加剂,只要能够提高密封电子部件的可靠性即可。作为离子捕捉剂,例如可举出无机离子交换剂等。
[0092]
含有离子捕捉剂时的含量没有特别限制,(a)层中优选为0.05质量%以上,更优选为3质量%以下。
[0093]
另外,本发明的多层片中,(a)层的厚度优选为10~500μm。作为下限值,更优选为20μm以上,进一步优选为40μm以上。作为上限值,更优选为400μm以下,进一步优选为300μm以下。
[0094]
通过使(a)层的厚度为上述范围,能够抑制电子部件的翘曲。此外,树脂容易渗入到电子部件之下,能够发挥出更优异的渗入性。
[0095]
《(b)层》
[0096]
本发明的多层片除了(a)层之外优选可具备(b)层。本发明的多层片通过具备(b)层,能够抑制多层片中翘曲的发生。本发明的多层片中,(b)层优选为与(a)层相反一面的最外层或者中间层。另外,此时脱模膜或片也不称为最外层。
[0097]
另外,本发明的多层片即使(b)层为最外层,在模具底部填充密封时也不会载置为与电子部件和基板直接接触。
[0098]
(b)层优选为含有填料的层。作为填料的种类没有特别限定,可使用与上述(a)层的说明中相同的填料。
[0099]
(b)层中,作为所述填料的含量,优选为70质量%以上。作为下限值,更优选为75质量%以上,进一步优选为80质量%以上。作为上限值,优选为93质量%以下,更优选为90质量%以下。通过使填料的含量为上述范围,能够抑制密封后的电子部件的翘曲。
[0100]
所述填料的中值粒径优选为0.1~30μm。作为下限值,更优选为1μm以上,进一步优选为3μm以上。作为上限值,更优选为20μm以下,进一步优选为15μm以下。
[0101]
所述填料的热膨胀系数没有特别限定,优选为1ppm/k以上,更优选为2ppm/k以上。作为上限值,优选为15ppm/k以下,更优选为10ppm/k以下。
[0102]
通过使用热膨胀系数为上述范围的填料,能够抑制(b)层在80℃以下的热膨胀系数。
[0103]
此外,构成(b)层的材料没有特别限定,优选为树脂,更优选为热固化性树脂。作为热固化性树脂,可使用与上述(a)层的说明中相同的树脂,优选为环氧树脂。
[0104]
环氧树脂没有特别限定,例如可举出双酚a型环氧树脂、双酚f型环氧树脂、双酚ad型环氧树脂、氢化双酚a型环氧树脂、氢化双酚f型环氧树脂、双酚改性型环氧树脂等双酚型环氧树脂、联苯型或四甲基联苯型环氧树脂、苯酚酚醛清漆型环氧树脂、萘型环氧树脂、脂环式脂肪族环氧树脂、酚酞型环氧树脂、有机羧酸类缩水甘油醚等。这些可以单独使用也可以将2种以上组合使用。环氧树脂可以是预聚物,也可以是聚醚改性型环氧树脂、有机硅改性型环氧树脂这种环氧树脂与其它聚合物的共聚物。其中,通过使用作为具有刚性骨架的环氧树脂的联苯型环氧树脂、苯酚酚醛清漆型环氧树脂、酚酞型环氧树脂、双酚改性型环氧树脂,能够减小(b)层在80℃以下的热膨胀系数。此外,通过使用具有柔软骨架的聚醚改性型环氧树脂等,能够减小(b)层在25℃时的储能模量e’。
[0105]
作为环氧树脂,为了调节树脂组合物的粘度,相对于环氧树脂整体,可以含有0.1~30质量%左右的分子中具有1个环氧基的1官能环氧树脂。作为这种1官能环氧树脂,可使用苯基缩水甘油醚、2-乙基己基缩水甘油醚、乙基二甘醇缩水甘油醚、双环戊二烯缩水甘油醚、2-羟乙基缩水甘油醚等。这些可以单独使用也可以将2种以上组合使用。
[0106]
(b)层中,上述热固化性树脂的含量没有特别限定,优选为2~30质量%。
[0107]
此外,(b)层中,环氧树脂的含量没有特别限定,为2质量%以上且30质量%以下。作为下限值,优选为3质量%以上,更优选为5质量%以上。作为上限值,优选为25质量%以下,更优选为20质量%以下。
[0108]
此外,(b)层可以含有热固化性树脂的固化剂、固化促进剂,固化剂、固化促进剂的种类可使用与(a)层的说明中相同的种类。
[0109]
固化剂的量因固化剂的种类而异。使用环氧树脂时,例如每1环氧基当量,优选使用固化剂的官能团的当量数为0.001~2当量、进一步优选0.005~1.5当量的量的固化剂。其中,通过使用固体苯酚酚醛清漆树脂、优选联苯型苯酚酚醛清漆树脂等酚醛系固化剂,能够减小(b)层的储能模量。
[0110]
(b)层中,固化促进剂的含量相对于热固化性树脂100质量份优选为0.1质量份以上且40质量份以下。作为下限值,更优选为1质量份以上,进一步优选为5质量份以上。作为上限值,更优选为30质量份以下,进一步优选为20质量份以下。通过使固化促进剂为上述含量,能够抑制固化不良的产生,同时能够抑制翘曲。
[0111]
此外,(b)层中使用环氧树脂时,固化促进剂的含量相对于环氧树脂100质量份优选为0.1质量份以上且40质量份以下。作为下限值,更优选为1质量份以上,进一步优选为5质量份以上。作为上限值,更优选为30质量份以下,进一步优选为20质量份以下。通过使固化促进剂为上述含量,能够抑制固化不良的产生,同时能够抑制翘曲。
[0112]
只要不阻碍本发明目的,(b)层中还可以使用其它添加剂。作为这样的添加剂,可使用与上述(b)层中的说明相同的添加剂,可举出热塑性树脂、硅烷偶联剂、炭黑、离子捕捉剂等。
[0113]
作为热塑性树脂,可举出非反应性硅油或反应性硅油等硅油、丙烯酸树脂、苯氧基树脂、聚烯烃、聚氨酯、封端异氰酸酯、聚醚、聚酯、聚酰亚胺、聚乙烯醇、丁醛树脂、聚酰胺、氯乙烯、纤维素、热塑性环氧树脂、热塑性酚醛树脂等。其中通过使用聚酯、丙烯酸树脂、硅
油、聚醚、聚乙烯醇、聚酰胺等树脂,能够减小(b)层的储能模量。
[0114]
作为硅烷偶联剂,例如可举出3-环氧丙氧基丙基三甲氧基硅烷、3-环氧丙氧基丙基三乙氧基硅烷、2-(3,4-环氧环己基)乙基三甲氧基硅烷、2-(3,4-环氧环己基)乙基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷等。使用预先使表面与硅烷偶联剂反应的二氧化硅时,也可以适当配合上述硅烷偶联剂。
[0115]
上述硅烷偶联剂的含量在(b)层中优选为0.1~10质量%,更优选为2~6质量%。
[0116]
上述炭黑的含量在(b)层中优选为0.1~5质量%,更优选为0.5~3质量%。
[0117]
作为上述离子捕捉剂,是具有捕捉密封组合物中杂质离子的能力的添加剂,只要能够提高密封电子部件的可靠性即可。作为离子捕捉剂,例如可举出无机离子交换剂等。
[0118]
含有离子捕捉剂时的含量没有特别制限,(b)层中优选为0.05质量%以上,更优选为3质量%以下。
[0119]
另外,本发明的多层片中(b)层的厚度优选为50~800μm。作为下限值,更优选为100μm以上,进一步优选为200μm以上。作为上限值,更优选为700μm以下,进一步优选为600μm以下。
[0120]
通过使(b)层的厚度为上述范围,能够抑制电子部件的翘曲。
[0121]
另外,本发明的多层片的(b)层优选具备由80℃以下的热膨胀系数α[ppm/k]和所述热固化物在25℃时的储能模量e’[gpa]满足下述式(1)的树脂组合物构成的(b)层。
[0122]
40000≦α
×
e’≦250000[pa/k]
ꢀꢀ
(1)
[0123]
作为(b)层的α
×
e’的下限值,更优选为40000以上,进一步优选为50000以上。作为上限值,更优选为220000以下,进一步优选为180000以下。
[0124]
本发明的多层片通过具备由满足上述式(1)的树脂组合物构成的(b)层,能够缓和固化时的热量引起的应力,因此能够抑制电子部件的翘曲。
[0125]
作为构成(b)层的树脂组合物在80℃以下的热膨胀系数α的下限值,优选为3ppm/k以上,更优选为5ppm/k以上。作为上限值,优选为15ppm/k以下,更优选为10ppm/k以下。
[0126]
通过使热膨胀系数α为上述范围,片材能够追随电子部件的形状变化。
[0127]
构成(b)层的树脂组合物的热膨胀系数可通过调整所添加的填料的热膨胀系数、填料的添加量、热固化性树脂的化学结构以及玻璃化转变温度来控制。例如通过大量填充热膨胀系数小的填料或者使用具有刚性骨架的环氧树脂等,能够减小热膨胀系数。此外,通过增加(b)层的玻璃化转变温度,能够减小玻璃化转变温度以下的热膨胀系数。
[0128]
热膨胀率α的测定方法如下:将仅由(b)层构成的树脂片在150℃热固化处理1小时后,从热固化物中准备出长度20mm
×
宽度5mm
×
厚度5μm的测定试样。将测定试样固定在热机械分析仪(tma7100)的压缩测定用夹具之后,在-50~300℃的温度范围内置于负荷5g、升温速度2.5℃/min的条件下,根据50℃~70℃下的膨胀率算出热膨胀系数α。
[0129]
作为构成(b)层的树脂组合物在25℃时的储能模量e’的下限值,优选为3gpa以上,更优选为10gpa以上。作为上限值,优选为50gpa以下,更优选为30gpa以下。
[0130]
通过使储能模量e’为上述范围,凭借片材的刚性能够抑制电子部件的形状变化,结果能够抑制电子部件的翘曲。
[0131]
构成(b)层的树脂组合物的储能模量可通过调整填料添加量、热固化性树脂或固化剂的骨架、热塑性树脂的种类来控制。例如通过增大填料添加量、使用具有聚醚结构等具
备柔软性的骨架的环氧树脂、或者混合联苯型苯酚酚醛清漆树脂等、丙烯酸树脂等热塑性树脂,能够减小储能模量。
[0132]
储能模量e’的测定方法按以下步骤进行。
[0133]
(1)将仅由(b)层构成的树脂片在150℃热固化处理1小时后,从热固化物中准备长度50mm
×
宽度10mm
×
厚度2mm的测定试样。
[0134]
(2)将所述测定试样固定于弯曲测定用夹具,使用粘弹性测定装置(dma6100、日立高新技术(株)制)在频率1hz、升温速度2.5℃/min的条件下测定-50~300℃的温度范围的弯曲储能模量。
[0135]
(3)由上述测定结果读取25℃时的储能模量(e’)。
[0136]
此外,构成本发明多层片的(b)层的树脂组合物优选在175℃热固化处理1小时后的热固化物的玻璃化转变温度为80℃以上。由于在175℃热固化处理1小时后的热固化物的玻璃化转变温度为80℃以上,所以由多层片密封后的密封物可具有优异的热稳定性。
[0137]
为了使(b)层的热固化物的玻璃化转变温度为80℃以上,提高热固化物的刚性即可,例如优选增加环氧树脂中环氧基的含量,或者增加固化剂中反应基团的数量。
[0138]
另外,本发明的多层片整体的厚度没有特别限定,优选为100μm以上。作为下限值,更优选为150μm以上,进一步优选为200μm以上。作为上限值,更优选为1000μm以下,进一步优选为800μm以下。
[0139]
通过使(b)层的厚度为上述范围,能够抑制电子部件的翘曲。
[0140]
另外,本发明的多层片中,(b)层的厚度与(a)层的厚度之比(b/a)优选为1.0~80,更优选为2.0~10。
[0141]
通过使(b)层的厚度与(a)层的厚度之比为上述范围,能够对电极间的距离更窄的电子部件发挥出更优异的密封性,并且能够对密封后的电子部件进一步发挥出低翘曲性。
[0142]
本发明的多层片除了上述(a)层、(b)层之外还可以具备其它层。作为其它层,优选含有与上述(a)层、(b)层中说明的热固化性树脂,也可以含有填料等。
[0143]
另外,其它层为1层,也可以是2层以上。
[0144]
本发明的多层片含有其它层时,例如若使其它层为(c)层,则可以是(a)层/(c)层/(b)层的构成或者(a)层/(b)层/(c)层的构成。
[0145]
另外,本发明的多层片优选构成(a)层的树脂组合物在测定温度125℃、测定时间0~100秒时的tanδ(损耗角正切)的极大值为构成(a)层以外的层的树脂组合物在测定温度125℃、测定时间0~100秒时的tanδ(损耗角正切)的极大值以下。
[0146]
例如为由(a)层和(b)层构成的双层片以及(a)层/(c)层/(b)层这种三层片时,通过使构成(a)层的树脂组合物的tanδ的极大值为构成(b)层的树脂组合物的tanδ的极大值以下,能够防止(a)层与(b)层熔融混合,能够高效地进行底部填充和包覆成型密封。
[0147]
另外,例如为(a)层/(b)层/(c)层这样的构成时,构成(a)层的树脂组合物在测定温度125℃、测定时间0~100秒时的tanδ(损耗角正切)的极大值优选为(c)层在测定温度125℃、测定时间0~100秒时的tanδ(损耗角正切)的极大值以下。
[0148]
通过使构成(a)层的树脂组合物在测定温度125℃、测定时间0~100秒时的tanδ(损耗角正切)的极大值为(a)层以外的层在测定温度125℃、测定时间0~100秒时的tanδ(损耗角正切)的极大值以下,能够防止(a)层与所述(a)层以外的层熔融混合,能够高效地
进行底部填充和包覆成型密封。
[0149]
图1表示本发明的多层片的示意说明图。图1中示出的多层片是由(a)层11和(b)层12构成的双层多层片。
[0150]
图1所示的多层片为分别具备(a)层11和(b)层12作为最外层的片材,但如上所述也可以制成除了(a)层和(b)层之外还具备其它层的多层片。
[0151]
[多层片的制造方法]
[0152]
本发明的多层片的制造方法例如可采用压延成膜法、流延成膜法、膨胀挤出法、t型模挤出法、干式层压法等分别将各层成膜之后进行贴合,或者使用共挤出法等制造多层片。
[0153]
另外,也可以在基材上形成多层片,在使用时将基材剥离来使用。
[0154]
作为基材,没有特别限定,可举出塑料膜、纸、无纺布、金属等。作为塑料膜,例如可举出聚烯烃系膜、卤乙烯聚合物系膜、丙烯酸树脂系膜、橡胶系膜、纤维素系膜、聚酯系膜、聚碳酸酯系膜、聚苯乙烯系膜、聚苯硫醚系膜、环烯烃聚合物系膜。另外,也可以使用采用有机硅等进行了脱模处理的基材。
[0155]
基材的厚度没有特别限定,优选为500μm以下。
[0156]
[电子部件安装基板的模具底部填充密封方法]
[0157]
接着对电子部件安装基板的模具底部填充密封方法进行说明。
[0158]
本发明的电子部件安装基板的模具底部填充密封方法的特征在于具备如下工序:准备基板的工序,该基板倒装安装有电子部件,该电子部件具备电极高度(h)为5~250μm且电极间宽度(w)为5~500μm的电极;准备具备测定温度125℃、测定时间0~100秒时的tanδ(损耗角正切)的极大值为3以上的(a)层作为最外层的多层片的工序;以(a)层与电子部件和基板接触的方式载置所述多层片的工序;以及将载置后的多层片加热压缩的工序。
[0159]
作为电子部件,将晶体管、电容器、电阻器等集成于1个芯片而成的集成电路(ic);为了进一步提高ic的集成度而在1个芯片中容纳有1000个以上元件的大规模集成电路(lsi)等半导体芯片等。
[0160]
另外,电极的形状没有特别限定,可举出球形、柱形、筒形、管形等。作为电极的材质,没有特别限定,例如可举出sn-pb系、pb-sn-sb系、sn-sb系、sn-pb-bi系、无铅sn-ag系、sn-ag-cu系、bi-sn系、sn-cu系、sn-ag-bi-in系、sn-zn-bi系等焊料类;金系金属材料、铜系金属材、铜系合金等。此外,电极的高度(h)为5~250μm,电极间宽度(w)为5~500μm。
[0161]
作为基板,例如可举出印制有电路的印制电路板等。
[0162]
接着使用图2~4对模具底部填充密封方法进行说明。
[0163]
图2是电子部件21与基板22通过电极23连接而成的电子部件安装基板(安装基板)20的示意说明图。电子部件21与基板22通过电极23导通。此时,电极间的高度(h)为5~250μm,宽度(w)为5~500μm。另外,电极的直径优选为10μm~1000μm。
[0164]
图3是以层(a)与电子部件21和基板22接触的方式将多层片10载置于电子部件安装基板(安装基板)20上的状态的示意说明图。
[0165]
此时,多层膜中含有的填料的最大粒径优选为电极间的高度(h)和宽度(w)以下。
[0166]
接着,可通过将多层片10加热压缩对电子部件安装基板进行模具底部填充密封。
[0167]
此时的加热温度没有特别限定,优选为70~150℃。作为下限值,更优选为80℃以
上,进一步优选为90℃以上。作为上限值,更优选为140℃以下,进一步优选为130℃以下。
[0168]
压缩时的压力没有特别限定,优选为0.5~10mpa。作为下限值,更优选为1mpa以上,进一步优选为1.5mpa以上。作为上限值,更优选为8mpa以下,进一步优选为6mpa以下。
[0169]
另外,加热压缩的方法没有特别限定,可举出使用加压板等对多层膜边加热边按压的方法。此外,在进行加热压缩时,也可以在减压条件下进行加热压缩。
[0170]
另外,作为多层膜的材料,含有热固化性树脂时,优选设置后固化工序。作为后固化工序,为加热固化的工序。
[0171]
加热温度优选为90~200℃。作为下限值,更优选为120℃以上,进一步优选为140℃以上。此外,加热时间优选为30~240分钟,更优选为60~180分钟。
[0172]
图4是使用多层片10进行了模具底部填充密封的电子部件安装基板的示意说明图。多层片10含有测定温度125℃、测定时间0~100秒时的tanδ(损耗角正切)的极大值为3以上的(a)层,因此能够更高效地渗入到电子部件安装基板的电极间,因此为耐热性和耐湿性优异的电子部件安装基板。
[0173]
实施例
[0174]
以下示出实施例进一步详细说明本发明,但本发明并不限定于此。
[0175]
《多层片的制作》
[0176]
(1)(a)层的制作
[0177]
按表1-1~表1-4所示的配合比例将环氧树脂、固化剂、填料(熔融二氧化硅fb501mdx1:denka株式会社制)、炭黑(粒径24nm)、硅烷偶联剂(kbm503:shin-etsu silicone制)、离子捕捉剂(无机离子交换剂)、固化促进剂混合,使用辊式混炼机在120℃加热30分钟,其后熔融混炼,制备混炼物。表中的数值均为质量份。接着将得到的混炼物在100℃的条件下采用t型模挤出法涂布在脱模处理膜上形成片状,制作厚度20~300μm、纵向500mm、横向500mm的(a)层。作为上述脱模处理膜,使用经有机硅脱模处理的厚度50μm的聚对苯二甲酸乙二醇酯膜。
[0178]
(2)(b)层的制作
[0179]
将联苯型环氧树脂100质量份、固体苯酚酚醛清漆树脂50质量份、填料(熔融二氧化硅fb501mdx:denka株式会社制)1360质量份、炭黑(粒径24nm)2质量份、硅烷偶联剂(kbm503:shin-etsu silicone制)2质量份、离子捕捉剂(无机离子交换剂)5质量份、固化促进剂(三芳基膦系化合物)10质量份混合,使用辊式混炼机在120℃加热30分钟,其后熔融混炼,制备混炼物。接着将得到的混炼物在100℃的条件下采用t型模挤出法涂布于脱模处理膜上形成片状,制作厚度50~800μm、纵向500mm、横向500mm的(b)层。作为上述脱模处理膜,使用经有机硅脱模处理的厚度为50μm的聚对苯二甲酸乙二醇酯膜。
[0180]
(3)模具底部填充密封用的多层片的制作
[0181]
将上述制成的(a)层和(b)层以相互接触的方式层叠,使用层压机在温度60℃进行贴合,制作模具底部填充密封片。
[0182]
《tanδ(损耗角正切)的极大值的测定》
[0183]
对构成上述得到的(a)层的树脂组合物测定tanδ。测定使用直径25mmφ的试件,使用粘弹性仪测定装置(tainstruments公司制、ares-ls2),在测定温度125℃、测定时间0~100秒、频率1hz的条件下进行。将测定结果示于表1-1~表1-4。
[0184]
《模具底部填充试验1》
[0185]
(电极间渗入性试验)
[0186]
在搭载于玻璃上的凸块高度30μm、尺寸为纵向25mm横向25mm的试验用芯片上,以上述制成的模具底部填充密封片的(a)层接触的方式进行载置,在成型压力3mpa、125℃、10分钟的条件下进行预固化之后,在150℃、60分钟的条件下进行后固化。渗入性的评价通过从剥离背面直接观察并按下述基准进行。
[0187]
【渗入性评价基准】
[0188]

:未渗入部的大小为500μm以下。
[0189]
〇:未渗入部的大小为大于500μm且为1000μm以下。
[0190]
×
:未渗入部的大小为大于1000μm。
[0191]
【表1-1】
[0192][0193]
【表1-2】
[0194][0195]
【表1-3】
[0196][0197]
【表1-4】
[0198][0199]
根据表1-1~表1-4的结果,通过比较实施例与比较例可知,若构成(a)层的树脂组合物在测定温度125℃、测定时间0~100秒时的tanδ的极大值为3以上,则能够得到电极间渗入性优异的密封片。
[0200]
此外,通过比较实施例1与实施例9可知,使用了中值粒径为10μm以下的固化促进剂的片材的电极间渗入性更优异。
[0201]
《模具底部填充试验2》
[0202]
按表2所示的配合比例混合各成分,使用辊式混炼机在120℃加热30分钟,其后熔融混炼,制备混炼物。接着将得到的混炼物在100℃的条件下采用t型模挤出法涂布在脱模处理膜上形成片状,制作厚度200~800μm、纵向500mm、横向500mm的(b)层。作为上述脱模处理膜,使用经有机硅脱模处理的厚度为50μm的聚对苯二甲酸乙二醇酯膜。
[0203]
将表1-1的实施例1中使用的配合的(a)层和(b)层以相互接触的方式层叠,使用层压机在温度60℃进行贴合,制作模具底部填充密封片。
[0204]
接着使用得到的模具底部填充密封片进行与上述相同的电极间渗入性试验。评价基准与上述相同。
[0205]
接着使用下述方法进行翘曲量的评价。
[0206]
(翘曲量评价)
[0207]
在直径12英寸
×
厚度775μm的硅片上载置上述模具底部填充密封片,在成型压力3mpa、125℃、10分钟的条件下进行预固化之后,在150℃、60分钟的条件下进行后固化。
[0208]
[翘曲量评价基准]
[0209]
上述后固化之后冷却至室温,按以下基准评价翘曲量。测定方法如下:使用激光位移计测定硅片的基板侧中心部与晶圆端部2点的高低差的平均值,将该值作为翘曲量,按以
下基准进行评价。
[0210]
〇:翘曲为12mm以下。
[0211]
×
:翘曲大于12mm。
[0212]
【表2】
[0213][0214]
根据表2的结果可知,具备80℃以下的热膨胀系数α[ppm/k]和所述热固化物在25℃时的储能模量e’[gpa]满足式(1)的树脂组合物构成的(b)层的片材可发挥出优异的低翘曲效果。
[0215]
此外,通过比较实施例29和实施例30可知,若(a)层的厚度为500μm以下,则可发挥出优异的低翘曲效果。另一方面,若(a)层的厚度大于500μm,则无法发挥出低翘曲效果。
[0216]
工业可利用性
[0217]
本发明的模具底部填充密封用的多层片能够将倒装芯片下的窄间隙充填与整体密封一并进行。由此可适用于iot、自动驾驶等所使用的集成电路、大规模集成电路的密封。
[0218]
附图标号说明
[0219]
10

多层片、11

(a)层、12

(b)层、20

安装基板、21

电子部件、22

基板、23

电极、100

由多层片密封的电子部件安装基板。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献