一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

用于结构用途的工程木材板及其形成方法与流程

2022-03-19 15:38:27 来源:中国专利 TAG:


1.本发明涉及用于在建筑结构中使用的工程木材板、制造这种木材板的方法以及由其建造的建筑物。
2.发明背景
3.在澳大利亚,有许多不同的通常用于房屋建造的建造系统,如木材框架、钢框架、砖石和混凝土板。木材框架结构和钢框架结构通常用相对较轻的非结构性覆层板的表面装饰,而砖石墙和混凝土墙是实心体构造(solid mass construction)的形式。
4.从环境影响的角度来看,木材结构有许多优点。例如,在碳排放和储存方面:
5.建筑材料制造中释放和储存的碳
[0006][0007]
蕴含的能量是建造系统之间的另一个重要区别点:
[0008]
寿命期内每单位装配面积的蕴含能量(ee)
[0009][0010]
本发明的实施例利用现代木材加工实践来为建筑施工提供一种成本有效的系统,该系统结合了实心体建造的优点和木材材料的环境效益。
[0011]
发明概述
[0012]
根据本发明,提供了一种制造用于建筑构造的结构板的方法,包括:使木材原料经历机器应力分级,其中满足分级规范的单独的木材棒被分配为结构用途的应力等级;从不满足机器应力分级标准规范的木材棒中选择出用于形成板的薄层;在不考虑视觉缺陷的情况下,以并排平行的形式布置所选择的木材薄层;以及制造结构板,其中所选择的木材薄层被并排彼此平行地布置,粘合剂被施加在结合到板中的每个相邻的棒之间。
[0013]
令人惊讶的是,已经发现,根据本发明的实施例制造的板,尽管是由被分级为不适合结构应用的木材机器制成,但在测试时,超过了结构用途的可测量规范和预期。与现有技术的系统相比,已经发现没有必要根据视觉缺陷对薄层和/或其特定布置进行视觉检查。此外,与现有技术的系统不同,不需要重新锯切。
[0014]
本发明还提供了一种根据本发明的方法制造的用于建筑中的结构用途的木材板。
[0015]
本发明还提供了一种建筑物,其包括一个或更多个由至少一个根据本发明的方法制造的木材板形成的结构墙。
[0016]
附图简述
[0017]
本发明的其他方面、特征和优点可以从以下仅作为例子并参考附图给出的其实施例的描述中更好地理解,其中:
[0018]
图1、图2和图3示意性地图示了在本发明的实施例中采用的木材机器分级;
[0019]
图4是根据本发明的实施例的用于制造板的工艺的流程图;
[0020]
图5是根据本发明的实施例的用于形成板的木材原料的示意图;
[0021]
图6是根据本发明的第一实施例的用于结构建筑的木材板的示意图;
[0022]
图7是根据本发明的第二实施例的用于结构建筑的木材板的示意图;
[0023]
图8是根据本发明的第三实施例的用于结构建筑的木材板的示意图;
[0024]
图9是根据本发明的实施例的由木材板形成的建筑结构的示意图;
[0025]
图10至图12是示出本发明的测试实施例的结果的图;和
[0026]
图13是表示f级木材的结构设计性能的表格。
[0027]
详细描述
[0028]
结构木材通常作为应力分级产品出售。应力等级是木材用在结构应用中时的分类,例如,根据澳大利亚标准as 1720.1的要求。应力等级源自视觉分级或机器分级,其规定了适用于用于结构应用的木材的应力极限。应力等级可通过以下方式获得:
[0029]

f’级
‑‑
f4至f34。例如f14表示该木材的基本工作应力(弯曲时)约为14mpa。
[0030]
机器分级松木mgp
‑‑
mgp10至mgp15。例如,mgp10表示刚度性能的最小阈值为10,000mpa。目前,几乎所有的外来人工林软木(松属树种)都使用该系统进行分级。
[0031]
结构分级基于强度和分级参数之间的相关性。在机器应力分级的情况下,这与木材棒的平侧上的刚度(即短轴弹性模量)有关。不能满足结构用途所需的分级规范的木材作为可用级或商业级木材出售。可以理解的是,这种等级的木材购买起来要便宜得多,因为它的应用范围有限。
[0032]
木材机器分级在图1、图2和图3中示意性地图示。木材棒80在两组辊子82、84之间纵向进给,木材的平侧面对辊子(图1)。当木材棒80在辊子之间通过时,经辊子84施加力(由箭头86表示),以在辊子82之间支撑的木材部分上施加载荷(图2)。载荷力和所产生的木材
的偏转量(短轴弯曲)用于估计弹性模量(moe)e,该弹性模量作为沿着木材棒长度(除了木材没有延伸辊子82之间的整个长度的端部部分之外)的连续测量值。结果表示在图3所示的曲线图90中,其图示了表示沿着木材棒长度(d)的弹性模量(moe)的测量值。最小值91决定了分配给特定木材件的应力等级,在本例中为mgp12。
[0033]
木材的现代机器应力分级对于木材厂来说是有效的,因为木材可以快速分级,而不需要人工专业知识,如视觉分级所需要的。不过,就结构用途而言,单个缺陷(如特定木材棒上的结节或裂口)可能导致起作用地丢弃该木材的机器分级。然而,本发明人已经认识到,如本文所述,这种木材可以以非常有效的方式用于结构用途。
[0034]
先进的工程木材解决方案使用胶合、层压和接合技术来提高较低结构等级木材的抗压和抗拉强度,并克服固有弱点,如结节、翘曲、开裂和弯曲。材料包括胶合板、刨花板和纤维板,以及工程产品,如胶合层压木材、单板层积材(lvl)和指形接合覆层或挑口板(fascia)。
[0035]
胶合层木是胶合层压木材的简称,是一种工程木材产品。就结构用途而言,工程木材产品(如胶合层木)通常用作框架构造中的梁和其他构件。这种制造工艺用较小的应力分级风干木材件生产大且长度长的胶合层木构件。胶合层木的高的强度和硬度使得能够建造大的无支撑跨度。
[0036]
本发明的实施例以不同的方式利用胶合层木技术,以由木材薄层生产结构墙板等,该木材薄层未能被分级为mgp,否则其将适合于结构用途。
[0037]
参照附图中图4所示的流程图,生产这种木结构板的建造方法(10)的细节如下。
[0038]
如上文所述,木材原料(12)在出售使用前进行应力分级。木材被评定适合的应用由分配给它的应力等级决定。对于软木木材树种,应力等级通常由机器分级过程(mgp)根据澳大利亚标准as 1748(木材-实心-结构用途应力分级(timber-solid-stress-graded for structural purposes))进行分配。满足mgp分级过程(14)的客观要求的单个木材薄层被批准用于在结构应用(16)中使用。不满足这些要求的木材薄层(18)作为可用级或商业级的木材出售。该木材薄层(18)是窑干的,并已通过了完整的木材制造工艺,只是它不能被分级为mgp合适的产品。
[0039]
根据本发明的实施例,来自非结构分级原料(18)的木材(24)被选择(20)用于制造板。某些木材(22)可能因为明显的缺陷(例如开裂、不合适的翘曲等)而被拒绝。
[0040]
全长木材或指形接合木材薄层(棒)将用于生产板。使用jowapur 686.20聚氨酯胶,根据gltaa认证的胶合层木制造工艺,应用指形接合工艺(26)。然后将薄层机加工(28)到最大42mm厚度,以构成不同宽度的板。已开裂或具有过度需求或机加工需求(excessive wain or machining want)(在最大1/3的层压板长度内可允许最小2/3的表面清理宽度)的薄层(30)不得用于生产板。
[0041]
为了形成板,所选择的木材薄层以并排平行的形式布置,而不考虑包含在棒中的任何视觉缺陷。在将层压板(32)装入压机之前,将jowapur 686.20或686.70聚氨酯胶施加到层压板(32)。可选地,单个薄层也可以被钉到相邻的层。根据gltaa认证的胶合层木制造工艺,在压机(34)内对层压板施加应力。一旦从压机中取出,板表面可以被修整(36)并且板被切割成所需的尺寸(38)。在一些情况下,表面层(诸如胶合板)可以被施加(40)到板的两个面之一。
[0042]
图5图示了用于形成根据本发明的实施例的板的木材原料100,示出了全长木材101和具有以105表示的指形接合部的木材薄层102的例子。根据本发明的一个示例性实施例,木材原料100包括长度为2950mm的90mm
×
45mm的风干木材。根据本发明的实施例,当然可以使用其他大小/尺寸的木材原料(另一个例子是140mm
×
45mm)来形成各种厚度、宽度和长度的板。
[0043]
图6图示了完成的板120的例子,其中多个木材薄层100已经层压在一起。板120包括根据本文所述的工艺结合在一起的二十二个木材薄层100,按照as/nzl 4364,用jowapur单组分聚氨酯预聚物粘合剂来生产板,在这种情况下,板大约为2950mm高
×
950mm宽。
[0044]
图7图示了完成的板140的另一个例子,其中多个木材棒100已经层压在一起。板140包括二十二根木材棒100,其根据本文所述的工艺胶合和钉层压在一起。根据制造商的建议,使用bostik ultraset粘合剂将薄层结合在一起,并另外使用动力驱动的75mm子弹头钉以300mm的间距将单独的薄层固定到另一个薄层。板140还包括使用粘合剂和40-45mm动力驱动的平头钉施加到两个面(纹理方向可以是竖直的或水平的)的9mm厚的结构胶合板。
[0045]
图8图示了板160,其结构类似于板140,但是其中形成有门洞。当然也可以制造其他预成型墙板结构,例如带有窗口等。
[0046]
图9图示了由根据本发明的实施例制造的板建造的建筑结构200的一部分的例子。可以看出,形成结构200的墙壁的板(120、160)的各个薄层是竖直定向的。各个板可以以各种不同的方式彼此相互连接,在该情况中使用了板材130、135,每个板材130、135被钉到或拧到两个相邻的木材板上。
[0047]
板120的结构特性已经由一所大学根据as 1170.1载荷规定针对压缩载荷和面内剪切/拉伸载荷进行了测试,以确定极限强度和正常使用极限。参考图10、图11和图12,测试结果概述如下。
[0048]
对木结构板样品在静态轴向压缩载荷下进行测试。所测试样品的标称长度、宽度和厚度分别为2910mm、950mm和90mm。样品的测量的平均含水量在7.5%至10.2%之间变化。如图3所示,样品在1mn mts通用试验机(utm)上进行测试。在简支边界条件下对板进行压缩试验。因此,在mts机器的顶部和底部连接处不存在旋转限制。将测试样品放置在125pfc型钢内,样品被夹在翼缘之间。翼缘内的空腔为110mm,其为90mm厚的样品提供了20mm的公差配合。utm提供了阻力和轴向缩短。此外,使用两个optoncdt 1302-200mm激光伸长仪测量样品在中间高度的平面外变形。
[0049]
轴向压缩力-变形响应的一个结果如图10(a)所示。当样品被推到试验机最大能力的90%时,没有观察到损坏的迹象。所记录的最大轴向压缩力为906.8kn,对应于8.1mm的轴向位移。使用两个激光器记录的平面外运动如图10(b)所示。
[0050]
对一个样品在轴向挤压试验下进行测试,其中尺寸为400
×
300
×
85mm的板的一部分通过5mn instron静态试验机进行压缩。样品的力-位移响应如图11所示。记录的最大轴向压缩力为1113.7kn,对应于3.1mm的轴向位移。因此,挤压载荷下的最大应力为:
[0051][0052]
对三个具有上文规定的相同的尺寸的木结构板样品进行了4点弯曲试验测试。样品的平均含水量约为7.5%。板作为简支梁元件经受四点弯曲试验测试。样品顶部的对称的
两点载荷相距900mm,而底部的对称的两点支撑相距2840mm。通过5mn instron静态加载机向样品施加载荷,使用一个激光伸长仪测量中间长度处的样品变形。图12示出了作为简支梁元件的板的力与中跨变形响应的关系。弯曲试验的结果用于计算板所产生的最大挠曲应力,三次试验的结果如下:
[0053][0054]
作为对比,图13显示了f级结构木材的结构设计性能。基于试验结果,可以看出根据本发明的实施例构造的板在f-14至f-27的区域中表现出与应力分级木材相当的性能。
[0055]
仅通过非限制性例子描述了本发明,并且在不脱离本发明的精神和范围的情况下,可以对其进行许多修改和变化。
[0056]
本说明书中对文档、装置、动作或知识的任何讨论都被包括在内,用以解释本发明的上下文。不应视为承认任何材料构成了本文的公开和权利要求的优先权日或优先权日前的澳大利亚或其它地方的相关领域中的现有技术基础或公知常识的一部分。
[0057]
在整个本说明书和随后的权利要求中,除非上下文另有需要,否则词语“包括(comprise)”及变型(如“包括(comprises)”和“包括(comprising)”)应当理解为暗示包括所陈述的整数或者步骤,或者整数或步骤的集合,但不排除任何其他的整数或者步骤或者整数或步骤的集合。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献