一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种电池隔膜及其涂布工艺、涂布系统和电池的制作方法

2022-03-16 01:26:31 来源:中国专利 TAG:


1.本发明涉及锂电池隔膜领域,具体涉及一种电池隔膜及其涂布工艺、涂布系统和电池。


背景技术:

2.锂离子电池通常主要由正极,负极,隔膜,电解液,电池外壳组成。锂离子电池结构中,隔膜是关键的内层组件之一。随着锂离子电池向高能量密度、高容量和高功率密度趋势发展,对高性能隔膜的需求愈发迫切。
3.对单层涂布隔膜而言,按照传统工艺制备的电池隔膜耐热性和水分等特性还需要进一步提高,才能保证电池的安全性。此外,传统隔膜孔隙率大概40%左右,厚度一致性差,较低的孔隙率及隔膜平整性差等特点导致隔膜内阻较大,这严重影响电池循环及大倍率放电等性能。另外传统工艺复杂性及隔膜本身平整性差等特点导致最后分切合格率较低,使得成本大大增加。
4.陶瓷涂布与具有粘结功能的聚合物涂布膜复合,即增加隔膜的耐热收缩性能,又提高隔膜的吸液和保液能力,能够一定程度的改善电池的循环性能提高电池安全性。但是这种复合涂层产品的每个涂层均需要经过涂覆、烘干、收卷、放卷步骤,产线拉长且加工成本高,其复杂的工序也直接导致产品的合格率低。而且往往两种涂层复合的涂覆隔膜在耐热性、水分、孔隙率、粘接能力和一致性等性能方面无法达到预期,若如现有技术中通过增加复合涂层的涂覆量来提高耐热和粘接性能,往往会导致隔膜内阻增加过多,不能同时兼顾安全性能和电化学性能。


技术实现要素:

5.本发明的目的在于克服目前技术的不足,提供一种具有高粘接性、高耐热性的涂层电池隔膜。
6.为实现上述目的,本发明采用的技术方案为:
7.一种电池隔膜的涂布工艺,依次包括:聚烯烃膜初步热定型、聚烯烃膜膜在线涂布、涂布膜热定型。
8.同时,还提供一种电池隔膜的涂布系统,包括:在聚烯烃膜热定型的行进路线中设置有多节的烘箱,相邻烘箱的间隔位置设置有用于聚烯烃膜涂覆涂布浆料的涂布装置。
9.还提供一种涂层电池隔膜,包括聚烯烃基材、在聚烯烃基材至少一侧的耐热涂层以及在聚烯烃基材至少一侧或耐热涂层上的喷涂涂层。
10.与现有技术相比,本发明的积极效果是:针对具有涂层的电池隔膜,将多个涂布流程,穿插于聚烯烃基材的热定型过程中,使得涂层与聚烯烃基膜之间、多层复合涂层之间均紧密接触,有效提高涂布电池隔膜耐热性能,避免了常规喷涂隔膜掉粉的现象。相对于传涂布方式,利用在线涂布方式制备的复合涂层电池隔膜在耐热性、水分、孔隙率和一致性得到极大改善,最终使得电池的安全性、循环性能、大倍率放电性能及其它电化学性能得到有效
提升,且相较于现有工艺流程更加简化、分切合格率也有显著提升。
11.另外复合涂层电池隔膜在线涂布工艺,多种涂层能够一次性在线涂覆,明显简化了工艺流程及降低了生产成本,简化工序,减少隔膜生产的不稳定因素,有效提高隔膜生产合格率。
附图说明
12.图1为本发明实施例1的涂布工艺流程图。
13.图2为本发明实施例1的涂布系统的简视图。
14.图3为本发明实施例2复合涂层电池隔膜的结构示意图。
15.图4为本发明实施例2复合涂层的涂布工艺流程图。
16.图5为本发明实施例2复合涂层的涂布系统的简视图。
具体实施方式
17.在下文中,将参考附图来详细描述本发明的优选实施方案。在描述之前,应当理解,不应将在说明书和所附权利要求书中使用的术语解释为限于一般的词典含义,而应当根据允许本发明人为了最好的解释而合适地限定术语的原则,基于对应于本发明的技术方面的含义和概念进行解释。因此,在此提出的描述仅是为了说明目的而优选的例子,不是为了限制本发明的范围,因此,应当理解,可以在不背离本发明的精神和范围的情况下作出其它的等价物和修改。
18.本发明的电池隔膜的涂布工艺,依次包括:聚烯烃膜初步热定型、聚烯烃膜在线涂布、涂布膜热定型。
19.本发明将涂布工艺步骤设置在对聚烯烃膜的热定型过程中,而不是聚烯烃膜热定型开始前或完成后,与常规工艺中聚烯烃膜热定型步骤不同,先将聚烯烃膜初步微干热定型后再进行涂布,便于控制在线涂布与热定型中张力和温度同步化,易于涂布,方便操作控制,从而优化制品涂布膜的的平整性,能够保证后续涂布膜的分切合格率≥90%,此外,在涂布膜热定型的过程中,聚烯烃膜与涂层同时干燥定型,二者之间可以相互调控,使得制得的涂布膜厚度、孔隙率、一致性好。
20.同时,有利于涂层与聚烯烃膜之间良好的排布,使得聚烯烃膜与涂层之间的贯通性大大增加,从而降低隔膜透气值,透气值越小,隔膜内阻相应越低,锂离子在传输过程中更加容易,有利于锂电池循环及大倍率充放电性能。
21.为提高上述工艺下所制涂布膜的热收缩性能,进一步可选的在聚烯烃膜在线涂布后控制涂布膜回缩,即,于聚烯烃膜在线涂布的同时,当涂布浆料还处于液体状态下控制同步回缩,使涂布浆料与基膜面接触更加紧密,有效提升涂布膜热收缩性能。
22.具体的,聚烯烃膜能够在涂布浆料处于液体状态时进行md方向进行0.1-10%回缩,使涂布浆料与聚烯烃膜面接触更加紧密,涂布后剥离强度有很大提升,较好的剥离强度可以抵抗高温下涂布膜的热收缩趋势,改善涂布膜的耐热性能,较低的热收缩率可以大大降低锂离子电池由于高温异常工作导致涂布膜收缩造成正负极接触短路引起的爆炸风险。
23.聚烯烃膜不受限于特定的类型,只要其为本领域常用的即可,所述聚烯烃包括但不限于:聚乙烯、聚丙烯、聚丁烯、聚戊烯、聚己烯、聚辛烯中的至少一种共聚物,或者混合
物。当聚烯烃膜为超高分子量pe时,可优选超高分子量pe的分子量在30-200万之间。聚烯烃基材成膜工艺优选为湿法工艺,基材中萃取溶剂适量挥发会促进涂层和基膜形成贯通孔,避免了堵孔现象的发生,降低了涂布膜的透气性,有利于锂离子的传输。
24.当聚烯烃膜的材料确定后,相应的上述涂布工艺中的聚烯烃膜初步热定型温度、涂布膜热定型的温度也将受限,聚烯烃膜初步热定型温度以对应的聚烯烃膜材料的熔点为上限,而对涂布后的涂布膜热定型时,为除去涂布膜中大部分水分,有利于后续干燥过程中获得低水分隔膜,涂布膜热定型的温度上限在聚烯烃膜材料的熔点基础上增加10℃为上限。即,当聚烯烃膜为分子量在30-200万的超高分子量pe时,聚烯烃膜初步热定型温度控制在70℃-120℃,涂布膜热定型的温度控制在70℃-130℃。
25.涂布膜涂层不受限于特定的类型,只要其为本领域常用的即可,包括但不限于:陶瓷涂层、pvdf涂层、聚丙烯酸类涂层、芳纶涂层中的任意一种或两种以上复合。
26.同时,各涂层的聚烯烃膜在线涂布的涂布方式不受限制,只要将浆料覆盖在聚烯烃膜上即可,可以为喷涂、刮涂、凹版涂布、线棒涂布、狭缝涂覆、挤出涂覆和浸涂的任意一种或多种组合。
27.当涂布膜涂层为多层复合涂层时,与常规涂布工艺相比,本发明中聚烯烃基材在经过初步的微干定型后进行涂布,涂布浆料可以更好的润湿基材,同时复合涂层之间也是在未完全干燥的情况下接触,界面处浆料由充足的时间互相渗透,在经过同步干燥后界面处的结合力会比传统涂布工艺要高很多。具有耐热性能的陶瓷涂层与基膜的界面结合越好,涂层的剥离强度也就越大,对于基材耐热性能的提高也就越明显。喷涂涂层由于不连续,分布不规则容易掉粉,涂层剥落聚集在过辊上会导致膜面产生较多的颗粒,从而降低合格率,通过在线涂布技术,涂层之间结合紧密可以有效避免这一现象。
28.本发明中聚烯烃基材和复合涂层同步干燥,因为聚烯烃基材为完全热定型,所以在拉伸萃取过程中因为萃冷保留的内应力释放,隔膜会有一定的回缩,这个过程会和复合涂层干燥产生体积变化同步发生,可以有效避免容易在单面涂布的隔膜中发生的卷边现象。同时浆料和基材同步回缩,涂层堆叠会更密集,涂层和基膜之间接触更加紧密,从而有效的提升涂布膜的热收缩性能。
29.本发明在涂布膜热定型后将继续实施在线收卷,在线分切,放卷、干燥步骤以得到涂布膜成品,由此在线分切只需一次分切可以获得合适的幅宽成品膜,避免了传统工艺多次分切造成原料让费。可控制在线收卷张力控制在10-20n,收卷速度在40m/min;控制在线分切的张力为3-5n,分切速度为70-90m/min。
30.对应的,上述涂布工艺对应有电池隔膜的涂布系统,包括:在聚烯烃膜热定型的行进路线中设置有多节的烘箱,相邻烘箱的间隔位置设置有用于聚烯烃膜涂覆涂布浆料的涂布装置。
31.具体的,沿着聚烯烃膜热定型的行进路线,设置有一组或多组连续设置的小组,每个小组包括涂布装置、位于涂布装置上游用于初步干燥未涂料聚烯烃膜的初步热定型烘箱、位于涂布装置下游用于干燥涂料后涂布膜的涂布热定型烘箱。
32.亦或者,在相邻烘箱的间隔位置上,连续设置多个涂布装置,涂布装置的涂布方式包括凹版涂布、线棒涂布或挤压涂布、高速离心分散等高压雾化喷涂。
33.涂布装置包括涂布头、线棒等多种本领域可选的常规装置,所述涂布装置的涂布
速度控制在30-90m/min,如果需要改变涂层厚度可以相应的调整涂布速度。
34.为提高上述系统下所制涂布膜的热收缩性能,沿着聚烯烃膜热定型的行进路线,可以选择在小组中的涂布装置的下游设置有用于控制涂布膜回缩的控缩装置,该装置能够在涂布装置将浆料涂布在聚烯烃膜上后,且浆料处于液体状态时进行聚烯烃膜的回缩;可选的,用于控制涂布膜回缩的装置能够在浆料处于液体状态时进行md方向0.1-10%的回缩,涂布浆料同聚烯烃膜一起回缩并由后续的涂布热定型烘箱加热干燥实现同步热定型。
35.涂布后剥离强度有很大提升,较好的剥离强度可以抵抗高温下涂布膜的热收缩趋势,改善涂布膜的耐热性能,较低的热收缩率可以大大降低锂离子电池由于高温异常工作导致涂布膜收缩造成正负极接触短路引起的爆炸风险。
36.做为示例,在涂布装置与初步热定型烘箱、涂布热定型烘箱之间分别设置有压制在聚烯烃膜表面的吸附轮,两根吸附辊主要作用是控制涂布过程中聚烯烃膜得张力变化,以保证涂布稳定性。
37.在涂布装置旁还可以布置用于中转涂布浆料的中转罐、以及过滤器,在涂布装置对聚烯烃膜涂覆浆料前的浆料制备过程中,涂布浆料通过中转罐进入40μ磁性过滤器,40μ磁性过滤器对涂布浆料中的大颗粒以及金属杂质等异物进行过滤,有效防止电芯循环因隔膜存在金属异物造成短路现象,可以提高循环稳定性。此外,为了避免磁性过滤器经常停机清洗,造成隔膜产能下降,同时在中转罐部位安装40μ过滤器,可以避免多次停机清洗过滤器发生,从而提高隔膜产能。
38.在涂布装置旁还可以布置在线测厚仪、缺陷仪,测厚仪主要对基膜和涂布膜厚度进行实时监控,缺陷仪可以检测隔膜的异常,从而可以提高涂布膜成品质量。
39.在多节烘箱的末端还可以设置在线收卷装置、在线分切装置以后放卷、干燥装置。
40.经由上述涂布工艺、涂布装置可制备一种复合涂层电池隔膜,包括聚烯烃基材13、在聚烯烃基材13至少一侧的耐热涂层14以及在聚烯烃基材13至少一侧或耐热涂层14上的喷涂涂层15。
41.即,复合涂层电池隔膜可能为结构一:耐热涂层14-聚烯烃基材13-喷涂涂层15;或如图3所示的结构二:喷涂涂层15-耐热涂层14-聚烯烃基材13-耐热涂层14-喷涂涂层15;或其它组合方式。
42.基于上述涂布工艺或涂布装置,在线多层复合涂布过程中,由于复合涂层会在未干燥或微干情况下同时进行烘干热定型,为避免多层涂布涂料在涂覆或干燥热定型过程中相互过多渗透、融合,影响复合涂层隔膜物性,本发明强调耐热涂层14的粒径d1小于喷涂涂层15的粒径d2,且满足d1:d2《2。
43.具体的,耐热涂层14为陶瓷涂层,陶瓷涂层包括具有耐热学惰性或者可以传输锂离子的无机物颗粒;喷涂涂层15包括具备粘接功能的高分子聚合物颗粒。
44.其中,陶瓷涂层包括水、增稠剂、无机物颗粒、胶黏剂、润湿剂,且陶瓷涂层浆料的固含量范围在30%-40%,无机物颗粒可以为srtio3、sno2、mg(oh)2、mgo、al(oh)3、al2o3、sio2、baso4或tio2中的一种或几种组合。
45.喷涂涂层15包括具备粘接功能的高分子聚合物颗粒、分散剂、增稠剂、胶黏剂、润湿剂,消泡剂,且喷涂涂层浆料固含量在5%-80%之间。
46.高分子聚合物颗粒为pvdf及其共聚物、丙烯酸酯类均聚或共聚物中的一种或者几
种组合。
47.在线同步进行陶瓷涂层和喷涂涂层15的涂布,喷涂浆料和陶瓷浆料会互相融合,如果干燥过程中有比较多的具备粘接功能的高分子聚合物颗粒渗透到陶瓷颗粒中去,可能会影响复合涂层电池隔膜的粘接性能。因此,进一步优选,陶瓷涂层中无机物颗粒粒径为0.01μm-10μm,优选为0.02μm~2μm;喷涂涂层15中高分子聚合物颗粒粒径为0.5μm-10μm,优选的为1μm~5μm,通过控制无机物颗粒粒径和高分子聚合物颗粒粒径的大小,使用颗粒较大的高分子聚合物颗粒粒径,可以有效避免高分子聚合物颗粒粒径在涂布过程中完全没入陶瓷涂层中,以保证在电芯的热压工艺后使复合涂层电池隔膜和极片之间产生足够的粘接力。本发明有效的保证了在同等喷涂涂层涂布量的情况下,尽可能的提高复合涂层电池隔膜的粘接性能,同时由于达到需求的粘接强度时减少了聚合物的使用量,可以有效的降低隔膜的离子电阻,可以有效的提高电池的循环和倍率性能。
48.作为示例,将陶瓷涂层浆料涂覆于聚烯烃基膜的至少一个表面的涂覆方式包括凹版涂布、线棒涂布或挤压涂布等中的一种。将喷涂涂层喷涂到聚烯烃基膜至少一个表面的方式包括高速离心分散等高压雾化喷涂方法。
49.一种电池,该电池包括上述方案中任何一项的复合涂层电池隔膜。
50.下文中,将通过实施例详细地描述本发明以帮助理解。然而,本发明的实施方式可具有若干的其它形式,且本发明的范围不应被解读为仅限以下于实施。本发明的实施例方式用于本发明有关的领域的具有一般知识水平的技术人员更加充分地解释本发明。
51.实施例1
52.聚烯烃膜为分子量在200万的超高分子量pe基膜,涂层为陶瓷涂层,陶瓷涂层涂覆在pe基膜的一个表面上。陶瓷浆料包括水、增稠剂、陶瓷颗粒、胶黏剂、润湿剂,且固含量为32%。
53.如图1所示,本实施例的主要工艺流程为:聚烯烃膜初步热定型——陶瓷浆料制备——陶瓷浆料在线涂覆——涂布膜热定型——控制回缩——在线收卷——在线分切——放卷、干燥。
54.如图2所示,本实施例的涂布装置包括缺陷仪1、测厚仪2、初步热定型烘箱3、吸附辊4、过滤器5、中转罐6、涂布装置7、控缩装置8、涂布热定型烘箱9、在线收卷装置10、在线分切装置11、放卷、干燥装置12。
55.如图2所示,pe膜在经过配料、挤出、过滤计量、摸头挤出、铸片冷却成型、双向拉伸、萃取干燥几个步骤构成,与传统湿法隔膜工艺热定型前步骤保持一致。沿着图2所示的行进方向,pe膜首先经过缺陷仪1、测厚仪2进行实时品质监控,随后进入初步热定型烘箱3实现初步热定型,此时pe膜并未热定型完全,过滤器5、中转罐6中配置好的陶瓷浆料经涂布装置7涂覆在pe膜上,同时涂布装置7上、下游设置的吸附辊4控制涂布过程中张力变化,在陶瓷浆料还处于液体状态时通过控缩装置8进行md方向回缩,使涂布浆料与基膜面接触更加紧密,控缩完成后,涂覆有陶瓷浆料的pe膜进入涂布热定型烘箱9,完成涂布膜热定型,随后再经过在线收卷装置10、在线分切装置11、放卷、干燥装置12,得到陶瓷涂布膜成品。
56.其中,干燥环境露点为td:-49℃,湿度为h:0.31%,涂布膜水分测试180℃/5min,水分≤800ppm。本发明通过控制干燥环境,获得低水分涂布膜,降低了电池内部副反应,有效改善电池性能。
57.当陶瓷涂层以50m/min速度进行剥离,剥离强度大于80n/m,较高的剥离强度有利于涂层于基膜之间的粘结,更好抵抗高温下隔膜热收缩,从而有效提升了隔膜的安全。
58.实施例2
59.本实施例为复合涂层电池隔膜,如图3所示,复合涂层电池隔膜包括聚烯烃基材13、在聚烯烃基材13两侧表面涂覆的耐热涂层14以及喷涂在耐热涂层14上的喷涂涂层15,耐热涂层14为陶瓷涂层。
60.如图4所示,本实施例的主要工艺流程为:聚烯烃膜初步热定型——陶瓷浆料制备——陶瓷浆料在线涂覆——在线喷涂涂层——涂布膜热定型——控制回缩——在线收卷——在线分切——放卷、干燥。
61.在聚烯烃膜没有完全热定型的时候,进行陶瓷涂层的涂布,在陶瓷涂层未完全干燥的时候进行喷涂涂布。
62.其中,配置固含量为38.6%的陶瓷涂层浆料,其具体成分为:水占比61.4%,羧甲基纤维素钠类增稠剂占比0.5%,聚醚类润湿剂0.1%、氧化铝占比35%、丙烯酸酯类胶黏剂占比3%。制浆步骤为,先将增稠剂在水中分散溶解得到溶液a,然后将氧化铝在水中分散研磨得到分散液b,将上述溶液a和分散液b混合,然后加入胶黏剂和润湿剂浆料,充分混合得到陶瓷浆料,成品浆料中氧化铝平均粒径为0.8μm。
63.配置固含量为10%的喷涂涂层浆料,其具体成分为:水占比85%,pmma颗粒占比13.5%,丙烯酸酯类胶黏剂占比1.3%,聚醚类分散剂0.2%,将含有胶黏剂和分散剂的pmma乳液分散到水中得到成品浆料,浆料中的pmma平均粒径为3μm。
64.如图5所示,本实施例的涂布装置包括缺陷仪1、测厚仪2、初步热定型烘箱3、吸附辊4、过滤器5、中转罐6、涂布装置7、喷涂装置16、控缩装置8、涂布热定型烘箱9、在线收卷装置10、在线分切装置11、放卷、干燥装置12。
65.按照图5所示,设计9μm的pe隔膜,使用凹版辊在线进行双面陶瓷涂布,紧接着陶瓷涂布头后使用高速离心分散判进行双面喷涂,涂布前的预热定烘箱温度80℃,涂布后涂布热定型烘箱9为三段烘箱,且温度分别为60℃/80℃/100℃,产线速度为50m/min,干燥后双面陶瓷总厚度4μm,双面喷涂涂层载量为0.8g/m2。
66.对比例1
67.其它步骤与实施例一相同,不同之处在于,陶瓷涂层浆料中氧化铝平均粒径为0.8μm;喷涂涂层浆料中的pmma平均粒径为0.3μm。
68.制备9um的pe隔膜,使用凹版辊进行双面陶瓷涂布,涂布速度50m/min,经过三段式烘箱干燥,烘箱温度分别为60℃/65℃/70℃。完全干燥隔膜厚度为13μm,陶瓷涂层厚度为4μm,随后再使用高速离心分散盘双面陶瓷涂布膜上进行双面喷涂,双面喷涂涂层的载量为0.8g/m2。
69.将实施例二与对比例一进行特性测试,数据见表1
[0070][0071]
从表1可以看出,本技术的实施例和对比例使用同样的氧化铝浆料进行涂布,在涂布量相同的情况下,实施例明显具有更优异的的热收缩性能。而在喷涂涂层涂布量相同的情况下,在线使用更大颗粒进行涂布的实施例具有更好的粘接强度。总体来看使用在线涂布制备的复合涂层,透气增加值更少隔膜总体的阻值也更低,耐热性能更加优异。这表明本发明中的复合涂层隔膜制备的锂离子电池将在安全性、循环倍率等电话性能等多方面都优于常规的锂电池复合隔膜,同时使用本发明的工艺一体化生产,生产步骤简单,成本更低。
[0072]
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明构思的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献