一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

造价低工期短的轻型长距离跨海智能永久铁路公路浮桥的制作方法

2022-02-20 22:32:23 来源:中国专利 TAG:

造价低工期短的轻型长距离跨海智能永久铁路公路浮桥
一、技术领域
1.跨海大桥设计
二、

背景技术:

2.建设跨海大桥,最重要难度最大的是建设桥墩,传统的设计需要在海底打桩基。
3.常采用“浮式沉井法”,将预制好的桩,由专业的打桩船将其打到特定的位置,然后等排完水后再往里面加灌钢筋混凝土,使桩基固定在水中,桩基打好之后还需要做的就是整体的承重和防腐考虑。
4.还有一种毛以升发明的“沉井施工法”,首先沉入一个圆柱桶,然后往桶里面加灌混凝土,当桶里的混凝土达到一定的重量,使这个圆柱桶自然下沉,然后稳固在海底。
5.建设跨海大桥的位置,往往海水深达30-100米,海底地质结构复杂,建设跨海大桥的施工难度和工程量很大,工期长,投资巨大,还要考虑对海洋生态环境影响。
三、

技术实现要素:

6.造价低工期短的轻型长距离跨海智能永久铁路公路浮桥,对建设跨海大桥的设计思路是根本性改变。
7.解决了最大的问题,不需要在海峡海床建设桥墩,大大降低建设跨海大桥施工难度和工程量,缩短工期,降低投资,对海峡生态环境影响小,绿色环保。
8.技术要点:
9.1、利用海水浮力建设浮岛,每个浮岛由海底生根不锈钢丝绳抓牢,浮岛由廉价材料合成,浮岛上架设桥梁。
10.2、在海峡海床底钻专用井孔,套管内预埋不锈钢丝绳泥浆封筑。在海底地质和当地台风强度允许的情况下,不锈钢丝绳也可以缠绕绑栓在沉入海底的钢筋混凝土块上,替代钻井孔。
11.3、12股生根不锈钢丝绳在浮岛的左右两侧均匀分布绷直抓牢浮岛,浮岛绝对水平高度不变。在最低潮位时,确保12股生根不锈钢丝绳有适度的拉力。
12.四、附图说明附图1为桥梁示意图
13.1、海底油井套管数量与海底生根不锈钢丝绳数量相同,本图仅画1股海底油井套管。
14.2、每座浮岛上,绑拉浮岛的海底生根不锈钢丝绳为左右两侧各六股,本图仅画了一侧6股。
15.3、在浮岛上端的钢桁梁桥下两侧再分别设置4股共8股海底生根的不锈钢丝绳,与绑拉浮岛的海底生根不锈钢丝绳同理,本图未画。
16.4、沿海峡宽度方向均匀设计布局n个浮岛,本图仅画了3座。
17.5、本图仅画了桥梁示意图。
五、具体实施方式
18.利用海水浮力建设浮岛,每个浮岛由海底生根不锈钢丝绳抓牢,浮岛可以由廉价耐腐蚀材料合成,浮岛上架设桥梁。附图
19.1、绑拉浮岛的海底生根不锈钢丝绳
20.(1)、沿海峡宽度方向均匀预设计布局n个浮桥墩,即浮岛。
21.(2)、利用相对成本较低的可移动自升式的海上石油钻井平台,在每处浮岛左右两侧下方的海床分别钻6个距离均匀对称的专用井孔dn140(井孔深度依据海水深度和海床淤泥厚度,例如琼州海峡深约100米),井孔间距依据浮岛的大小确定。钻井孔的成本约占大桥总造价30-50%左右。
22.(3)、每个垂直井孔在海床下面垂直深度分别为200米、220米、240米、230米、210米、190米深(具体深度依据淤泥厚度和岩石厚度,及需要产生的拉力,深度不同是为防止水平井互相交叉相碰) 岩石深处50米水平井孔(具体依据岩石性质及需要产生的拉力),井孔内的石油套管dn140(通用5.5英寸)外壁用泥浆固井(常规做法)。
23.(4)、石油套管内预埋不锈钢丝绳并用泥浆封井密实,每股不锈钢丝绳为双股即预留一股,不锈钢丝绳同时设计监测断路回路,不锈钢丝绳用作绑拉浮岛,考虑采用316不锈钢丝绳,也可采用其它耐腐蚀且牢固的材质的绳索。
24.(5)、海床底至海面及至浮岛的绑拉不锈钢丝绳做好防腐和表面光滑处理,减少海水腐蚀和海生生物附着,并做警示标识,防止船只和海中生物碰撞。
25.(6)、不锈钢丝绳拉力设计要考虑浮岛能够抵御18级台风。
26.(7)、在海底地质情况和当地台风强度允许的情况下,绑拉浮桥墩的海底生根不锈钢丝绳,也可以缠绕绑栓在沉入海底的钢筋混凝土块上,钢筋混凝土块总体积大于浮岛体积1.5倍,替代在海底钻井孔,主要是克服浮岛的浮力、台风的提升力及钢筋混凝土块的浮力。钢筋混凝土块的总重量的考虑因素包括浮岛体积产生的浮力和大桥的阵风响应系数。钢筋混凝土密度取2500kg/m3。阵风响应系数取较大值2.0。每座浮岛对应的海底钢筋混凝土块可以是12块,便于吊运,即12股不锈钢丝绳对应12块钢筋混凝土块,每股不锈钢丝绳缠绕绑栓住一整块钢筋混凝土块,不锈钢丝绳不能绑栓在一块钢筋混凝土块的局部,因为钢筋混凝土的抗拉力只有耐压力的十分之一。钢筋混凝土块的形状要求,中部留有缠绕绑栓不锈钢丝绳的绳槽,底部尽量与海底充分接触稳固,上部四周尽量圆滑,形如中间带槽的椭圆形馒头。钢筋混凝土块外表面做好防腐处理。缠绕绑栓钢筋混凝土块的不锈钢丝绳部分可以做成不锈钢带,与钢筋混凝土块预制为一个整体,外表面适度包裹一层混凝土增强抗腐蚀性。钢筋混凝土块方案增加了材料消耗、且不环保,但施工更简单。水泥块寿命50年,可以适时逐个更换。
27.2、浮岛
28.(1)、每个浮岛由海底伸出的12股生根不锈钢丝绳在浮岛的左右两侧均匀分布绷直抓牢浮岛,找正使浮岛在海面相对水平稳固,浮岛绝对水平高度不变。浮岛不是自由漂浮在水面,在最低潮位时,确保12股生根不锈钢丝绳有适度的拉力,例如在没有不锈钢丝绳的拉力时浮岛浮出水面的高度为11米,在有不锈钢丝绳的拉力时浮岛浮出水面的高度为10米(具体需要计算)。
29.(2)、浮岛由废旧轮胎粉末中空合成(或耐用中空聚烯烃塑料浮体、或封闭钢制浮
舱外镀铬、或封闭铝青铜制浮舱),浮岛的长宽高的设计以n个浮桥墩的浮力能够承载桥梁重量及其桥面负重及确保浮岛稳固为基本原则(例如长30m
×
宽20m
×
高,高出海面的高度根据桥梁高度和抵御台风确定)。浮岛设计必须耐海水腐蚀,并要定期检查防腐和表面光滑处理,减少海水腐蚀和海生生物附着,并做警示标识,防止船只和海中生物碰撞。
30.n个浮岛需要统一找正校位,即每个浮岛水平找正,n个浮岛水平高度全部统一相同。
31.例如琼州海峡跨海大桥(海峡宽大约30km),浮岛的大小设计考虑能够支撑双线铁路和双线6道公路,预计需要300座浮岛(具体需要计算)。
32.(3)、浮岛设计时要求确保浮岛水平稳固即四周上下受力均匀,长度和宽度设计要同时考虑便于架桥和减少海浪波流力的冲击,浮岛合成时要预留好均匀的12个不锈钢丝绳孔,不锈钢丝绳孔设计考虑正常运行检查维护,每股不锈钢丝绳设计电子监测断路回路。
33.(4)、在最高潮位时,浮岛上升力对海底不锈钢丝绳的拉力最大,因此要密切监视潮位、浪涌和浮岛露出水面的高度。涨潮落潮数据是按照大桥海域设置的潮位仪(设置5个)实时测量数据。测量潮位的仪器现代有潮位仪,如雷达测量、卫星测量等及相应计算,原始的有人工测量。潮位仪是市场成熟产品(不是本发明范围),市场上可以采购得到。大桥海域设置的潮位仪(设置5个)实时测量数据五取三,计算机自动去掉最大值和最小值,三个数值自动平均。同时参考当地海事局发布的潮汐预报数据表,即每一天每小时的潮位数据。
34.(5)、单座浮岛出现1股或2股不锈钢丝绳断开,不影响单座浮岛的水平平衡,可以随时修复。单座浮岛出现3股及超过3股不锈钢丝绳断开,发出报警大桥停止通行、进行检修。12根不锈钢丝绳中的任意8股的拉力具备承受单座浮岛完全淹没水中的浮力,例如浮岛体积为长30m
×
宽20m
×
高30m=18000m3,浮力为18000n,则每股不锈钢丝绳的最大静拉力要求大于2500n。每股不锈钢丝绳设计电子监测断路回路。
35.(6)、为减少海面下的不锈钢丝绳意外断开的情形,不锈钢丝绳在浮岛上侧专门设计一节易断的不锈钢丝绳以便于更换。浮岛至海底至岩石内为一节,两节不锈钢丝绳用专用的卡扣链接,其中浮岛至海底至岩石内一节要设计防止浮岛上的一端掉落海里的措施,例如设计一个卡槽。
36.(7)、浮岛之间间距为80-100米,具体间距需要根据架桥的浮桥墩间距和过船宽度确定),距离海岸近的浮岛之间间距稍微偏小,距离海岸远的浮岛之间间距稍微偏大(要过船)。
37.(8)、自陆地至海峡中间,桥梁高出海面高度为10-35米逐渐升高,例如海峡中间跨距最大的五座浮岛的四孔航道桥下面需要通过60万吨油轮。
38.为减少台风对浮岛的影响,考虑将浮岛高出海面高度10米(高于最高潮位及浪涌)的以上高度由钢制框架制作。
39.(9)、每座浮岛四周刷鲜艳警戒色、设航标灯、设计智能电子视频识别监控和防撞自动提醒喊话喇叭和防撞报警系统。
40.(10)、为抵御强台风,确保高空中桥梁稳固,在浮岛上端的钢桁梁桥下两侧再分别设置4股共8股海底生根的不锈钢丝绳,同样生根在海床下面垂直深度分别为250m、270m、280m、260m深垂直岩石井孔 岩石深处50m水平井孔,石油套管dn140。此8股不锈钢丝绳也可以分别缠绕绑栓在沉入海底的8块钢筋混凝土块上,钢筋混凝土块大小与前述一致,替代在
海底钻井孔。
41.3、固定在浮岛上的支撑底板
42.(1)、支撑底板永久性固定在浮岛上,即大桥的基地。
43.(2)、钢结构桥柱固定在支撑底板上。
44.(3)、钢桁梁桥架设在桥柱上(详见4、架桥)。
45.4、架桥
46.(1)、架设有一定扭曲韧度的钢桁梁桥(或单层桥,或双层铁路公路两用桥),钢桁梁桥下的桥柱为钢结构,以减少风力影响。整座大桥设计为稍有s型的曲线,减少海浪波流力对大桥的冲击。
47.因为整座桥梁为钢桁梁桥,重量分布到n个浮岛上,桥上车辆分布不均而且各座浮岛承受重力不同,重力会随时重新分布。各座浮岛的浮力与所承受的桥梁重力及海底不锈钢丝绳的拉力随时会保持力学平衡,即浮力=所承受的桥梁重力 海底不锈钢丝绳的拉力(这点很关键)。桥上车辆多时,桥梁重力大,则不锈钢丝绳的拉力相应减小。相对每台车辆的重量,每座浮岛的浮力要大上百倍。建设时所有浮岛在一个水平高度,整座桥梁的水平高度基本保持不变,稍有误差时在钢桁梁桥承受范围内。
48.(2)、钢桁梁桥的下部设计为半月型,以减少风的提升力。
49.铁路桥可以设计为钢结构。
50.公路桥可以设计为钢结构与砼结合,路面敷设沥青。
51.(3)、桥梁连接工作,尽量安排在冬季风浪较小的季节,以减少安装误差。
52.桥梁连接前,n个浮岛需要统一再次找正校位。
53.桥梁连接完成后,n个浮岛需要统一再次找正校位。
54.(4)、桥梁设计监测系统,监测桥梁的上下浮动和左右浮动。
55.(5)、桥梁可以是公铁两用,可以是铁路桥,也可以是公路桥。
56.铁路、公路预计时速可以达到80-100km/h。
57.(6)、钢桁梁桥、钢结构桥柱、以及支撑底板,都要严格做好防腐处理,防止海上盐雾腐蚀。并要定期检查和防腐。
58.(7)、在不设计通轮船的桥梁区段下方,浮岛上方的左右两侧可以设计有较大扭曲韧度的人行通道,用于游人步行和桥梁维护人员巡检及小型维修车辆通行,高出海面高度10米。
59.5、桥头两端的陆地栈桥
60.(1)、位于桥梁两端连接的陆地栈桥长约50米(具体长度需要设计),栈桥对接桥梁的端头可以微小活动,与桥梁的上下左右微动同步。
61.(2)、栈桥位于陆地上,可以是钢结构、砼结构或钢砼结构。
62.(3)、大桥桥头设置自动过磅监测报警,严格控制超重车辆。
63.6、设计安全可靠性保障
64.(1)、桥梁牢固性和寿命需要通过具体的设计核算,安全评价通过才可实施,主要风险是潮汐、海浪波流力、台风,桥梁寿命按照100年设计。
65.(2)、设计按照抵御18级台风设计。
66.交通安全禁止通行情况:5米高以上的海浪浪涌、9级以上的大风台风。
67.(3)、桥梁的外界供电电源要求为双电源。
68.在桥梁两端桥头要设计不间断ups电源(主要是为监测仪表供电)。
69.7、考虑千年大计
70.为千年大计,大桥旁需要设计预留每100年交替新建大桥位置,及设计与陆地道路的交替相接,陆地道路位置按照千年不变考虑。
71.8、核心技术
72.(1)、利用海水浮力建设浮岛,每个浮岛由海底生根不锈钢丝绳抓牢,浮岛可以由廉价耐腐蚀材料合成,浮岛上架设桥梁,不需要在海峡海床建设桥墩,大大降低建设跨海大桥的施工难度和工程量,缩短工期,降低投资,对海峡生态环境影响小,绿色环保。
73.(2)、绑拉浮桥墩的海底生根不锈钢丝绳,利用相对成本较低的可移动自升式的海上石油钻井平台在海峡海床底钻专用井孔,每个孔包括垂直岩石井孔 水平井孔,套管内预埋不锈钢丝绳泥浆封筑,井孔深度仅300米左右相对于上千米几千米深度的油井成本低很多。在海底地质情况和当地台风强度允许的情况下,绑拉浮桥墩的海底生根不锈钢丝绳,也可以缠绕绑栓在沉入海底的钢筋混凝土块上,钢筋混凝土块总体积大于浮岛体积1.5倍,替代在海底钻井孔。
74.(3)、每个浮岛由海底伸出的12股生根不锈钢丝绳在浮岛的左右两侧均匀分布绷直抓牢浮岛,找正使浮岛在海面相对水平稳固,浮岛绝对水平高度不变。浮岛不是漂浮在水面,在最低潮位时,确保12股生根不锈钢丝绳有适度的拉力,例如在没有不锈钢丝绳的拉力时浮岛浮出水面的高度为11米,在有不锈钢丝绳的拉力时浮岛浮出水面的高度为10米。
75.(4)、n个浮岛需要统一找正校位,即每个浮岛水平找正,n个浮岛水平高度全部统一相同。
76.(5)、支撑底板永久性固定在浮岛上,即大桥的基地。钢结构桥柱固定在支撑底板上,钢桁梁桥架设在桥柱上。
77.(6)、钢桁梁桥的下部设计为半月型,以减少风的提升力。桥梁为有一定扭曲韧度的钢桁梁桥(或单层桥,或双层铁路公路两用桥),钢桁梁桥下的桥柱为钢结构,以减少风力影响。整座大桥设计为稍有s型的曲线,减少海浪波流力对大桥的冲击。
78.(7)、为抵御强台风,确保高空中桥梁稳固,在浮岛上端的钢桁梁桥下两侧再分别设置4股共8股海底生根的不锈钢丝绳,同样生根在海床下面垂直深度分别为250米、270米、280米、260米深垂直井孔 岩石深处50米水平井,石油套管dn140。此8股不锈钢丝绳也可以分别缠绕绑栓在沉入海底的8块钢筋混凝土块上,钢筋混凝土块大小与前述一致,替代在海底钻井孔。
79.(8)、桥头两端的陆地栈桥端头可以微小活动,与桥梁的上下左右微动同步。栈桥位于陆地上,可以是钢结构、砼结构或钢砼结构。
80.(9)、此技术方案也适用于港口建设深水码头、海上建设深海漂浮式风电机组的漂浮式基础、海上油井生产平台,及适用于常年不断流的大江大河上建设大桥等。
81.9、优点
82.(1)、造价低,大大降低建设跨海大桥施工难度和工程量。
83.(2)、工期短:预计建设跨海大桥2-3年左右。
84.(3)、可工厂化模块化流水线生产,例如浮岛、支撑底板、钢结构桥柱、钢桁梁桥等。
85.(4)、智能监控、安全可控。
86.(5)、对海峡生态环境影响小,绿色环保。
87.(6)、有利于加快海洋强国建设。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献