一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种用于过一硫酸氢盐活化的磁性异质结催化剂的制备方法及其应用与流程

2022-02-22 04:25:12 来源:中国专利 TAG:


1.本发明涉及光催化技术领域,尤其是涉及一种用于过一硫酸氢盐活化的磁性异质结催化剂的制备方法及其应用。


背景技术:

2.二硫化钼材料物理和化学性能稳定,比表面积较大,具有活性位点,其禁带宽度范围的下限为1.2 ev,上限在1.9 ev,在此范围动态波动,可见光的吸收波长的下限为673nm,上限为1066nm。在太阳光谱中的可见光范围内,对可见光的响应良好,适合应用于光催化反应。在导带和价带的边缘电位较高,制备成复合材料时,光电子易于空穴分离,可以高效的降解有机污染物,广泛应用在环境中的污水去除方面,同时也具有较高的研究意义。
3.二硫化钼在光催化领域的研究中,大量的学者都制备出不同性能的材料。宋晓琳在《mos2/氧化物纳米复合材料的制备及光催化性能研究》中,通过水热法制备出的复合材料mos2/ tio2,对于罗丹明 b的降解在80min内,降解效率便可达到84.7%。任碧莹在《钴铁氧体/二硫化钼复合纳米材料的制备及其光催化性能研究》中通过水热法及静电纺丝结合的方式制备了cofe2o
4 / mos2异质复合材料,其中对于摩尔比为2:1的材料对于刚果红废料的光解效率达到了94.6%,比纯mos2材料的降解率的12倍;并且通过复合材料的反复使用实验,也证明了复合材料的稳定性、重复使用性。在样品1500oe磁场磁化作用下,材料对于刚果红降解率达到了96.7%,相比于未磁化材料的降解速率的1.03倍。闫俊杰在《 mos2/cus、zns/cus纳米复合物的制备及其光催化性能研究》中讲述了纳米复合材料二硫化钼与硫化亚铜在光催化反应中不到50min可以将浓度为20mg/l亚甲基蓝废液的降解到78.2%,不到40min便可以降解40mg/l重铬酸钾废液降解93.3%;说明了该复合物具有良好的光催化氧化还原能力,同时也提高了光反应效率;以及对不同原子比(1:1、2:1、3:1、5:1)制作实验中,2:1复合材料比单体材料zns、cus高出7.7倍和2.2倍,在8min便可达到96.6%的降解率,反复实验后也可表现出较高的稳定性。
4.上述关于二硫化钼催化剂研究的较多,制备出来的材料活性不一,上述研究大多都是从材料的掺杂方面开展研究,单体材料的吸收波范围较窄,不利于可见光的吸收,降解效率低,故具有优良性能的复合光催化材料制备是必然的发展趋势。


技术实现要素:

5.有鉴于此,本发明的目的是针对现有技术的不足,提供一种用于过一硫酸氢盐活化的磁性异质结催化剂的制备方法,其制备工艺简单易控,制备的产品纯度高,将其应用于光催化降解诺氟沙星,降解效率高。
6.为达到上述目的,本发明采用以下技术方案:一种用于过一硫酸氢盐活化的磁性异质结催化剂的制备方法,包括以下步骤:(1)cocl2•
6h2o和fecl3•
6h2o溶解在水中形成溶液a;氢氧化钠溶解在水中形成溶
液b,将溶液b加热至90℃后,将溶液a快速滴加至溶液b中形成混合液,混合液在90℃条件下用电动搅拌器持续搅拌2h,得到反应物沉淀,抽滤洗涤干燥,所述cocl2•
6h2o和fecl3•
6h2o和naoh的摩尔比为1:2:8;(2)上述干燥产物于800℃煅烧10h,发生固相反应生成cofe2o4,研磨后得cofe2o4样品;(3)cofe2o4样品和水混合而成悬浊液a;钼酸钠(na2moo4•
2h2o)和硫脲(csn2h4)溶解在水中形成混合溶液b,将混合溶液b逐滴滴入悬浊液a中,用酸调节反应液ph至3.0,搅拌30-40min得前驱液;(4)前驱液于200℃下反应24h,离心洗涤,在60℃下干燥4h后得mos
2 /cofe2o4复合材料,即磁性异质结催化剂。
7.进一步的,所述步骤(1)中将溶液a以滴加速率为120滴/min快速滴加至溶液b中。
8.进一步的,所述步骤(3)中cofe2o4、na2moo4•
2h2o和csn2h4重量比为0.08-0.2401:0.3629:0.3425。
9.进一步的,所述步骤(3)中将混合溶液b以滴加速率为30滴/min滴入悬浊液a中。
10.一种用于过一硫酸氢盐活化的新型高效磁性异质结催化剂在降解诺氟沙星的应用方法,包括以下步骤:将磁性异质结催化剂添加在初始浓度为5-25mg/l、ph为3-11的诺氟沙星溶液中进行光催化降解反应,所述磁性异质结催化剂的使用量为0.025-0.2g/l。
11.进一步的,所述诺氟沙星溶液中添加0.1-0.5mm过一硫酸氢钾。
12.进一步的,所述应用方法包括以下步骤:将磁性异质结催化剂按0.1g/l的添加量添加在初始浓度为15mg/l、ph为7.0的诺氟沙星溶液中进行光催化降解试验,所述诺氟沙星溶液中添加0.1mm过一硫酸氢钾。
13.本发明的有益效果是:1、本技术制备一种用于过一硫酸氢盐活化的磁性异质结催化剂(mos
2 /cofe2o4复合材料),首先采用共沉淀法制备cofe2o4,其反应条件简单,成本低,通过控制具体反应条件,制备出结晶度很高和晶格更为有序的立方尖晶石结构的cofe2o4;之后采用水热法高温水热法,通过在钼酸钠与硫脲在分解合成二硫化钼中与铁酸钴悬浊液结合,通过调节ph、超声、搅拌、放入反应釜反应、抽滤和干燥工艺,经xrd图谱验证,本技术制备出高纯度、分布均匀的片状磁性半导体复合材料mos
2 /cofe2o4。
14.经过tem、hrtem图像分析,本技术制备的磁性异质结催化剂的具体结构是mo和s集中在外部,co、fe和o分布在内部,cofe2o4颗粒被mos2纳米片包裹形成的异质结的结构。该磁性异质结催化剂的饱和磁化强度14.36 emu/g,剩余磁化强度6.73 emu/g,即该催化剂的结构不仅有助于实现光催化效果,而且还有助于反应后的磁辅助分离。
15.2、申请人经过研究发现,cofe2o4剩余磁化强度为6.73 emu/g, 能产生稳定自建磁场,使得磁性异质结催化剂在反应后,能够实现磁辅助分离和回收,相对于传统催化剂的过滤、离心分离,大大地节约了成本;而且这个自建磁场会增加光生载流子的迁移路径,进而提高量子产率。因此本技术制备的mos2/cofe2o4复合材料,相当于这个自建磁场和异质结mos2/cofe2o4的内建电场耦合,协同促进光生载流子的迁移,从而提高量子产率。异质结mos2/cofe2o4产生的光生载流子越多,载流子的寿命越长,对过一硫酸氢盐的活化效率就越高,进而获得活性物种,包括硫酸根自由基,羟基自由基,超氧自由基和单态氧就越多,从而
大大提高其对诺氟沙星的降解效率。
16.因此本技术制备的异质结mos2/cofe2o4能活化过一硫酸氢盐产生硫酸根自由基,从而协同提高光催化降解的效率和反应动力。
17.3、在光催化降解诺氟沙星的应用方法中,申请人对应用试验的反应条件进行了探索,控制催化剂用量0.1g/l、诺氟沙星初始浓度15mg/l、诺氟沙星废液的ph为7.0,同时过一硫酸氢钾的用量为0.1mm,此时磁性异质结催化剂对过一硫酸氢钾的活化效率最高,逐渐增加过一硫酸氢钾的用量时,会消耗掉硫酸根自由基从而降低催化效率,因此,在该试验条件下,磁性异质结催化剂的催化活性最好,其对诺氟沙星废液的光解率可以达到78.80%。
附图说明
18.图1是二硫化钼、铁酸钴以及磁性异质结催化剂的xrd图谱;图2是硫化钼、铁酸钴和实施例3制备的磁性异质结催化剂的sem图;图3是实施例3制备的磁性异质结催化剂的tem图和对应的eds成像图;图4是实施例3制备的磁性异质结催化剂的磁滞回线;图5为实施例1-3制备的磁性异质结催化剂光催化性能检测图;图6为光催化应用试验催化剂用量优化图;图7为光催化应用试验诺氟沙星初始浓度优化图;图8为光催化应用试验过一硫酸氢钾用量优化图;图9为光催化应用试验ph值优化图;图10为光催化应用试验光降解对比效果图。
具体实施方式
19.下面结合附图和实施例对本发明作进一步描述。
20.实施例1(1)通过化学计量比为1:2分别用电子天平称取2.379g的cocl2•
6h2o和5.406g的fecl3•
6h2o装于有150ml的蒸馏水的烧杯中,磁力搅拌至溶解形成a溶液;称取3.23 g的氢氧化钠装于有150ml的蒸馏水烧杯中配成b溶液;将溶液b水浴加热至90℃,将溶液a以滴加速率为120滴/min快速滴加至溶液b中形成混合液,将混合液在水浴加热90℃条件下用电动搅拌器持续搅拌2h,得到反应物沉淀;利用抽滤装置将沉淀物分离,此过程中反复用无水乙醇、蒸馏水清洗,抽滤后得到的沉淀物放入电热鼓风干燥箱中100℃干燥8h;(2)再将上述干燥产物置于马弗炉中800℃煅烧10h,发生固相反应生成cofe2o4,待冷却后取出研磨便得到铁酸钴样品;(3)用电子天平称量0.2401g上述铁酸钴样品于装有20ml的烧杯中,放入超声波清洗机中20℃超声1h,得到悬浊液a;分别称量0.3629g钼酸钠(na2moo4•
2h2o)和0.3425g硫脲(csn2h4)置于装有40ml蒸馏水的烧杯中,磁力搅拌10min,得到混合溶液b;此后,将混合溶液b利用胶头滴管以滴加速率为30滴/min速率滴入悬浊液a中,用浓度为1mol/l的hci调节ph至3.0,再在机械搅拌器作用下搅拌30min得到反应前驱液;(4)将前驱液装入到100ml的teflon反应釜中,将反应釜置于电热鼓风干燥箱中,
在200℃的温度下发生高温水热反应24h;利用抽滤装置将混合溶液中的反应沉淀物分离,反复用蒸馏水清洗,抽滤后得到的前驱体再放入电热鼓风干燥箱中60℃干燥4h后得到mos
2 /cofe2o4复合材料,即磁性异质结催化剂。
21.实施例2实施例2与实施例1不同之处在于步骤(3)中:铁酸钴样品的用量是0.1205g,钼酸钠的用量是0.3629g,硫脲的用量是0.3425g。
22.实施例3实施例2与实施例1不同之处在于步骤(3)中:铁酸钴样品的用量是0.0800g,钼酸钠的用量是0.3629g,硫脲的用量是0.3425g。
23.对比例1对比例1与实施例3的区别在于,没有步骤(1)和步骤(2),即步骤(3)中没有添加铁酸钴,因此其制备的产品是二硫化钼。
24.性能检测和应用方法1、化学性能检测图1为对比例1中制备的二硫化钼、实施例1的步骤(2)中制备的铁酸钴样品和实施例1-3制备的磁性异质结催化剂(mos
2 /cofe2o4复合材料)的xrd图谱。
25.实施例1中步骤(2)制备得到的铁酸钴cofe2o4样品的xrd图谱与铁酸钴标准卡片pdf#79-1744相比,无其他杂峰出现,主峰与铁酸钴标准卡片pdf#79-1744主峰一致,且主要衍射峰型尖锐,可以确定所制备药品为铁酸钴。所制铁酸钴的峰强会存在较小差异,相比于标准卡片,其中衍射峰角度2θ=30.081
°
、材料晶面主要是104,峰强受到了轻微抑制;2θ=56.943
°
、材料晶面主要是125,峰强受到了激发;2θ=62.527
°
、材料晶面主要是208,峰强受到了轻微激发。证明本技术方法所制备的铁酸钴样品是高纯度、磁性较强的铁酸钴。
26.实施例1、2和3制备的磁性异质结催化剂(mos
2 /cofe2o4复合材料),分别对应mos2/cofe2o4按质量比为1:1、2:1、3:1的复合比例,通过分析其xrd图谱可知,实施例1产品主要显示的衍射峰的是二硫化钼且衍射主峰较强,铁酸钴的主要衍射峰显现不明显。与二硫化钼标准卡片pdf#74-0932相比无其他杂峰出现,三大主峰型尖锐、与标准卡片pdf#74-0932中主峰一致,其余峰型变化与单体材料一致。实施例2和实施例3产品分别与标准卡片pdf#74-0932、pdf#79-1744相比较,都可已明显看出各个单体材料所呈现主峰一致,其余峰型变化皆相同,并没有检测到其他的杂质峰;而且实施例3产品的主峰更加尖锐、平滑。
27.对比例1中未添加铁酸钴,其产品的xrd图谱见图1所示,与二硫化钼标准卡片pdf#74-0932相比,无其他杂峰出现,三大主峰型尖锐、与标准卡片pdf#74-0932中主峰一致,说明对比例1中制备的是较高纯度的二硫化钼。本次所制二硫化钼的晶面会存在差异,相比于标准卡片,其中衍射峰角度2θ=32.938
°
、59.247
°
时,材料晶面分别为是101、0012,两者峰强都受到了极大的激发,说明本技术的制备方法得到的是高纯度的mos2。
28.对比例1中制备的二硫化钼、实施例1中制备的铁酸钴和实施例3制备的mos2/cofe2o4复合材料的sem图见图2所示。纯mos2为纳米片组装的花朵结构(图2a);纯cofe2o4为四面体和八面体结构组成的不规则结构(图2b);在mos2/cofe2o4复合材料样品中,mos2纳米片和cofe2o4不规则结构共存。
29.图3是实施例1中制备的铁酸钴和实施例3制备的mos
2 /cofe2o4复合材料的tem图、hrtem和对应的eds元素成像。
30.mos2/cofe2o4复合材料tem图(图3 a,b)表明了cofe2o4颗粒被mos2纳米片包裹。在hrtem图像(图3c)中识别出明显的晶格条纹。外层中晶格条纹为0.61 nm属于mos2的(002)晶面,而内层中晶格条纹为0.29 nm属于cofe2o4的(220)晶面,进一步证实cofe2o4被外层mos2包覆。此外,eds元素成像(图3d)显示mo和s集中在外部,而co、fe和o分布在内部。总的来说,hrtem图像和eds元素成像揭示了cofe2o4和mos2之间的紧密接触,促进了异质结的形成。
31.图4是实施例3制备的mos2/cofe2o4复合材料的磁滞回线,其中饱和磁化强度14.36 emu/g,剩余磁化强度6.73 emu/g,这个磁学性能够满足样品在催化反应后的磁辅助分离,节约成本。
32.2、磁性异质结催化剂(mos2/cofe2o4复合材料)的光催化应用试验(1)光催化反应操作方法将100ml诺氟沙星废液倒入双层玻璃杯中,用10ml带针头注射器吸取4ml到离心管中做好标记“0”。将催化剂倒入150ml双层玻璃杯中,避光搅拌5min,使催化剂与诺氟沙星废液充分接触,5min后用注射器吸取4ml杯中溶液于10ml胶管中做好标号“1”,迅速将称量好的过一硫酸氢钾倒入双层玻璃杯中,开启不配置滤光罩250w的长弧氙灯,记录时间。废液在开灯2min、4min、6min、8min和10min后分别吸取4ml废液,使用针孔过滤器过滤到10ml胶管中,做好标记,分别为“2”“3”“4”“5”“6”“7”。实验结束后,逐个将胶管中废液倒入比色皿中测量其吸光度,做好记录。计算诺氟沙星降解率公式为:η=a
n-ao/ao式中:a0‑‑
诺氟沙星原液的吸光度或标号为“0”溶液的吸光度。
33.ꢀꢀꢀꢀꢀan
‑‑
标号为“1”至“7”诺氟沙星废液的吸光度。
34.(2)磁性异质结催化剂(mos
2 /cofe2o4复合材料)在光催化降解诺氟沙星的应用方法1)实施例1-3制备的催化剂光催化性能检测分别称量0.1g的实施例1-3制备的催化剂、0.3mm的过一硫酸氢钾分别去降解100ml、 ph为7、浓度为15mg/l的诺氟沙星废液,检测其吸光度,结果参见图5,实施例1的材料在开灯15min后的光催降解效率为59.14%;实施例2的材料在开灯15min后的光催降解效率为59.96%;实施例3的材料在开灯15min后的光催降解效率为70.29%。说明实施例3的催化剂即二硫化钼与铁酸钴材料按3:1重量比例复合的催化剂在降解诺氟沙星废液上光降解效率最佳。
35.2)催化剂用量优化使用电子天平称量实施例3中的催化剂(mos
2 /cofe2o4复合材料),添加量分别为0.025g/l、0.050g/l、0.10g/l、0.15g/和0.20g/l,及添加0.1mm的过一硫酸氢钾分别去降解100ml、 ph为7、浓度为15mg/l的诺氟沙星废液,完成光催化实验,具体结果参见图6。
36.由图6可以看出,在长弧氙灯照射,催化剂用量分别为0.025g/l、0.050g/l、0.10g/l、0.15g/和0.20g/l的情况中,诺氟沙星废液的光降解效率分别为42.0%、62.12%、85.23%、89.90%和90.07%。随之催化剂用量的增加光催效率呈增长趋势,在用量为0.20g/l时,光解
效率最高。综合考虑降解率和成本,催化剂最优用量为0.1g/l。
37.3)诺氟沙星初始浓度优化称量催化剂为0.1g/l及添加0.1mm的过一硫酸氢钾分别去降解100ml、 ph为7、浓度分别为5mg/l、10mg/l、15mg/l、20mg/l和25mg/l的诺氟沙星废液,完成光催实验,试验结果见图7。
38.由初始浓度分别为5mg/l、10mg/l、15mg/l、20mg/l和25mg/l的诺氟沙星废液,在开灯15min后的光降解效率分别为69.23%、82.56%、84.90%、89.55%和93.08%,初始浓度越低,降解效率越高。考虑浓度为15mg/l的诺氟沙星废液比较接近常规诺氟沙星废水浓度,因此本技术光降解诺氟沙星最优初始浓度限定为15mg/l。
39.4)过一硫酸氢钾(pms)用量优化试验使用电子天平称量0.1g/l的催化剂及0.1mm、0.2mm、0.3mm、0.4mm和0.5mm的过一硫酸氢钾分别去降解100ml、 ph为7、浓度为15mg/l的诺氟沙星废液,完成光催实验,试验结果参见图8。
40.由图8可知,在降解诺氟沙星废液实验中,添加0.1mm、0.2mm、0.3mm、0.4mm和0.5mm的过一硫酸氢钾后,开灯15min后的光降解效率分别为93.0%、91.1%、90.0%、84.64%和83.42%,随着过一硫酸氢钾添加量的增大,降解效率逐渐降低。因此本技术降解诺氟沙星废液的最优过一硫酸氢钾用量为0.1mm。
41.5)ph值优化试验在催化剂用量为0.1g/l,过一硫酸氢钾用量为0.1mm的条件下去降解100ml、浓度为15mg/l的诺氟沙星废液,调节废液ph值分别为3、5、7、9、11,降解结果参见图9。
42.由图9可以看出,在开灯15min后的光降解效率分别为94.0%、93.21%、89.99%、92.33%和83.29%,随着废液从酸性变为碱性,光降解效率大体存在降低,但在ph 9.0时存在波动,ph值为3.0降解效率最优,但是综合考量效果、成本、环境因素,本技术限定的最优ph为7。
43.经过上述试验可知,本技术中用于过一硫酸氢盐活化的新型高效磁性异质结催化剂在降解诺氟沙星的应用方法中,诺氟沙星溶液初始浓度为15mg/l、ph为7.0,过一硫酸钾用量为0.1mm,异质结催化剂(mos
2 /cofe2o4复合材料)的使用量为0.1g/l,其光解率可以达到最优。
44.6)光催化降解对比试验铁酸钴、二硫化钼、过一硫酸氢钾、实施例3制备的催化剂(mc composite)光照或避光条件下单独降解诺氟沙星废液的光降解效率以及复合光催化降解诺氟沙星废液的效率对比试验。
45.具体试验方法是:称取光催化剂,分别用于降解浓度为15mg/l、ph7.0的150ml诺氟沙星废液,避光或采用长弧氙灯照射,完成光催化反应,其中光催化反应中使用过的铁酸钴、二硫化钼、mc composite的添加量为0.1g/l,pms的添加量是0.1mm,具体催化结果见图10所示。
46.通过图10的结果分析可知:(1)纯诺氟沙星废液在长弧氙灯照射情况下发生光降解(nor light),15min后,光催化效率仅1.68%,而加入实施例3催化剂光催反应(mc composite light)降解的诺氟沙星
废液光降解效率为41.80%,两者相比可知,纯诺氟沙星废液自身在光催反应下基本不会发生降解。
47.(2)在mos2、cofe2o4和过一硫酸氢钾各自光降解诺氟沙星废液实验中,各光催效率为37.52%、9.33%和16.79%,最明显的mos2降解废液对于诺氟沙星自身降解,光降解效率提升了40.12%,但仍存在降解效率低问题。
48.(3)在催化剂降解诺氟沙星废液时,光降解效率为41.80%,与各单体材料氧化剂降解废液的光解效率相比都有提升,证明本技术制备的磁性异质结催化剂催化效果显著。
49.(4)在催化剂加过一硫酸氢钾降解废液相比单纯催化剂降解废液的光降解效率提升了37%,说明过一硫酸氢钾的添加极大的增长了废液的降解效率,说明本技术制备的异质结催化剂与过一硫酸氢钾在光催化应用方面具有极大的协同增效的作用。
50.(5)在催化剂和添加过一硫酸氢钾降解废液实验中,光催化效率比暗催化效率增长了7.09%,证明在光照条件下比暗反应时的降解情况更好,说明在光照条件下降解废液会提升废液的降解效率。
51.最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的其他修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献