一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

半导体装置以及电力变换装置的制作方法

2022-02-22 02:14:02 来源:中国专利 TAG:


1.本发明涉及具备外壳的半导体装置、应用半导体装置的电力变换装置。


背景技术:

2.在以往的半导体装置中,具备金属基体基板和设置于该金属基体基板上的外壳,外壳被固定到金属基体基板上,该金属基体基板具有:金属板;传热层,设置于金属板上,包含热硬化性树脂和无机填料;以及引线框架,为了构成多个电极埋入到传热层(参照例如专利文献1)。此外,此处所称的传热层包括:与引线框架的侧面相接地设置,对电极之间的电绝缘作出贡献的部分;以及设置于引线框架与金属板之间,对散热及电绝缘作出贡献的部分。
3.现有技术文献
4.专利文献
5.专利文献1:日本特开2009-224445号公报


技术实现要素:

6.然而,在上述以往的半导体装置中,在金属基体基板的传热层上设置有外壳,所以在传热层中与引线框架的侧面相接地设置而使电极之间电气上绝缘的部分露出到外部空气。传热层包含热硬化性树脂和无机填料,所以水分从露出到外部空气的部分侵入,在半导体元件终端部中发生由于水分和电场引起的金属部分的腐蚀以及半导体元件破坏,存在半导体装置的可靠性降低这样的课题。
7.本发明是为了解决上述课题而完成的,其目的在于得到一种在金属基体基板上设置有外壳的半导体装置中减少水分到达半导体元件并提高耐湿可靠性的半导体装置。
8.本发明的半导体装置具备:金属基体基板,具有金属基体、设置于金属基体的面上的第1绝缘层、设置于第1绝缘层的设置有金属基体的面的相反的面上的载置导体、及使载置导体的与第1绝缘层相接的面的相反的面暴露而设置于载置导体的侧面的第2绝缘层;半导体元件,与载置导体接合;外壳,与第2绝缘层相比设置于外侧;外部端子,安装于外壳;以及密封部件,填充到由载置导体、第2绝缘层及外壳包围的区域。
9.本发明的半导体装置通过将外壳与第2绝缘层相比设置到外侧,即使成为在金属基体基板上具备外壳的构造,也能够抑制水分从第2绝缘层侵入而到达半导体元件,具有能够提高耐湿可靠性这样的效果。
附图说明
10.图1是示出本发明所涉及的实施方式1的半导体装置的结构的剖面图。
11.图2是示出本发明所涉及的实施方式1的半导体装置的结构的俯视图。
12.图3是示出本发明所涉及的实施方式1的半导体装置的第1变形例的结构的剖面图。
13.图4是示出本发明所涉及的实施方式1的半导体装置的第2变形例的结构的剖面图。
14.图5是示出本发明所涉及的实施方式1的半导体装置的第3变形例的结构的剖面图。
15.图6是示出本发明所涉及的实施方式2的半导体装置的结构的剖面图。
16.图7是示出本发明所涉及的实施方式2的半导体装置的变形例的结构的剖面图。
17.图8是示出本发明所涉及的实施方式3的半导体装置的结构的剖面图。
18.图9是示出应用本发明所涉及的实施方式4的电力变换装置的电力变换系统的结构的框图。
19.(附图标记说明)
20.11、12、13、14、15:金属基体基板;21:金属基体;31、32:载置导体;31a、32a:第1载置导体;31b、32b:第2载置导体;32c:上表面;41、42、43、44:第1绝缘层;50:边界面;51、52、53:第2绝缘层;53a:上表面;61、62、63:外壳;62a、63a:凸部;71:半导体元件;74:外部端子;77:密封部件;81:焊料;84:导线;91:阻挡层;100、101、102、103、200、201、300、402:半导体装置;400:电力变换装置;401:主变换电路;403:控制电路;410:电源;420:负载。
具体实施方式
21.以下,根据附图说明本发明的实施方式。此外,在以下的附图中对同一或者相当的部分附加同一符号,不反复其说明。
22.实施方式1.
23.使用图1说明本发明所涉及的实施方式1的半导体装置。图1是示出本实施方式的半导体装置100的结构的剖面图。另外,图2是俯视半导体装置100时的半导体装置100的俯视图。在金属基体21的面上设置第1绝缘层41。在第1绝缘层41的设置有金属基体21的面的相反面上,设置有载置导体31。在本实施方式中,载置导体31具备第1载置导体31a和第2载置导体31b。此外,在图1中,示出载置导体31具备第1载置导体31a以及第2载置导体31b这2个的情况,但当然还有包括3个以上在内具备多个载置导体的情况。在载置导体31的侧面,使载置导体31的与第1绝缘层41相接的面的相反面暴露而设置第2绝缘层51。金属基体基板11具有上述金属基体21、第1绝缘层41、载置导体31以及第2绝缘层51。半导体元件71隔着作为导电接合部件的焊料81载置到载置导体31上并接合。此外,在本实施方式中,以半导体元件71将硅(si)作为半导体材料形成的情况为例子进行说明。另外,作为导电接合部件,还能够使用将银粒、铜粒等烧结而成的烧结金属接合部件。外壳61被设置成如图1所示在剖视时在第1绝缘层41的上侧,如图2所示在俯视时比第2绝缘层51更外侧在整个周围包围第2绝缘层51的侧面。即,外壳61设置于金属基体基板11上。外部端子74除了两端以外埋入安装在外壳61。在由第1载置导体31a、第2载置导体31b以及第2绝缘层51形成的底面和外壳61所包围的区域中,为了对于来自外部空气的水分的侵入而保护搭载于载置导体31上的半导体元件71,填充有密封部件77。半导体装置100还具备作为布线部件的导线84。
24.金属基体21以及载置导体31没有特别限定,既可以用如铜(cu)或者铝(al)那样的金属材料形成,也可以用如铝-碳化硅(alsic)合金或者铜-钼(cumo)合金那样的合金形成。金属基体21和载置导体31既可以用同一材料形成,也可以用不同的材料形成。另外,金属基
体21既可以安装有例如如铜(cu)或者铝(al)那样的金属材料的散热片,也可以安装有散热器。
25.在半导体装置100中,第1绝缘层41和第2绝缘层51是由不同的材料构成的独立构件。第1绝缘层41是以第1载置导体31a与金属基体21之间的电绝缘、第2载置导体31b与金属基体21之间的电绝缘、从第1载置导体31a向金属基体21的散热、以及从第2载置导体31b向金属基体21的散热为目的设置的。即,第1绝缘层41是以电绝缘和散热为目的设置的。相对于此,第2绝缘层51主要是以第1载置导体31a与第2载置导体31b之间的电绝缘为目的设置的。因此,在本实施方式的半导体装置100中,能够在第1绝缘层41和第2绝缘层51中,使用符合上述目的的不同的材料。
26.第1绝缘层41具有高的电绝缘性以及热传导性,主要以在树脂组成物中填充填料的方式构成。作为树脂组成物,使用例如环氧树脂、酚醛树脂、硅酮橡胶等热硬化性树脂。另外,也可以使用聚乙烯、聚酰亚胺、丙烯酸系的热可塑性树脂等。作为填料,最好使用热传导率高的氧化铝(al2o3)、氮化硼(bn)、氮化铝(aln)、金刚石(c)、碳化硅(sic)、氮化硅(si3n4)、氧化硼(b2o3)等。此外,在热传导性的要求低的情况下,既可以使用二氧化硅(sio2),也可以用如硅酮树脂或者丙烯酸树脂那样的树脂材料形成。填料既可以是1种,也可以填充2种以上。
27.第2绝缘层51具有高的电绝缘性,主要以在树脂组成物中填充填料的方式构成。作为树脂组成物,使用例如环氧树脂、酚醛树脂、硅酮橡胶等热硬化性树脂。另外,也可以使用聚乙烯、聚酰亚胺、丙烯酸系的热可塑性树脂等。作为填料,既可以用如氧化铝(al2o3)、氮化硼(bn)、氮化铝(aln)、金刚石(c)、碳化硅(sic)、氮化硅(si3n4)、二氧化硅(sio2)、氧化硼(b2o3)那样的无机陶瓷材料形成,也可以用如硅酮树脂或者丙烯酸树脂那样的树脂材料形成。填料既可以是1种,也可以填充2种以上。
28.在金属基体基板11中,金属基体21、第1绝缘层41、载置导体31、以及第2绝缘层51一体成形。在半导体装置100中,载置导体31的厚度和第2绝缘层51的厚度相同。因此,易于通过冲压加工、模塑成型等成形。成形方法没有特别限定,也可以使用例如以下说明的成形工序。
29.说明成形工序的第1个例子。通过冲压加工一体成形金属基体21和第1绝缘层41。通过蚀刻或者冲孔加工,对被用作载置导体31的平板原材料的例如厚铜板进行构图来作为载置导体31。此外,蚀刻既可以是单面蚀刻也可以是两面蚀刻。与构成第2绝缘层51的材料一体地,对载置导体31进行模塑成型。通过冲压加工一体地成形如上所述一体化的金属基体21以及第1绝缘层41、和一体化的载置导体31以及第2绝缘层51,作为金属基体基板11。
30.说明成形工序的第2个例子。与第1个例子同样地,一体地成形金属基体21和第1绝缘层41,对例如厚铜板进行构图而作为载置导体31。使用模具并通过模塑成型,一体地成形被一体化的金属基体21及第1绝缘层41、载置导体31、以及构成第2绝缘层51的材料,作为金属基体基板11。
31.说明成形工序的第3个例子。与第1个例子同样地,一体地成形金属基体21和第1绝缘层41。通过冲压加工,一体地成形被一体化的金属基体21以及第1绝缘层41、和被用作载置导体31的平板原材料的例如厚铜板。在使厚铜板、金属基体21、以及第1绝缘层41一体化之后,通过蚀刻对厚铜板进行构图,作为载置导体31。使构成第2绝缘层51的材料流入载置
导体31的图案之间并使其硬化,作为金属基体基板11。
32.半导体元件71的类型既可以是绝缘栅极型双极晶体管(insulated gate bipolar transistor/igbt)、金属氧化物半导体场效应晶体管(metal-oxide-semiconductor field-effect transistor/mosfet)、或者续流二极管(free wheeling diode/fwd)等电力用的半导体元件,或者也可以是ic芯片或者二极管等对电力用的半导体元件进行驱动控制的控制用的半导体元件。在本实施方式中,关于半导体元件71,以将硅(si)作为半导体材料形成的例子进行说明,但也可以用如碳化硅(sic)、氮化镓(gan)或者金刚石(c)那样的宽能带隙半导体材料形成。半导体元件71设置有多个,在类型以及材料的至少1个方面,既可以相互相同,也可以相互不同。
33.外壳61用对水分具有低的透过性的材料形成。外壳61例如最好用如聚苯硫醚(pps)、聚对苯二甲酸丁二醇酯(pbt)或者聚醚醚酮(peek)那样的热可塑性树脂形成。另外,通过确保外壳61的厚度,能够使用水分的透过性比较高的热硬化性树脂。另外,还能够使用如聚四氟乙烯(ptfe)那样的氟系树脂、陶瓷材料或者玻璃材料、或者它们的混合物。外壳61配置于金属基体基板11上。外壳61和金属基体基板11没有特别限定,也可以用例如粘接剂接合。
34.外部端子74没有特别限定,也可以包括如铜(cu)或者铝(al)那样的金属材料。另外,作为布线部件的导线84将外部端子74和半导体元件71电接合,用例如铜(cu)或者铝(al)那样的金属材料构成。在此,还能够设为在布线部件中不使用导线而将载置导体的一部分延伸至绝缘层的外部并折弯来作为外部端子的引线框架构造。然而,外部端子露出于外部空气,所以在水分从外部端子和外壳的界面侵入的情况下,形成水分通到外部端子弯曲的前方的载置导体和密封树脂的界面的路径,担心水分易于到达至搭载于载置导体的半导体元件。相对于此,在本实施方式的半导体装置100中,独立地设置外部端子74和作为布线部件的导线84并进行电耦合,一般来说导线84的表面积小于在引线框架构造中使与导线对应的载置导体延伸的部分的表面积。即,通过设置导线84,成为与密封部件77的界面的吸湿路径的面积小于设为引线框架构造的情况。因此,即使水分从外部端子和外壳的界面侵入,在导线84和密封部件的界面中水分的侵入也被降低。
35.密封部件77例如用如环氧树脂、硅酮树脂、氨基甲酸乙酯树脂、聚酰亚胺树脂、聚酰胺树脂或者丙烯酸树脂那样的具有电绝缘性的树脂形成。密封部件77也可以用分散有使密封部件77的机械强度以及热传导性提高的填料而成的绝缘性复合材料形成。使密封部件77的机械强度以及热传导性提高的填料例如也可以用如二氧化硅(sio2)、氧化铝(al2o3)、氮化铝(aln)、氮化硼(bn)、氮化硅(si3n4)、金刚石(c)、碳化硅(sic)或者氧化硼(b2o3)那样的无机陶瓷材料形成。
36.接下来,说明这样构成的本实施方式的半导体装置100的效果。在图1所示的半导体装置100中,载置导体31的厚度大于第1绝缘层41的厚度。另外,载置导体31为了使热在面积方向上扩散,具有比半导体元件71的面积大的面积。第1绝缘层41用将填料混入到环氧树脂等而提高热传导率的复合材料形成,但这样的复合材料相比于构成载置导体31的金属材料或者合金,热传导率更低,即散热性更差。因此,通过使散热性好的载置导体31比散热性相对差的第1绝缘层41厚,在半导体元件71中发生的热通过在厚的载置导体31中扩散而在面积方向上扩散,能够以宽的面积经由第1绝缘层41向金属基体21散热,能够提高半导体装
置的散热性。此时,为了确保第1载置导体31a与第2载置导体31b之间的电绝缘,设置于载置导体31的侧面的第2绝缘层51伴随第1载置导体31a以及第2载置导体31b的厚度的增加而变厚。因此,根据本实施方式的结构,半导体装置100通过在比第2绝缘层51靠外侧设置外壳61,即使成为在金属基体基板11上具备外壳61的构造,也能够抑制水分从第2绝缘层51的侧面侵入,防止半导体元件的劣化。因此,起到能够得到提高了可靠性的半导体装置这样的效果。此外,虽然说明了在半导体装置100中为了散热而载置导体31具有比半导体元件71的面积大的面积的结构,但还能够成为载置导体31和半导体元件71具有相等的面积的结构。在该情况下,能够使半导体装置小型化。
37.在半导体装置100中,金属基体21具有比载置导体31的面积与第2绝缘层51的面积之和大的面积。在这样构成的半导体装置100中,金属基体基板11在外周区域中具有台阶构造。根据这样的结构,在半导体装置100中,如果在动作时半导体元件71发热,经由焊料81、载置导体31、第1绝缘层41、以及金属基体21在纵向上散热,并且在面积方向上也促进散热。因此,半导体装置100通过金属基体基板11的台阶构造来具有更高的散热性,起到能够得到提高了可靠性的半导体装置这样的效果。
38.另外,在半导体装置100中,载置导体31的厚度大于金属基体21的厚度。在本实施方式的半导体装置100中,在第1载置导体31a与第2载置导体31b之间,并非作为密封部件注入例如向树脂材料填充填料而成的复合材料,而是设置第2绝缘层51,使将它们一体化的金属基体基板11成形。关于第1载置导体31a与第2载置导体31b之间,为了使半导体装置小型化,最好在可确保电绝缘的范围中尽可能窄地设置。在此,在第1载置导体31a和第2载置导体31b比以往厚的情况下,在以往的半导体装置中,存在难以向第1载置导体31a和第2载置导体31b的间隙无空洞地注入密封部件这样的课题。相对于此,在本实施方式的半导体装置100中,通过载置导体31加厚,能够提高向面积方向的散热性,而且通过金属基体基板11一体地成形,即使使第1载置导体31a与第2载置导体31b之间的面积成为最小限度,也能够无空洞地填充第2绝缘层51而确保电绝缘性,能够实现小型化。因此,起到能够得到提高了散热性和可靠性并小型化的半导体装置的效果。
39.进而,设置于半导体装置100的金属基体基板11包括金属基体21、第1绝缘层41、载置导体31、以及第2绝缘层51,主要通过载置导体31和金属基体21确保其刚性。在以往的半导体装置中,通过载置导体相对薄、且金属基体相对厚,在金属基体基板整体中确保刚性。在上述以往的半导体装置中,在设为为了提高金属基体基板的散热性而安装有散热器等的金属基体薄的结构的情况下,载置导体和金属基体都薄,所以存在在金属基体基板整体中刚性变弱的课题。因此,在本实施方式中,通过设为载置导体31相对厚且金属基体21相对薄、即载置导体31比金属基体21厚的结构,能够确保作为金属基体基板11整体的刚性,此外并且起到能够提高散热性的效果。另外,通过金属基体21薄,相比于载置导体31和金属基体21都厚的情况,起到抑制材料成本的效果。
40.在此,金属基体21、第1绝缘层41以及载置导体31的厚度没有特别指定,在使金属基体21成为500~1000μm、使第1绝缘层41成为150~175μm、使载置导体31成为1000~2000μm时,能够得到散热性以及刚性高的金属基体基板11。因此,关于金属基体21、第1绝缘层41以及载置导体31的厚度,载置导体31最厚、金属基体21次厚、第1绝缘层41最薄,从而成为确保金属基体基板11的散热性和刚性的构造。
41.图3是作为本实施方式的半导体装置的第1变形例,示出半导体装置101的结构的剖面图。也可以如图3所示,在外壳62的下表面的外周部设置凸部62a,外壳62的一部分覆盖第1绝缘层41的至少一部分的外周区域。根据这样的结构,在半导体装置101中,能够防止相对金属基体基板11配置外壳62的位置偏移。因此,进一步抑制水分由于外壳62的位置偏移而从界面的间隙侵入,起到能够得到提高了可靠性的半导体装置这样的效果。此外,在图3中,作为本实施方式的半导体装置100的第1变形例,图示半导体装置101的结构而进行了说明,但由于该结构的特征在于外壳的形状,所以也可以将在此说明的具有凸部62a的外壳62应用于在本实施方式中另外说明的结构,只要没有矛盾,也可以应用于其他实施方式。
42.图4是作为本实施方式的半导体装置的第2变形例,示出半导体装置102的结构的剖面图。如图4所示,也可以设为第1绝缘层42和第2绝缘层52用同一材料构成,在边界面50中不具有界面而一体化的结构。这样构成的半导体装置102还能够在金属基体基板12的成形工序中,在金属基体21上层叠构成第1绝缘层42以及第2绝缘层52的复合材料,埋入构图后的载置导体31并硬化。根据这样的结构,半导体装置102由于在第1绝缘层42与第2绝缘层52之间的边界面50中不具有界面,所以进一步抑制水分从界面侵入,起到能够得到提高了可靠性的半导体装置这样的效果。此外,在图4中,作为本实施方式的半导体装置100的第2变形例,图示半导体装置102的结构并进行了说明,但该结构具有一体地构成第1绝缘层42和第2绝缘层52而在边界面50中不具有界面的特征,所以也可以将在此说明的第1绝缘层42和第2绝缘层52的结构应用于在本实施方式中另外说明的结构,只要没有矛盾,也可以应用于其他实施方式。
43.图5是作为本实施方式的半导体装置的第3变形例,示出半导体装置103的结构的剖面图。也可以设为如图5所示,第2绝缘层53比载置导体32厚、即第2绝缘层53的上表面53a比载置导体32的上表面32c设置于上侧的结构。第2绝缘层53是为了第1载置导体32a与第2载置导体32b之间的电绝缘而设置的。在这样构成的半导体装置103中,通过将第1载置导体32a与第2载置导体32b之间的爬电距离设置得较长,能够进一步提高电绝缘性,起到能够得到进一步提高可靠性的半导体装置这样的效果。此外,在图5中,作为本实施方式的半导体装置100的第3变形例,图示半导体装置103的结构并进行了说明,但该结构具有第2绝缘层53比载置导体32厚的特征,所以也可以将在此说明的第2绝缘层53比载置导体32厚的结构应用于在本实施方式中另外说明的结构,只要没有矛盾,也可以应用于其他实施方式。
44.实施方式2.
45.使用图6说明本发明所涉及的实施方式2的半导体装置。图6是示出本实施方式的半导体装置200的结构的剖面图。本实施方式的半导体装置200具备具有金属基体21、第1绝缘层43、载置导体31及第2绝缘层51的金属基体基板14、半导体元件71、外壳61、外部端子74、以及密封部件77,外壳61与第2绝缘层51相比设置于外侧这点与实施方式1相同,但外壳61与第1绝缘层43相比设置于外侧这点是与实施方式1的半导体装置100不同的特征。
46.第1绝缘层43具有跟载置导体31的面积与第2绝缘层51的面积之和相等的面积。在半导体装置200中,金属基体21没有特别限定,也可以用粘接剂等与外壳61接合。
47.在金属基体基板14中,金属基体21、第1绝缘层43、载置导体31、以及第2绝缘层51一体成形。成形方法没有特别限定,既可以与在实施方式1中叙述的成形工序相同,或者也可以使用如以下说明的方法。
48.说明成形工序的例子。通过蚀刻或者冲孔加工,对被用作载置导体31的平板原材料的例如厚铜板进行构图来作为载置导体31。此外,蚀刻既可以是单面蚀刻也可以是两面蚀刻。与构成第2绝缘层51的材料一体地,对载置导体31进行模塑成型。通过冲压加工或者模塑成型,一体地成形被一体化的载置导体31及第2绝缘层51、金属基体21、以及构成第1绝缘层43的材料来作为金属基体基板14。
49.即便是这样构成的实施方式2所示的半导体装置200,也能够抑制水分从第2绝缘层51的侧面侵入,防止半导体元件的劣化,起到能够得到提高了可靠性的半导体装置这样的效果。进而,通过在第1绝缘层43的外侧设置外壳,水分从第1绝缘层43的侧面的侵入也被抑制,能够防止半导体元件的劣化,所以起到能够得到进一步提高了可靠性的半导体装置的效果。
50.图7是作为本实施方式的半导体装置的变形例而示出半导体装置201的结构的剖面图。如图7所示,第1绝缘层44也可以设为具有比载置导体31的面积与第2绝缘层51的面积之和大的面积的构造。在半导体装置201中,金属基体21和第1绝缘层44没有特别限定,也可以至少某一方用粘接剂等与外壳63接合。
51.即便是这样构成的半导体装置201,也通过在第1绝缘层44以及第2绝缘层51的外侧设置外壳,能够抑制水分从第1绝缘层44的侧面以及第2绝缘层51的侧面侵入,防止半导体元件的劣化,起到能够得到进一步提高了可靠性的半导体装置的效果。
52.另外,在半导体装置201中,关于金属基体21、第1绝缘层44、以及载置导体31及第2绝缘层51的面积,金属基体21具有最大的面积,第1绝缘层44具有比金属基体21小的面积,载置导体31的面积与第2绝缘层51的面积之和小于金属基体21的面积以及第1绝缘层44的面积。因此,如图7所示,金属基体基板15具有逐渐展开的台阶构造。在这样构成的半导体装置201中,如果在动作时半导体元件71发热,则经由焊料81、载置导体31、第1绝缘层44、以及金属基体21在纵向上散热,并且在面积方向上也促进散热。因此,半导体装置201通过金属基体基板15具有逐渐展开的阶梯构造,具有更高的散热性,具有能够得到进一步提高了可靠性的半导体装置的效果。
53.另外,根据图7所示的结构,外壳63能够构成为例如设置凸部63a来使外壳63的一部分覆盖第1绝缘层44的外周区域,所以半导体装置201能够防止相对金属基体基板15配置外壳61的位置偏移。因此,进一步抑制水分从界面的间隙侵入,起到能够得到提高了可靠性的半导体装置这样的效果。此外,在图7中,作为本实施方式所涉及的半导体装置200的变形例而图示半导体装置201的结构进行了说明,但该结构具有金属基体基板15成为逐渐展开的阶梯构造的特征,所以具有逐渐展开的阶梯构造的金属基体基板15的结构只要没有矛盾,也可以应用于其他实施方式。
54.实施方式3.
55.使用图8说明本发明所涉及的实施方式3的半导体装置。图8是示出本实施方式的半导体装置300的结构的剖面图。本实施方式的半导体装置300具备具有金属基体21、第1绝缘层41、载置导体31及第2绝缘层51的金属基体基板11、半导体元件71、外壳61、外部端子74、以及密封部件77,外壳61与第1绝缘层41相比设置于外侧这点与实施方式1相同,但具备相对半导体元件71配置于与金属基体基板11相反的一侧且设置于密封部件77上的比外壳61靠内侧的区域的阻挡层91这点是与实施方式1的半导体装置100不同的特征。在此,图8的
半导体装置300示出在实施方式1中说明的半导体装置100中设置有阻挡层91的半导体装置,但也可以是在实施方式1中说明的半导体装置100的变形例中设置有阻挡层91的半导体装置,还可以是在实施方式2中说明的半导体装置200或者其变形例中设置有阻挡层91的半导体装置。另外,在图8中示出阻挡层91设置于比外壳61靠内侧的区域的结构,但不限于此,也可以是阻挡层91的至少一部分设置于外壳61的外侧的区域。
56.阻挡层91用对水分具有低的透过性的材料形成。阻挡层91例如最好用如聚苯硫醚(pps)、聚对苯二甲酸丁二醇酯(pbt)或者聚醚醚酮(peek)那样的热可塑性树脂形成。另外,通过确保阻挡层91的厚度,还能够使用水分的透过性比较高的热硬化性树脂、如聚四氟乙烯(ptfe)那样的氟系树脂、陶瓷材料或者玻璃材料、或者它们的混合物。阻挡层91和外壳61没有特别限定,既可以例如用粘接剂接合,也可以接合阻挡层91和密封部件77。
57.即便是这样构成的实施方式3所示的半导体装置300,也能够抑制水分从第2绝缘层51的侧面侵入,防止半导体元件的劣化,起到能够得到提高了可靠性的半导体装置这样的效果。进而,通过在密封部件77上的比外壳61靠内侧的区域中设置阻挡层91,能够抑制水分从密封部件77的上部侵入,防止半导体元件的劣化,所以起到能够得到进一步提高了可靠性的半导体装置这样的效果。
58.实施方式4.
59.使用图9说明搭载有上述实施方式1~3中的任意一个所涉及的半导体装置的、本发明所涉及的实施方式4的电力变换装置。图9是用于说明本实施方式的电力变换装置的框图,图9的整体示出应用本实施方式的电力变换装置的电力变换系统。以下,具体地说明实施方式4为三相的逆变器的情况。
60.图9所示的电力变换系统包括电源410、本实施方式的电力变换装置400、负载420。电源410是直流电源,对电力变换装置400供给直流电力。电源410能够包括各种例子,例如既能够包括直流系统、太阳能电池、蓄电池,也可以包括与交流系统连接的整流电路、ac/dc转换器。另外,电源410也可以包括将从直流系统输出的直流电力变换为预定的电力的dc/dc转换器。
61.电力变换装置400是连接于电源410与负载420之间的三相的逆变器,将从电源410供给的直流电力变换为交流电力,对负载420供给交流电力。电力变换装置400如图9所示具备:主变换电路401,将输入的直流电力变换为交流电力而输出;以及控制电路403,将控制主变换电路401的控制信号输出给主变换电路401。
62.负载420是通过从电力变换装置400供给的交流电力被驱动的三相的电动机。此外,负载420不限于特定的用途,是搭载于各种电气设备的电动机,例如被用作面向混合动力汽车、电动汽车、铁路车辆、电梯、或者空调设备的电动机。
63.以下,详细说明本实施方式的电力变换装置400。主变换电路401具备开关元件和续流二极管(未图示),通过开关元件进行开关,将从电源410供给的直流电力变换为交流电力,提供给负载420。主变换电路401的具体的电路结构有各种例子,但本实施方式的主变换电路401是2电平的三相全桥电路,能够包括6个开关元件和与各个开关元件逆并联的6个续流二极管。在主变换电路401的各开关元件和各续流二极管的至少某一个中,应用上述实施方式1~3中的任意一个所涉及的半导体装置402。6个开关元件按每2个开关元件串联连接而构成上下支路,各上下支路构成全桥电路的各相(u相、v相、w相)。而且,各上下支路的输
出端子即主变换电路401的3个输出端子与负载420连接。
64.另外,主变换电路401具备驱动各开关元件的驱动电路(未图示),而驱动电路既可以内置于半导体装置402,也可以是与半导体装置402独立地具备驱动电路的结构。驱动电路生成驱动主变换电路401的开关元件的驱动信号,提供给主变换电路401的开关元件的控制电极。具体而言,依照来自后述控制电路403的控制信号,将使开关元件成为导通状态的驱动信号和使开关元件成为截止状态的驱动信号输出给各开关元件的控制电极。在将开关元件维持为导通状态的情况下,驱动信号是开关元件的阈值电压以上的电压信号(导通信号),在将开关元件维持为截止状态的情况下,驱动信号成为开关元件的阈值电压以下的电压信号(截止信号)。
65.控制电路403以对负载420供给期望的电力的方式,控制主变换电路401的开关元件。具体而言,根据应提供给负载420的电力,计算主变换电路401的各开关元件应成为导通状态的时间(导通时间)。例如,能够通过根据应输出的电压来调制开关元件的导通时间的pwm控制,控制主变换电路401。而且,以在各时间点向应成为导通状态的开关元件输出导通信号并向应成为截止状态的开关元件输出截止信号的方式,向主变换电路401具备的驱动电路输出控制指令(控制信号)。驱动电路依照该控制信号,向各开关元件的控制电极输出导通信号或者截止信号作为驱动信号。
66.在本实施方式的电力变换装置中,在主变换电路401的开关元件和续流二极管的至少某一个中应用实施方式1~3中的任意一个所涉及的半导体装置,所以起到能够提高可靠性这样的效果。
67.此外,在本实施方式中,说明了应用于2电平的三相逆变器的例子,但不限于此,能够应用于各种电力变换装置。在本实施方式中,设为2电平的电力变换装置,但也可以是3电平、多电平的电力变换装置,在对单相负载供给电力的情况下也可以应用于单相的逆变器。另外,在对直流负载等供给电力的情况下,还能够将本实施方式应用于dc/dc转换器、ac/dc转换器。
68.另外,本实施方式的电力变换装置不限定于上述负载为电动机的情况,例如既能够用作放电加工机、激光加工机、或者感应加热烹调器、非接触供电系统的电源装置,进而也能够用作太阳能发电系统、蓄电系统等的功率调节器。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献