一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种串珠状纳米纤维燃油滤膜及其制备方法与流程

2022-02-21 04:20:43 来源:中国专利 TAG:
1.本发明属于纤维材料
技术领域
:,涉及一种串珠状纳米纤维燃油滤膜及其制备方法。
背景技术
::2.当前燃油滤纸多为疏水改性的纤维素滤纸,其普遍存在孔径大、分离精度低的缺陷。静电纺纳米纤维膜因具有纤维直径细、孔径小、孔隙率高、孔道连通性好等优点,在过滤与分离领域展现出广阔的应用前景。但目前常规静电纺纳米纤维膜的平均孔径多在1μm以上,难以实现对亚微米级乳化水的有效分离。3.通过构筑疏水的多级粗糙结构可在降低静电纺纤维膜孔径的同时提高纤维膜的界面选择润湿性,由此提高静电纺纤维膜对亚微米级乳化水的分离效率。文献[superhydrophobicandsuperoleophillicsurfaceofporousbeadedelectrospunpolystreneandpolysytrene-zeolitefiberforcrudeoil-waterseparation[j].physicsandchemistryoftheearth,partsa/b/c,2016,92:7-13.]公开了一种利用静电纺丝技术制备串珠纳米纤维滤膜的技术,但该技术制备的串珠粒径在微米级(>50μm),无法获得纳米级粒径串珠。文献[taroleaf-inspiredandsuperwettablenanonet-coverednanofibrousmembranesforhigh-efficiencyoilpurification[j].nanoscalehorizons,2019,4(5):1174-1184.]公开了一种以常规静电纺为基材,进一步利用高分子量低粘度聚合物溶液静电纺丝制备具有粗糙结构的超细纤维/微球复合燃油滤膜,但该技术工艺流程长且微球尺寸多在1μm以上导致超细纤维/微球沉积厚度达到5μm时滤膜的平均孔径仍为~0.6μm,同时该材料的粗糙结构仅存在于其表面功能层而底层静电纺基材的孔道中并无粗糙结构,严重限制了材料过滤精度的进一步提升。技术实现要素:[0004]本发明的目的是解决现有技术存在的上述问题,提供一种串珠状纳米纤维燃油滤膜及其制备方法。[0005]为达到上述目的,本发明采用的技术方案如下:一种串珠状纳米纤维燃油滤膜的制备方法,首先利用聚合物、溶剂和非溶剂配制微凝胶的混合溶液,然后将选定的静电纺纤维基材置于混合溶液中浸渍,随后通过超声辅助的非溶剂诱导相分离方法制备串珠状纳米纤维膜,最后通过疏水改性制备串珠状纳米纤维燃油滤膜。本发明制备的串珠状纳米纤维是以静电纺纤维为基材,通过超声辅助的非溶剂诱导相分离方法在静电纺纤维表面构筑串珠结构。[0006]本发明以静电纺纤维膜为基材原因在于:(1)静电纺纤维直径在纳米级别(<1000nm)有利于低粘度的微凝胶聚合物溶液在其表面形成纳米级串珠结构,如果以熔喷或纺粘非织造布这类纤维直径在微米级甚至几十微米的材料为基材,由于其尺寸与微凝胶聚合物溶液在其表面形成的微球尺寸不匹配,无法形成串珠结构。(2)静电纺纤维膜的高孔隙率和连通孔道结构有利于超声辅助相分离过程中溶剂与非溶剂的相互扩散。[0007]本发明使用微凝胶的聚合物溶液其原因在于微凝胶的聚合物溶液中含有大量成核的聚合物微晶,有助于相分离过程中形成串珠结构。[0008]本发明采用超声辅助非溶剂诱导相分离技术原因在于超声波的能量可以增加聚合物浸渍液相分离过程中的瑞利不稳定性,从而促使微凝胶的聚合物浸渍液在相分离过程中在静电纺纤维表面形成串珠结构。[0009]所述聚合物选自聚丙烯腈、聚偏氟乙烯、聚砜、聚醚砜、聚酰胺、聚氨酯、聚醚酰亚胺,静电纺纤维基材为静电纺纳米纤维膜,静电纺纳米纤维膜的制备为已知技术;[0010]所述串珠状纳米纤维燃油滤膜中串珠的平均粒径为20~1000nm。[0011]作为优选的技术方案:[0012]如上所述的一种串珠状纳米纤维燃油滤膜的制备方法,聚合物的重均分子量为1×104~100×104g/mol,微凝胶聚合物溶液中聚合物的浓度为1~5wt%,微凝胶聚合物溶液的粘度为200~2000mpa.s。[0013]如上所述的一种串珠状纳米纤维燃油滤膜的制备方法,聚合物溶液的溶剂为n,n-二甲基甲酰胺、二甲基亚砜、n,n-二甲基甲酰胺、n-甲基吡咯烷酮、甲酸中的一种及以上。[0014]如上所述的一种串珠状纳米纤维燃油滤膜的制备方法,微凝胶聚合物溶液中所用非溶剂为水、甲醇、乙醇、丙醇、丁醇、异丙醇、丙酮中的一种及以上,所用非溶剂的量为0.001~0.5wt%。[0015]如上所述的一种串珠状纳米纤维燃油滤膜的制备方法,静电纺纤维基材为聚酰胺静电纺纳米纤维膜、聚四氟乙烯静电纺纳米纤维膜、聚对苯二甲酸乙二醇酯静电纺纳米纤维膜、聚偏氟乙烯静电纺纤维膜、聚丙烯腈静电纺纳米纤维膜。静电纺纤维基材要求不溶于混合溶液所用溶剂。[0016]如上所述的一种串珠状纳米纤维燃油滤膜的制备方法,所用非溶剂浸渍量为5~30ulcm-2。[0017]如上所述的一种串珠状纳米纤维燃油滤膜的制备方法,所用超声波辅助非溶剂诱导相分离中超声波频率20~50khz,超声波功率50~200w,所用非溶剂为水、甲醇、乙醇、丙醇、丁醇、异丙醇和丙酮中的一种及以上或所述非溶剂与聚合物溶液所用溶剂的混合物,溶剂用量占凝固浴比重为0~30wt%。[0018]如上所述的一种串珠状纳米纤维燃油滤膜的制备方法,所用疏水处理剂为聚二甲基硅氧烷、聚甲基氢硅氧烷、水性聚氨酯、氟化聚氨酯、聚苯并噁嗪、防水剂pm-3635,所用疏水处理方法为浸渍、涂层、喷雾,疏水处理方法为已知技术。[0019]本发明还提供采用如上任一项所述的方法制得的纳米纤维燃油滤膜,结构为串珠纳米纤维结构,串珠状纳米纤维燃油滤膜的疏水角为110~160°,滚动角≤10°,滤膜材料平均孔径为200~1000nm、孔隙率为80~95%。[0020]本发明的原理如下:[0021]本发明通过向聚合物溶液中添加一定比例的非溶剂,利用非溶剂使均相聚合物溶液发生聚合物成核生长从而形成含有大量聚合物微晶的微凝胶混合溶液,并在非溶剂诱导相分离过程中辅以超声技术,进一步增加微凝胶溶液相分离过程中的瑞利不稳定性,从而促进串珠结构的形成。[0022]有益效果:[0023](1)不同于利用静电纺丝法制备的串珠状纳米纤维材料,本发明制备的串珠的平均粒径在纳米级(20~1000nm),在减小纤维膜孔径的同时可有效增加材料的表面粗糙度,通过疏水处理可显著提升材料对亚微米级乳化水的分离性能。[0024](2)本发明的串珠结构可在静电纺纤维表面和孔道中形成,因此可显著增加静电纺纳米纤维膜表面和孔道壁的粗糙度,有利于过滤过程中乳化水的聚结破乳。附图说明[0025]图1为实施例1制备的串珠状纳米纤维燃油滤膜的sem图片。具体实施方式[0026]下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本技术所附权利要求书所限定的范围。[0027]实施例1[0028]一种串珠状纳米纤维燃油滤膜的制备方法,首先选用重均分子量为5×104g/mol的聚合物(聚丙烯腈)和溶剂(二甲基亚砜)配置聚合物溶液,向溶液中添加0.001wt%的非溶剂(甲醇)获得浓度为1wt%、粘度为200mpa.s的微凝胶混合溶液。接着将选定的聚酰胺静电纺纳米纤维基材至于浸渍量为5ulcm-2的混合溶液中浸渍,取出后将其置于频率为20khz、功率为50w的超声波辅助的非溶剂(甲醇)凝固浴中进行相分离,制备一种串珠状纳米纤维膜,随后以聚二甲基硅氧烷为疏水整理剂,利用浸渍法对串珠结构纳米纤维膜进行疏水处理,从而制备燃油过滤用串珠状纳米纤维膜,如图1所示。[0029]最终制得的串珠状纳米纤维燃油滤膜中串珠的平均粒径为50nm,滤膜疏水角为110°,滚动角10°,滤膜材料平均孔径为200nm,孔隙率为80%。[0030]实施例2[0031]一种串珠状纳米纤维燃油滤膜的制备方法,首先选用重均分子量为57×104g/mol的聚合物(聚偏氟乙烯)和溶剂(n,n-二甲基甲酰胺)配置聚合物溶液,向溶液中添加0.01wt%的非溶剂(水)获得浓度为2wt%、粘度为800mpa.s的微凝胶混合溶液。接着将选定的聚四氟乙烯静电纺纳米纤维基材至于浸渍量为10ulcm-2的混合溶液中浸渍,取出后将其置于频率为20khz、功率为100w的超声波辅助的非溶剂(水和n,n-二甲基甲酰胺的混合物)凝固浴中进行相分离,其中n,n-二甲基甲酰胺用量占凝固浴比重的2wt%,制备一种串珠状纳米纤维膜,随后以聚甲基氢硅氧烷为疏水整理剂,利用涂层方法对串珠结构纳米纤维膜进行疏水处理,从而制备燃油过滤用串珠状纳米纤维膜。[0032]最终制得的串珠状纳米纤维燃油滤膜中串珠的平均粒径为50nm,滤膜疏水角为150°,滚动角3°,滤膜材料平均孔径为300nm,孔隙率为85%。[0033]实施例3[0034]一种串珠状纳米纤维燃油滤膜的制备方法,首先选用重均分子量为20×104g/mol的聚合物(聚砜)和溶剂(n,n-二甲基甲酰胺)配置聚合物溶液,向溶液中添加0.15wt%的非溶剂(乙醇)获得浓度为3wt%、粘度为800mpa.s的微凝胶混合溶液。接着将选定的聚对苯二甲酸乙二醇酯静电纺纳米纤维基材至于浸渍量为15ulcm-2的混合溶液中浸渍,取出后将其置于频率为30khz、功率为120w的超声波辅助的非溶剂(乙醇)凝固浴中进行相分离,制备一种串珠状纳米纤维膜,随后以水性聚氨酯为疏水整理剂,利用喷涂法对串珠结构纳米纤维膜进行疏水处理,从而制备燃油过滤用串珠状纳米纤维膜。[0035]最终制得的串珠状纳米纤维燃油滤膜中串珠的平均粒径为1000nm,滤膜疏水角为100°,滚动角8°,滤膜材料平均孔径为600nm,孔隙率为90%[0036]实施例4[0037]一种串珠状纳米纤维燃油滤膜的制备方法,首先选用重均分子量为30×104g/mol的聚合物(聚醚砜)和溶剂(n-甲基吡咯烷酮)配置聚合物溶液,向溶液中添加0.2wt%的非溶剂(水)获得浓度为2wt%、粘度为1000mpa.s的微凝胶混合溶液。接着将选定的聚酰胺静电纺纤维基材至于浸渍量为25ulcm-2的混合溶液中浸渍,取出后将其置于频率为30khz、功率为200w的超声波辅助的非溶剂(水和丙醇的的混合物)凝固浴中进行相分离,其中丙醇用量占凝固浴比重的20wt%,制备一种串珠状纳米纤维膜,随后以氟化聚氨酯为疏水整理剂,利用浸渍法对串珠结构纳米纤维膜进行疏水处理,从而制备燃油过滤用串珠状纳米纤维膜。[0038]最终制得的串珠状纳米纤维燃油滤膜中串珠的平均粒径为300nm,滤膜疏水角为150°,滚动角1°,滤膜材料平均孔径为300nm,孔隙率为93%。[0039]实施例5[0040]一种串珠状纳米纤维燃油滤膜的制备方法,首先选用重均分子量为100×104g/mol的聚合物(聚醚酰亚胺)和溶剂(n,n-二甲基甲酰胺、二甲基亚砜)配置聚合物溶液,其中n,n-二甲基甲酰胺和二甲基亚砜的比例为3/7,向溶液中添加0.005wt%的非溶剂(水)获得浓度为1wt%、粘度为2000mpa.s的微凝胶混合溶液。接着将选定的聚酰胺静电纺纳米纤维基材至于浸渍量为20ulcm-2的混合溶液中浸渍,取出后将其置于频率为50khz、功率为150w的超声波辅助的非溶剂(水)凝固浴中进行相分离,制备一种串珠状纳米纤维膜,随后以聚苯并噁嗪为疏水整理剂,利用喷雾法对串珠结构纳米纤维膜进行疏水处理,从而制备燃油过滤用串珠状纳米纤维膜。[0041]最终制得的串珠状纳米纤维燃油滤膜中串珠的平均粒径为500nm,滤膜疏水角为140°,滚动角3°,滤膜材料平均孔径为350nm,孔隙率为85%。[0042]实施例6[0043]一种串珠状纳米纤维燃油滤膜的制备方法,首先选用重均分子量为20×104g/mol的聚合物(聚氨酯)和溶剂(n,n-二甲基乙酰胺和n-甲基吡咯烷酮)配置聚合物溶液,其中n,n-二甲基乙酰胺和n-甲基吡咯烷酮的比例为5/5,向溶液中添加0.3wt%的非溶剂(水)获得浓度为2wt%、粘度为1200mpa.s的微凝胶混合溶液。接着将选定的聚四氟乙烯静电纺纳米纤维基材至于浸渍量为15ulcm-2的混合溶液中浸渍,取出后将其置于频率为40khz、功率为125w的超声波辅助的非溶剂(水)凝固浴中进行相分离,制备一种串珠状纳米纤维膜,随后以防水剂pm-3635为疏水整理剂,利用涂层法对串珠结构纳米纤维膜进行疏水处理,从而制备燃油过滤用串珠状纳米纤维膜。[0044]最终制得的串珠状纳米纤维燃油滤膜中串珠的平均粒径为700nm,滤膜疏水角为120°,滚动角5°,滤膜材料平均孔径为600nm,孔隙率为89%。[0045]实施例7[0046]一种串珠状纳米纤维燃油滤膜的制备方法,首先选用重均分子量为9×104g/mol的聚合物(聚丙烯腈)和溶剂(二甲基亚砜)配置聚合物溶液,向溶液中添加0.003wt%的非溶剂(甲醇)获得浓度为1.5wt%、粘度为800mpa.s的微凝胶混合溶液。接着将选定的聚对苯二甲酸乙二醇酯静电纺纳米纤维膜基材至于浸渍量为30ulcm-2的混合溶液中浸渍,取出后将其置于频率为50khz、功率为100w的超声波辅助的非溶剂(水)凝固浴中进行相分离,制备一种串珠状纳米纤维膜,随后以聚二甲基硅氧烷为疏水整理剂,利用浸渍法对串珠结构纳米纤维膜进行疏水处理,从而制备燃油过滤用串珠状纳米纤维膜。[0047]最终制得的串珠状纳米纤维燃油滤膜中串珠的平均粒径为600nm,滤膜疏水角为120°,滚动角5°,滤膜材料平均孔径为1000nm,孔隙率为95%[0048]实施例8[0049]一种串珠状纳米纤维燃油滤膜的制备方法,首先选用重均分子量为1.8×104g/mol的聚合物(聚酰胺)和溶剂(甲酸)配置聚合物溶液,向溶液中添加0.002wt%的非溶剂(水)获得浓度为1.5wt%、粘度为300mpa.s的微凝胶混合溶液。接着将选定的聚偏氟乙烯静电纺纳米纤维基材至于浸渍量为30ulcm-2的混合溶液中浸渍,取出后将其置于频率为50khz、功率为100w的超声波辅助的非溶剂(水)凝固浴中进行相分离,制备一种串珠状纳米纤维膜,随后以聚二甲基硅氧烷为疏水整理剂,利用喷雾法对串珠结构纳米纤维膜进行疏水处理,从而制备燃油过滤用串珠状纳米纤维膜。[0050]最终制得的串珠状纳米纤维燃油滤膜中串珠的平均粒径为400nm,滤膜疏水角为130°,滚动角7°,滤膜材料平均孔径为500nm,孔隙率为90%[0051]实施例9[0052]一种串珠状纳米纤维燃油滤膜的制备方法,首先选用重均分子量为1×104g/mol的聚合物(聚酰胺)和溶剂(甲酸)配置聚合物溶液,向溶液中添加0.003wt%的非溶剂(甲醇)获得浓度为3wt%、粘度为700mpa.s的微凝胶混合溶液。接着将选定的聚丙烯腈静电纺纤维基材至于浸渍量为25ulcm-2的混合溶液中浸渍,取出后将其置于频率为30khz、功率为200w的超声波辅助的非溶剂(水)凝固浴中进行相分离,制备一种串珠状纳米纤维膜,随后以氟化聚氨酯为疏水整理剂,利用喷雾法对串珠结构纳米纤维膜进行疏水处理,从而制备燃油过滤用串珠状纳米纤维膜。[0053]最终制得的串珠状纳米纤维燃油滤膜中串珠的平均粒径为500nm,滤膜疏水角为150°,滚动角1°,滤膜材料平均孔径为600nm,孔隙率为92%。[0054]实施例10[0055]一种串珠状纳米纤维燃油滤膜的制备方法,首先选用重均分子量为68×104g/mol的聚合物(聚偏氟乙烯)和溶剂(n,n-二甲基甲酰胺)配置聚合物溶液,向溶液中添加0.1wt%的非溶剂(水)获得浓度为2wt%、粘度为1500mpa.s的微凝胶混合溶液。接着将选定的聚酰胺静电纺纳米纤维基材至于浸渍量为30ulcm-2的混合溶液中浸渍,取出后将其置于频率为50khz、功率为200w的超声波辅助的非溶剂(水)凝固浴中进行相分离,制备一种串珠状纳米纤维膜,随后以聚二甲基硅氧烷为疏水整理剂,利用喷雾法对串珠结构纳米纤维膜进行疏水处理,从而制备燃油过滤用串珠状纳米纤维膜。[0056]最终制得的串珠状纳米纤维燃油滤膜中串珠的平均粒径为400nm,滤膜疏水角为130°,滚动角5°,滤膜材料平均孔径为200nm,孔隙率为93%。当前第1页12当前第1页12
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献