一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

聚氨酯组合物、组合聚醚、聚氨酯硬泡及其制备方法与流程

2022-02-20 13:42:24 来源:中国专利 TAG:


1.本发明属于高分子材料领域,具体涉及烷烃共发泡体系的聚氨酯组合物、组合聚醚、聚氨酯硬泡及其制备方法。


背景技术:

2.随着家电能效标准的逐步提高和冰箱市场产品结构的快速升级,超节能冰箱、高端大容量冰箱、超薄冰箱等的需求量明显增加。为了使冰箱的容积率提高、能耗降低,通常采用真空绝热板(vacuum insulation panel,简称vip板)加聚氨酯泡沫的复合方式来填充冰箱壳体,即将vip板贴合至冰箱壳体的内部,然后通过聚氨酯发泡将壳体空腔充满。这种冰箱壳体的空腔结构更为复杂,流道更窄(有的部位仅为10mm),而聚氨酯发泡原液需要从灌注点流经空腔中的各流道,经过很长的距离达到冰箱的远端,因此,往往需要聚氨酯发泡原液具有优异的流动性。
3.通常,可采用低官能度的聚醚多元醇来提高聚氨酯发泡原液的流动性,但这会带来脱模性差、导热系数高、尺寸稳定性差等缺陷。另外,聚氨酯发泡原液在流动的过程中不仅要克服摩擦阻力,还需要克服流经管线、模块、通道时由于变径、变向等产生的局部阻力,特别是对于空腔结构较为复杂的冰箱壳体尤是如此。因此,如何提高聚氨酯发泡原液绕过障碍物的能力,并兼顾脱模性、导热性和尺寸稳定性等泡沫性能仍为本领域亟需解决的问题。


技术实现要素:

4.本发明所要解决的问题在于:(1)提高聚氨酯发泡原液绕过障碍物的能力,实现在最小注料量的前提下对复杂空腔结构的最佳填充效果;(2)兼顾脱模性、导热性、密度分布均匀性和尺寸稳定性等泡沫性能。为了达到上述目的,本发明首先提出了一种用于烷烃共发泡体系的聚氨酯组合物,其包括组合聚醚、物理发泡剂和异氰酸酯,该组合聚醚包括多元醇组分,以多元醇组分的质量为基准,该多元醇组分中含有≥15wt%的以蔗糖为起始剂的聚醚多元醇;所述物理发泡剂中含有丁烷,且丁烷在物理发泡剂中的摩尔百分比>5%;丁烷在≤23℃和绝对压力≥2.0bar的条件下与组合聚醚或异氰酸酯预混。优选组合聚醚、物理发泡剂与异氰酸酯的质量比为100:(14~25):(115~160)。其中的丁烷为正丁烷和/或异丁烷。
5.本发明中所述的以蔗糖为起始剂的聚醚多元醇,即以蔗糖作为唯一起始剂或者以蔗糖作为混合起始剂之一与环氧化合物经开环聚合制得的聚合物多元醇,简称为蔗糖聚醚多元醇。其中,环氧化合物优选为氧化丙烯与氧化丁烯的混合物或单独使用氧化丙烯。蔗糖聚醚多元醇的羟值优选为310~470mgkoh/g。当采用混合起始剂时,蔗糖在混合起始剂中的质量占比≥50%,以兼顾泡沫性能。混合起始剂中的其他组分可选自二甘醇、丙二醇、乙二醇、山梨醇、甘露醇、甘油、甲苯二胺、苯二胺等。
6.经大量研究发现,蔗糖聚醚多元醇和丁烷是否共同使用及共同使用时的预混方法
会影响聚氨酯发泡原液的能量变化,进而影响局部阻力的克服效果。采用质量占比≥15%的蔗糖聚醚多元醇和摩尔百分比>5%的丁烷相配合,并将丁烷在低温(≤23℃)和加压(≥2.0bar)的条件下与原料预混,可以在较小注料量的情况下提升聚氨酯发泡原液克服局部阻力的能力,从而促进聚氨酯发泡原液绕过障碍物,实现对复杂空腔的优异填充效果。若丁烷的摩尔百分比≤5%,则注料量较大,泡沫性能差。若不对丁烷进行低温和加压条件下的预混,则丁烷逸出速度快,填充效果差。若蔗糖聚醚多元醇的质量占比<15%,则填充效果不好,且脱模性和尺寸稳定性变差,在不使用蔗糖聚醚多元醇时脱模性劣化严重,甚至出现泡沫开裂。
7.当蔗糖聚醚多元醇的质量占比>80%,丁烷的摩尔百分比>43%时,物料相容性下降,丁烷逸出速度快,组合聚醚黏度过大,流动性差,最终导致泡沫综合性能下降,因此,为了兼顾泡沫性能,进一步优选蔗糖聚醚多元醇的质量占比为15~80%,丁烷在物理发泡剂中的摩尔百分比为5.4~43%。
8.综合操作便捷性、能源节约、生产成本等因素对温度和压力的范围进行优选,优选丁烷在4~23℃和绝对压力2.0~10bar的条件下与组合聚醚或异氰酸酯预混。进一步地,为了兼顾克服局部阻力能力的最大化,进一步优选为丁烷在5~20℃和绝对压力3.0~8.0bar的条件下与组合聚醚或异氰酸酯预混,其中的压力更进一步优选为4~7bar。
9.进一步的,所述物理发泡剂中还含有环戊烷、正戊烷、异戊烷中的至少一种,环戊烷、正戊烷和异戊烷三者在物理发泡剂中的比例为任意比例。
10.在试验中发现,戊烷与本发明物料体系的相容性良好,且具有适用范围广,较其他环保型发泡剂成本低等优点,因此,优选戊烷发泡剂有利于扩大本发明聚氨酯组合物的应用范围并节约原材料成本。
11.进一步地,所述物理发泡剂中还含有含氟烯烃,含氟烯烃具体优选为顺式-1,1,1,4,4,4-六氟-2-丁烯、反式-1,1,1,4,4,4-六氟-2-丁烯、反式-1-氯-3,3,3-三氟丙烯、顺式-1-氯-2,3,3,3-四氟丙烯、反式-1,3,3,3-四氟丙烯、2,3,3,3-四氟丙烯中的至少一种,其用量可根据使用需要采用任意比例。
12.丁烷受自身气体导热系数特性的影响,随着其用量增多,聚氨酯泡沫的导热系数会相应升高,为了优化聚氨酯泡沫的保温隔热性能,在物理发泡剂中增加上述含氟烯烃类发泡剂,以降低丁烷的相对使用量,在保持发泡性能的同时,提高保温隔热性能。进一步的,还可以使用全氟烯烃类物质降低导热系数。
13.进一步的,所述异氰酸酯的平均官能度≥2.7。
14.为了快速脱模、提高生产效率,聚氨酯还需要具有较好的脱模性。当异氰酸酯的平均官能度≥2.7时,具有改善固化性能,脱模性好的效果。进一步的,为了提高聚氨酯硬泡的密度分布均匀性,本发明优选平均官能度为2.7~2.9。
15.其次,本发明还提供了上述各聚氨酯组合物所使用的组合聚醚,所述组合聚醚由以下重量份物质组成:88~95wt%多元醇组分、泡沫稳定剂1.9~4.6wt%、催化剂2.0~5.9wt%、水0.9~2.9wt%。进一步优选为90~95wt%多元醇组分、泡沫稳定剂1.9~4.6wt%、催化剂2.0~5.0wt%、水0.9~2.5wt%。
16.除了克服局部阻力外,为了保证聚氨酯硬泡性能的稳定,还需要较好的密度分布均匀性。本发明根据聚氨酯组合物的使用需求,提供了上述用于聚氨酯组合物的组合聚醚,
该聚氨酯组合物主要用于制备聚氨酯硬泡,利用上述组合聚醚可获得密度分布均匀的聚氨酯硬泡,有利于泡沫综合性能的提升。
17.本发明的多元醇组分中可以使用聚醚多元醇和/或聚酯多元醇,聚醚多元醇可选自以蔗糖、甘油、植物油、山梨醇、乙二醇、丙二醇、苯二胺、甲苯二胺、乙醇胺、异丙醇胺中的一种或一种以上为起始剂的聚醚多元醇,羟值优选为225~515mgkoh/g;聚酯多元醇可选自脂肪族聚酯多元醇、芳香族聚酯多元醇、聚己内酯多元醇,羟值优选为360~550mgkoh/g;为进一步优化聚氨酯泡沫的性能,还可根据需要添加其他助剂,如抗老化剂、增塑剂、防腐剂、杀菌剂、成核剂、抗静电剂、阻燃剂、抑烟剂、交联剂、颜料、填料、增强纤维、相容剂等。
18.最后,本技术还提供了采用上述聚氨酯组合物制备而得的聚氨酯硬泡,以及采用上述聚氨酯组合物制备聚氨酯硬泡的方法,该方法的步骤如下:
19.(1)预混:
20.采用如下三种方法中的任一种制备组分a和组分b;
21.方法一、将全部物理发泡剂与组合聚醚预混制成组分a,异氰酸酯作为组分b;
22.方法二、将组合聚醚作为组分a,全部物理发泡剂与异氰酸酯预混制成组分b;
23.方法三、将物理发泡剂分为两部分,其中一部分物理发泡剂与组合聚醚预混制成组分a,另一部分物理发泡剂与异氰酸酯预混制成组分b;
24.(2)发泡:将组分a和组分b的温度控制在5~20℃,然后将两组分搅拌混合进行聚氨酯发泡反应,成型、熟化后获得聚氨酯硬泡。
25.通常为了确保组合聚醚的流动性,将组分a和组分b的温度调至常温(25℃左右),然后进行聚氨酯反应,以获得性能优良的泡沫。但是当环境温度较低时,由于发泡倍率降低导致填充效果下降,这样在冬季或者寒冷地区,通常需要提供额外热源,造成能耗增加,而本发明的技术方案采用5~20℃料温即可实现发泡倍率高、物料流动充分、灌注量显著减少的技术效果,并且脱模性能大幅改进,有利于能源的节约和应用范围的扩展。
26.本发明总体上的有益效果为:
27.(1)本发明使用环保型发泡剂,odp为零,gwp极低,有利于减缓气候变化,提升生态环境质量;
28.(2)本发明提高了聚氨酯发泡原液克服局部阻力的能力,在注料量相对较低的情况下仍能实现对复杂空腔结构的最佳的填充效果;
29.(3)本发明在低成本的情况下兼顾泡沫性能和脱模性能,有利于生产效率和效益的提高;
30.(4)本发明提高了低温发泡倍率,低温下的填充效果好。
附图说明
31.图1为兰芝模中挡块位置的主视图。
32.图2为图1左视图。
具体实施方式
33.本发明的术语和定义如下:
34.发泡倍率:即发泡前、后的体积比,等于(发泡后体积)/(发泡前体积)。
35.自由泡密度:即在无模具、自由生长状态下所获得的聚氨酯泡沫的芯密度。
36.模塑芯密度:即在模具中获得的聚氨酯泡沫的芯密度。
37.聚氨酯发泡原液克服局部阻力的能力:采用带挡块的兰芝模进行测试,具体的方法为:将内腔尺寸为20cm(长)
×
5cm(宽)
×
200cm(高)的兰芝模垂直放置,即高度方向为垂直方向。在兰芝模中加入三个挡块,挡块i和挡块ii的尺寸相同,均为15cm(长)
×
5cm(宽)
×
5cm(高),挡块iii的尺寸为20cm(长)
×
2.5cm(宽)
×
10cm(高),将挡块i置于距兰芝模底部120cm处,并与兰芝模内腔左侧面贴合,将挡块ii置于距兰芝模底部130cm处,并与兰芝模内腔右侧面贴合,将挡块iii置于距兰芝模底部150cm处,并与兰芝模内腔后侧面贴合,上述各挡块的布置请参阅图1和图2,其中表示方位的左侧面、右侧面以及后侧面均以图1中所示的方位为准。从兰芝模底部的注料口将聚氨酯发泡原液注入内腔,熟化后,取出泡沫,考察注料量和填充效果。若注料量少且填充效果好则说明其克服局部阻力的能力强。
38.填充效果:即对兰芝模内腔是否被完全填充,局部是否存在空洞,以及空洞大小等的考察,将填充效果分为五个等级,五级标记为
“○○○○○”
,表示兰芝模内腔被完全填充且无空洞,填充效果好;四级标记为
“○○○○”
,表示仅在挡块周围出现直径小于5mm的空洞;三级标记为
“○○○”
,表示仅在挡块周围出现直径5~10mm的空洞,填充效果一般;二级标记为
“○○”
,表示仅在挡块周围出现直径大于10mm的空洞,填充效果差;一级标记为
“○”
,表示兰芝模内腔未被完全充满。
39.密度分布均匀性:即沿高度方向自下而上每20cm取样一次,共获得9个样品,计算9个样品芯密度的样本标准差。
40.脱模性:使用“3min脱模后膨胀率”进行表征,即3min后脱模测量泡沫的平均厚度变化率,变化率越小说明脱模性越好。
41.芯密度、导热系数和尺寸稳定性按照《gb/t 26689-2011冰箱、冰柜用硬质聚氨酯泡沫塑料》中的方法进行。
42.本发明中所使用的部分原材料如下:
43.蔗糖聚醚多元醇a以蔗糖和丙二醇为混合起始剂,与氧化丙烯和氧化丁烯开环聚合,羟值为430~465mgkoh/g,蔗糖在混合起始剂中的占比为50%;
44.蔗糖聚醚多元醇b以蔗糖和甘油为混合起始剂,与氧化丙烯开环聚合,羟值为440~470mgkoh/g,蔗糖在混合起始剂中的占比为60%;
45.蔗糖聚醚多元醇c以蔗糖、甘油、三乙醇胺为混合起始剂,与氧化丙烯和氧化丁烯开环聚合,羟值为415~445mgkoh/g,蔗糖在混合起始剂中的占比为75%;
46.蔗糖聚醚多元醇d以蔗糖和二甘醇为混合起始剂,与氧化丙烯开环聚合,羟值为373~395mgkoh/g,蔗糖在混合起始剂中的占比为80%;
47.蔗糖聚醚多元醇e以蔗糖和乙二醇为混合起始剂,与氧化丙烯和氧化丁烯开环聚合,羟值为341~365mgkoh/g,蔗糖在混合起始剂中的占比为95%;
48.蔗糖聚醚多元醇f以蔗糖为起始剂,与氧化丙烯和氧化丁烯开环聚合,羟值为330~370mgkoh/g;
49.蔗糖聚醚多元醇g以蔗糖为起始剂,与氧化乙烯开环聚合,羟值为330~370mgkoh/g;
50.甘油聚醚多元醇,羟值为225~255mgkoh/g,平均官能度为3;
51.山梨醇聚醚多元醇,羟值为485~515mgkoh/g,平均官能度为5;
52.甲苯二胺聚醚多元醇,羟值为380~450mgkoh/g,平均官能度为4;
53.苯酐聚酯多元醇,羟值为360~400mgkoh/g,平均官能度为2;
54.聚己内酯多元醇,羟值为500~550mgkoh/g,平均官能度为3。
55.复合催化剂包括发泡催化剂、凝胶催化剂和三聚催化剂。发泡催化剂包括但不限于五甲基二乙烯三胺、双(二甲基胺乙基)醚、四甲基已二胺的任意一种或几种,凝胶催化剂包括但不限于二月桂酸二丁基锡、n-乙基吗啉、n,n-二甲基环已胺、三乙烯二胺、1,2-二甲基咪唑、二甲基苄胺的任意一种或几种,三聚催化剂包括但不限于1,3,5-三(二甲氨基丙基)六氢三嗪、2,4,6-三(二甲氨甲基)苯酚、甲季胺盐、辛酸钾、醋酸钾、(2-羟基丙基)三甲基甲酸铵、乙季铵盐、辛季铵盐的任意一种或几种。当选用两种以上催化剂时,可以采用其任意比例的混合。
56.泡沫稳定剂主要为有机硅氧烷聚氧化烯烃接枝共聚物,可选自市售牌号为ak8805、ak8830、ak8818、ak8815、ak8485、ak8812、ak8809、b8460、b8462、b8461、b8544、b8494、b8532、b8465、b8471、b8474、b8476、b8481、l6900、l6863、l6912、l6988的任意一种或几种。当选用两种以上泡沫稳定剂时,可以采用其任意比例的混合。
57.异氰酸酯可选自平均官能度为2.7的异氰酸酯和/或平均官能度为2.9的异氰酸酯,其中平均官能度为2.7的异氰酸酯可选自pm200、44v20l、m20s、pm2010的任意一种或几种,平均官能度为2.9的异氰酸酯可选自m50、pm400、44v40l、的任意一种或几种。当选用两种以上异氰酸酯时,可以采用其任意比例的混合。
58.表1实施例1~9物料配方表
59.[0060][0061]
表2实施例10~11和对比例1~7物料配方表
[0062]
[0063][0064]
泡沫制备方法:
[0065]
根据表1~2中配方称取物料,先将多元醇组分、泡沫稳定剂、催化剂和水混合,得到组合聚醚,然后将物理发泡剂与组合聚醚或异氰酸酯预混,调控物料温度为常温(25℃)或低温5~20℃,搅拌混合后注入模具中,经反应、成型、熟化后获得聚氨酯硬泡,记录注料量和填充效果,测算模塑芯密度、芯密度分布均匀性、导热系数、3min脱模后膨胀率和尺寸稳定性。预混时,可采用将物理发泡剂按组分依次加入预混的方式,也可以采用先将物理发泡剂的所有组分混合然后再将该混合物加入预混的方式
[0066]
实施例1
[0067]
将物理发泡剂与组合聚醚在15℃、绝对压力3bar条件下进行预混,获得组分a,将异氰酸酯的温度调至15℃,异氰酸酯作为组分b,将组分a与组分b搅拌混合后注入模具中,经反应、成型、熟化后获得聚氨酯硬泡。
[0068]
实施例2
[0069]
将物理发泡剂与组合聚醚在20℃、绝对压力8bar条件下进行预混,获得组分a,将异氰酸酯的温度调至20℃,异氰酸酯作为组分b,将组分a与组分b搅拌混合后注入模具中,经反应、成型、熟化后获得聚氨酯硬泡。
[0070]
实施例3
[0071]
将正丁烷平均分成两份,一份与组合聚醚在4℃、绝对压力2bar条件下进行预混,获得组分a,另一份与异氰酸酯在4℃、绝对压力2bar条件下进行预混,获得组分b,将组分a和组分b搅拌混合后注入模具中,经反应、成型、熟化后获得聚氨酯硬泡。
[0072]
实施例4
[0073]
将物理发泡剂与组合聚醚在23℃、绝对压力10bar条件下进行预混,获得组分a,将异氰酸酯的温度调至常温,异氰酸酯作为组分b,将组分a和组分b搅拌混合后注入模具中,经反应、成型、熟化后获得聚氨酯硬泡。
[0074]
实施例5
[0075]
将反式-1-氯-3,3,3-三氟丙烯物与组合聚醚在20℃、常压下预混,获得组分a,将
异丁烷与异氰酸酯在20℃、绝对压力3bar条件下进行预混,获得组分b,将组分a和组分b搅拌混合后注入模具中,经反应、成型、熟化后获得聚氨酯硬泡。
[0076]
实施例6
[0077]
将正丁烷和顺式-1,1,1,4,4,4-六氟-2-丁烯与组合聚醚在10℃、绝对压力4bar条件下进行预混,获得组分a,将异丁烷与异氰酸酯在10℃、绝对压力4bar条件下进行预混,获得组分b,将组分a和组分b搅拌混合后注入模具中,经反应、成型、熟化后获得聚氨酯硬泡。
[0078]
实施例7
[0079]
将物理发泡剂与组合聚醚在5℃、绝对压力7bar条件下进行预混,获得组分a,将异氰酸酯的温度调至5℃,异氰酸酯作为组分b,将组分a和组分b搅拌混合后注入模具中,经反应、成型、熟化后获得聚氨酯硬泡。
[0080]
实施例8
[0081]
将物理发泡剂与组合聚醚在20℃、绝对压力5bar条件下进行预混,获得组分a,将异氰酸酯的温度调至20℃,异氰酸酯作为组分b,将组分a和组分b搅拌混合后注入模具中,经反应、成型、熟化后获得聚氨酯硬泡。
[0082]
实施例9
[0083]
将物理发泡剂与组合聚醚在15℃、绝对压力4bar条件下进行预混,获得组分a,将异氰酸酯的温度调至15℃,异氰酸酯作为组分b,将组分a和组分b搅拌混合后注入模具中,经反应、成型、熟化后获得聚氨酯硬泡。
[0084]
实施例10
[0085]
组合聚醚作为组分a,将组合聚醚的温度调至5℃,将物理发泡剂与异氰酸酯在5℃、绝对压力9bar条件下进行预混,获得组分b,将组分a和组分b搅拌混合后注入模具中,经反应、成型、熟化后获得聚氨酯硬泡。
[0086]
实施例11
[0087]
将物理发泡剂与组合聚醚在15℃、绝对压力6bar条件下进行预混,获得组分a,将异氰酸酯的温度调至15℃,异氰酸酯作为组分b,将组分a和组分b搅拌混合后注入模具中,经反应、成型、熟化后获得聚氨酯硬泡。
[0088]
对比例1
[0089]
将物理发泡剂与组合聚醚在15℃、绝对压力3bar条件下进行预混,获得组分a,将异氰酸酯的温度调至15℃,异氰酸酯作为组分b,将组分a与组分b搅拌混合后注入模具中,经反应、成型、熟化后获得聚氨酯硬泡。
[0090]
对比例2
[0091]
将物理发泡剂与组合聚醚在15℃、绝对压力3bar条件下进行预混,获得组分a,将异氰酸酯的温度调至15℃,异氰酸酯作为组分b,将组分a与组分b搅拌混合后注入模具中,经反应、成型、熟化后获得聚氨酯硬泡。
[0092]
对比例3
[0093]
将物理发泡剂与组合聚醚在15℃、绝对压力3bar条件下进行预混,获得组分a,将异氰酸酯的温度调至15℃,异氰酸酯作为组分b,将组分a与组分b搅拌混合后注入模具中,经反应、成型、熟化后获得聚氨酯硬泡。
[0094]
对比例4
[0095]
将物理发泡剂与组合聚醚在20℃、绝对压力8bar条件下进行预混,获得组分a,将异氰酸酯的温度调至20℃,异氰酸酯作为组分b,将组分a与组分b搅拌混合后注入模具中,经反应、成型、熟化后获得聚氨酯硬泡。
[0096]
对比例5
[0097]
将物理发泡剂与组合聚醚在15℃、绝对压力6bar条件下进行预混,获得组分a,将异氰酸酯的温度调至15℃,异氰酸酯作为组分b,将组分a和组分b搅拌混合后注入模具中,经反应、成型、熟化后获得聚氨酯硬泡。
[0098]
对比例6
[0099]
将正丁烷平均分成两份,一份与组合聚醚在25℃、绝对压力2bar条件下进行预混,获得组分a,另一份与异氰酸酯在25℃、绝对压力2bar条件下进行预混,获得组分b,将组分a和组分b搅拌混合后注入模具中,经反应、成型、熟化后获得聚氨酯硬泡。
[0100]
对比例7
[0101]
将物理发泡剂与组合聚醚在23℃、常压条件下进行预混,获得组分a,将异氰酸酯的温度调至23℃,异氰酸酯作为组分b,将组分a和组分b搅拌混合后注入模具中,经反应、成型、熟化后获得聚氨酯硬泡。
[0102]
表3实施例1~6的表征结果
[0103][0104]
表4实施例7~11的表征结果
[0105][0106]
表5对比例1~7的表征结果
[0107][0108]
表6降低注料量的表征结果
[0109][0110]
上述实施例和对比例中自由泡密度均在同一水平,即21.0
±
0.2kg/m3。从表3、表4、表5的结果可以看出,当采用575g注料量进行兰芝模填充时,本发明的技术方案均达到了五级填充,效果较好。同时,采用本发明的技术方案获得的聚氨酯泡沫还具有较好的密度分布均匀性,导热系数低、3min脱模后膨胀率低,尺寸稳定性好,能够满足使用需求,有利于生产效率和效益的提高。而对比例中蔗糖聚醚多元醇占比、丁烷摩尔比以及预混条件均不在本发明范围的情况下,效果均不理想。对比例1和对比例7虽然实现了一般性填充,但是其泡沫性能较差,对比例6甚至出现不能完全填充的现象,说明对比例克服局部阻力的能力较差。另外,若将对比例1中的蔗糖聚醚多元醇f换成与环氧乙烷开环聚合的蔗糖聚醚多元醇(对比例3),或者不加入任何蔗糖聚醚多元醇(对比例2),则填充性差,且还会出现泡沫开裂的现象,尺寸稳定性差。另外,若将对比例2的物料温度升至25℃,则流动性有改善,填充效果达到三级,但是3min脱模后膨胀率和导热系数仍较差。
[0111]
同时,从表6中数据可以看出,在进一步降低注料量的情况下,仍然可以实现较好的填充性和较优泡沫性能的兼顾。除了表中所列举的实施例外,本发明的其他技术方案均可以达到上述效果,在此不做赘述。因此,本发明的技术方案有利于减少注料量,节约原材料成本。同时,注料量降低的情况下,本发明技术方案的脱模时间还可以进一步降低,2min脱模后膨胀率均<2%,有利于缩短脱模时间,提高生产效率。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献