一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种非诊断目的的基因定位方法与流程

2022-02-19 11:55:34 来源:中国专利 TAG:


1.本发明属于检测分析及生物学应用领域,具体涉及一种非诊断目的的基因定位方法。


背景技术:

2.在遗传学上,遗传标记手段主要包括根据物种形态性状的区别进行形态标记和利用同工酶进行生化标记,其本质都是针对染色体上的基因进行定位,基因定位(gene mapping)是基因组测序、病原菌鉴定等领域中的重要手段,具体是指基因所属连锁群或染色体以及基因在染色体上的位置的测定,基因定位是遗传学研究中的一项基本工作,其目的不仅在定位染色体上的基因片段,而且还在于测定基因在染色体上线性排列的顺序和距离。
3.基于以上标记手段得到的结果都间接反映在表现型的差异,近几十年中,现代分子生物学技术蓬勃发展,一种新兴的遗传标记技术正日渐成熟,那就是 dna 分子标记。dna 分子标记是一种根据基因片段碱基序列的差异直接反映个体间差异的遗传标记手段,与传统遗传标记手段相比,具有以下优势:(1)跨越表型特征,直接体现遗传物质上的变异;(2)可标记的基因位点极多,核酸序列差异明显;(3)对遗传性状的选择不受影响。
4.因此,在dna纳米技术领域,定位dna链上具有相同序列的基因片段,实则是一种dna分子标记过程。利用荧光分子实现dna分子标记是基于dna纳米技术的一种应用技术。目前,现有技术中主要是利用核酸内切酶作用于单分子dna,再通过 dna 聚合酶发挥作用并携带荧光分子标记在特定位点并在全内置反射荧光显微镜下观察,或采用dna 折纸探针的特异性标记并且在原子力显微镜下直接可视化观察,用不同的限制酶处理同一dna分子,通过对酶切产生的dna片段的大小和位置的分析,可以绘制出某一dna分子的限制图谱。
5.但是,目前上述物理图谱法必须在严格控制的变性条件下每一种dna分子具有变性环的特定分布形式,才能构成部分变性图,从而对基因组的序列进行检测,因此现有的基因定位方式存在定位的时间较长、费用昂贵、操作复杂等问题。


技术实现要素:

6.为克服现有技术的不足,本发明提供一种非诊断目的的基因定位方法,可适用于不同形态dna上的基因定位,且解决现有基因定位存在的成本高、耗时长、精确度低的问题。
7.一种非诊断目的的基因定位方法,包括以下步骤,其中,步骤s2和步骤s3过程如图1所示:步骤s1:设计上下游引物,加入dna聚合酶经pcr扩增出目标序列,所述目标序列来自生物体或人工合成的双链dna或单链dna,目标序列不仅限于单一的生物体dna以及同类型的dna形态;
对于双链dna,设计合适的上下游引物,加入dna聚合酶经pcr扩增出所需序列;所述dna聚合酶优选la taq dna聚合酶;对于环形单链dna,在环形单链dna中加入部分互补的dna序列,加入dna聚合酶,经pcr扩增成一个环形双链dna;所述dna聚合酶优选为vent(exo

) dna聚合酶;步骤s2:步骤s1中获得的模板链中加入切刻内切酶,优选采用两种以上识别序列不同的切刻内切酶,可以在同一模板链上实现多组序列的识别和切除,从而在双链模板上形成基于切刻内切酶的“缺口”dna,所述切刻内切酶避免了双链酶切成单链再加入引物延伸成双链不彻底的问题;步骤s3:利用dna连接酶和引物填补“缺口”,所述引物为三嵌段引物,所述三嵌段引物为一端dna单链,一端与“缺口”序列碱基互补、另一端用于捕获dna折纸探针,所述dna折纸探针为具有捕获链的dna折纸探针;步骤s4:加入过量dna折纸探针与标记有特定三嵌段引物的目标dna分子经pcr退火一夜后,利用原子力显微镜对不同的dna折纸探针的标记进行统计和评估,对标记上折纸探针的位点之间的距离进行统计分析。
8.需要说明的是,参见doi:10.1134/s1068162019050017的公开文献1“nicking endonucleases as unique tools for biotechnology and gene engineering”,本发明所述的切刻内切酶是一种新型酶,像限制性内切酶一样,切刻内切酶识别短的特定 dna序列,并在相对于识别序列的固定位置切割dna,然而与限制性内切酶不同,切刻内切酶只切割一条预定的脱氧核糖核酸链;需要说明的是,所述三嵌段引物如图2所示分为三个部分:m1、m2和m3段,m1段序列为与模板缺口碱基互补的碱基序列且数量优选为6个,中间m2段序列为有若干t碱基的spacer链且t碱基数量优选为5个,通过spacer链将m1和m3连接起来,m2段由于没有与之互补的序列,具有良好的柔性,可以使m3段更好的捕捉游离的dna折纸探针;值得注意的是:m1段序列由于“缺口”dna的碱基数很少,它的tm温度很低,所以长片段的m3序列不适用于本应用,在考虑与dna折纸探针相结合的退火温度情况下,最终选择采用10个碱基的m3段序列,从而提高连接精度和连接效率。在三嵌段引物的5’端磷酸化从而可以与缺口链的3’端的羟基结合,加入过量dna折纸探针与标记有特定三嵌段引物的目标dna分子经pcr退火一夜后,利用原子力显微镜对三角形或十字形dna折纸探针的标记效率进行统计和评估,对标记上折纸探针的位点之间的距离进行统计分析。
9.进一步的,所述步骤s2具体包括:在步骤s2扩增出的产物中加入切刻内切酶nes,经37℃孵育6h,通过80℃ 20min灭活后,产生所需“缺口”;优选的,所述切刻内切酶可以采用nb.bbvci和nb.bsssi这两种组合使用,nb.bbvci可以特异性识别和切割双链中一条链上的gctgagg序列,nb.bsssi可以特异性识别和切割双链中一条链上的ctcgtg序列,这些“缺口”只有6

7个碱基远远小于现有技术中使用的20个碱基的嵌段引物链,此处采用20个碱基的嵌段引物链方案参见doi: 10.1038/ncomms14738的公开文献2“dna origami

based shape ids for single

molecule nanomechanical genotyping”,采用nb.bbvci和nb.bsssi这两种切刻内切酶特异性识别和切割双链中一条链上的短序列,减少了非特异性结合,增大了基因定位的精度;由于这些识别顺序可以作为dna部位的标记,技术人员用不同的限制酶处理同一dna分子,通过对酶切
产生的dna片段的大小和位置的分析,可以绘制出某dna分子的限制图谱。但是通常选择的限制性内切酶识别的序列差异很大,从而导致了缺少切割长度差异不大的基因片段,这两种切刻内切酶,只需要引物单链,且反应时间短;进一步优选的,所述nb.bbvci和nb.bsssi在nebuffer 3.1缓冲液中使用活性最佳。
10.进一步的,本发明所述基因定位的方法,步骤s2中,采用限制性内切酶酶切双链后,加入edta灭活后,可利用takara minibest dna fragment purification kit ver.4.0试剂盒纯化,所获得产物损失率较低,优于琼脂糖凝胶纯化。
11.进一步的,本发明所述基因定位的方法,步骤s3具体包括:加入三嵌段引物在50℃孵育5 min,经pcr程序从50℃以

1℃/min的速度降到16℃,接着加入t4 dna ligase16℃孵育一夜后加入edta灭活;进一步的,本发明所述基因定位的方法,步骤s3中,所述三嵌段引物与“缺口”互补并伸出捕获dna折纸探针的dna单链,具体实现方式包括如下步骤:先利用pcr退火让三嵌段引物与“缺口”互补,再加入t4 dna ligase使溶液在16℃孵育一夜,使三嵌段引物3’端的羟基(

oh)与“缺口”5’端磷酸基团相连从而变成一整条链。
12.进一步的,所述捕获dna折纸探针,加入1x ta

mg
2 buffer,在mg
2
的条件下,模板伸出的链能够与dna折纸探针伸出的链更好的结合。
13.进一步的,所述具有捕获链的dna折纸探针构建方法具体包括:在dna折纸结构上伸出链的位置去除原链,至少选择1个伸出链的位置,替换为能够与所述三嵌段引物链的m3段互补的捕获链,按照rothemund的方法制备折纸,其方法选自doi:10.1038/nature04586的公开文献3“folding dna to create nanoscale shapes and patterns”所制备的dna折纸探针都利用密理博 millipore超滤管超滤掉多余的订书钉链,超滤离心管 0.5ml蛋白浓缩分离100kd;优选的,所述具有捕获链的dna折纸探针,在相近位置伸出三条捕获链,进一步优选的,同一个顶点以及靠近顶点的两条链,由于间隔只有3

4纳米的距离,可避免多顶点伸链导致模板易蜷缩的问题。
14.有益效果:(1)利用限制性内切酶在环形和线性dna分子上进行酶切反应,利用dna折纸探针和原子力显微镜在不同生物体上同时进行基因定位,相比于单碱基表征方式,大大缩短了检测时间;(2)可实现对单个dna分子的可视化检测,整个检测流程采用生物分子学及dna纳米技术,结合原子力显微技术,可实现对单个dna分子的直接可视化检测;传统测序根据核苷酸在某一固定的点开始,随机在某一个特定的碱基处终止,产生 a,t,c,g四组不同长度的一系列核苷酸,然后在尿素变性的page胶上电泳进行检测,从而获得dna序列。而尿素变形的page只适用于低分子量的dna,目前测序的极限约在5000左右,选用的检测模板的长度都打破了传统测序的极限;(3)基于dna折纸探针的标记方式,由于dna折纸结构具有可编程性、可寻址性、可控性等 sz优点,dna折纸结构由一条环状m13mp18噬菌体单链dna作为骨架链(scaffold),通过与过量的订书钉链碱基互补配对形成各种形态和维度的结构,具有远超荧光检测技术的分辨率的多色性。dna折纸探针可以多种形状的结构,且可在折纸表面上修饰各种纳米粒
dsdna的琼脂糖凝胶电泳对比图;图7b为环形dna酶切前后示意图及相应的的琼脂糖凝胶电泳图;左图为环形dna酶切前后示意图,右图为环形dna酶切前的origin dsdna和酶切后产生“缺口”模板nicked dsdna“缺口”模板的琼脂糖凝胶电泳对比图;图8a为线性双链lambda dna扩增后的短双链模板链上酶切后缺口补齐前后过程示意图和相应的琼脂糖凝胶电泳表征;左图为线性双链lambda dna扩增后的短双链模板链上酶切后缺口补齐前后过程示意图;右图为线性双链lambda dna扩增后的短双链模板链上酶切后缺口补齐前和补齐后状态下的琼脂糖凝胶电泳表征对比图;图8b环形单链phix 174扩增后的环形双链模板链上酶切后缺口补齐前后过程示意图和相应的琼脂糖凝胶电泳表征,左图为环形单链phix 174扩增后的环形双链模板链上酶切后缺口补齐前后过程示意图,右图为环形单链phix 174扩增后的环形双链模板链上酶切后缺口补齐前和补齐后状态下的琼脂糖凝胶电泳表征对比图;图9为双酶切同一模板产生“缺口”并进行补齐,模板在不同状态下的琼脂糖凝胶电泳表征对比图。
具体实施方式
17.以下结合附图及实施例,对本发明进行进一步详细说明。
18.以下制备过程和实施例中采用的原料和试剂说明1. 三(羟甲基)氨基甲烷(tris)、乙二胺四乙酸二钠(edta)、醋酸镁、冰醋酸、硼酸均购于国药集团化学试剂有限公司;4s green plus无毒核酸染料购于上海生工生物工程股份有限公司;minibest dna fragment purification kit ver.4.0核酸纯化试剂盒、6
×
loading buffer购于北京宝日医生物技术有限公司;琼脂糖购于美国bio

rad公司;amicon ultra centrifugal filters 100k超滤管购于美国merck公司;dntp、longamp taq dna聚合酶、vent
®ꢀ
(exo

) dna聚合酶、nb.bbvci限制内切酶、nb.bbvci限制内切酶购于北京neb有限公司实验用水均为超纯水。
19.2. m13mp18、phix 174病毒单链dna和lambda病毒双链dna购于neb公司,dna折纸探针中所有不加修饰的dna短链购于上海生工生物工程股份有限公司,所有含有修饰的dna短链均购于北京宝日医生物技术有限公司。
20.关于dna折纸探针结构的制备以下实施例中具体以三角形dna折纸探针结构和十字形dna折纸探针结构为例,阐述本发明基因定位的方法,但本发明采用的dna折纸探针结构不仅限于这两种且制备过程也不仅限于以下制备过程。
21.以下实施例具体采用的三角形dna折纸探针结构和十字形dna折纸探针结构,均包括:m13mp18模板链、dna订书钉链、捕获链,其中m13mp18噬菌体基因组dna的核苷酸序列在genbank: x02513.1中提供,购买自百奥百乐生物科技有限公司,其货号与规格为b3003

50pmol。
22.其中,三角形dna折纸探针结构,其编织的dna订书钉链的序列设计具体参照文献4:刘轲,基于dna纳米技术与原子力显微镜高分辨成像的精准基因检测研究与应用,上海交通大学博士学位论文,文献p115附录附图1:三角形折纸结构示意图及staple序列杂交位置
说明,具体的捕获链设计位点在:c31、a63和a65,具体地,a63序列修改为序列no:1:cgtccgcaatttttttacgctaacgagcgtctggcgttttagcgaacccaacatgta65序列修改为序列no:2:cgtccgcaatttttttgctattttgcacccagctacaattttgttttgaagccttaaac31序列修改为序列no:3:cgtccgcaattttttgccaccgagtaaaagaacatcacttgcctgagcgccattaaaa十字形折纸探针结构的订书钉链参照doi:10.1002/ange.201005911的公开文献5“crystalline two

dimensional dna

origami arrays”进行设计,详见文献5中的十字形折纸结构示意图及staple序列杂交位置说明,具体的捕获链设计位点在:r1、r3和r5,具体地,r1序列修改为序列no:4:tttttttttttttttctgttgttaaataagaataaagtgtgataaataaggcr3序列修改为序列no:5:tttttttttttttttgtcttaaataaagaaattgcgttagcacgtaaaacagaaggtr5序列修改为序列no:6:ttttttttttttttttgctgaacctcaaataatctaaagcatcacctgcaaa三角形dna折纸探针结构和十字形dna折纸探针除订书钉链和替换链不同,其他原料和制备过程相同,具体制备过程如下:模板链和dna订书钉链(包含替换链)的终浓度分别为10 nm和80 nm;利用梯度pcr仪对混合物进行缓慢退火,退火的条件为:起点温度95 ℃,保持3 min,终点温度25 ℃,每1℃为一个梯度,每个梯度停留100 s,得到dna折纸探针结构;退火程序完毕后,将三角形和十字形dna纳米结构样品取出,用100 kda离心管离心分离,去除过量的dna短链;离心条件为:向200 μl样品中加入200 μl1
×
tae

mg2 缓冲液,于3000 rcf/min的条件下离心10 min,重复离心3遍;将内管倒扣进外管,于3000 rcf/min的条件下离心10 min;最终收集的样品采用原子力显微镜(afm)观察片层结构的形貌。结果如图6所示,图中,左侧a图为构建的三角形dna折纸探针结构长约120nm,呈现规则的三角形结构;右侧b图为十字dna折纸探针结构长约为100nm,呈现规则的十字形结构。
23.实施例1:仅采用nb.bsssi酶切与三角折纸探针标记的定位方法步骤s1中目标序列的pcr扩增过程,其具体操作为:线性dna的pcr反应:此过程中的上、下游引物的序列由软件primer

blast设计。50 μl反应体系包含:10 μl 5
×
longamp taq反应液,2 μl dntp混合液(2.5 mm),1 μl longamp taq dna聚合酶,4 μl上游引物(10 μm),4 μl下游引物(10 μm),1.5 μl lambda dna,27.5 μl超纯水。将各组分在冰域中迅速混合,转移至pcr仪中。设置pcr反应程序为:
①ꢀ
95 ℃,2 min;
②ꢀ
98 ℃,10 s;42 ℃,50 s;72℃,7 min(设置30个循环)
③ꢀ
72 ℃,10 min;缓慢降温到4 ℃保存。所述lambda dna的核苷酸序列在genbank accession no. j02459.1中提供;其中lambda dna全长为48502 bp,本次pcr反应的上游引物序列为:5
’‑ꢀ
gcttcctgat
‑3’
,下游引物序列为5
’ꢀ‑
cagaaagacg
‑3’
,产物双链长度为4997 bp。
24.环形dna的pcr反应:此过程中的上游引物的序列由软件primer

blast设计,50 μl反应体系包含:5 μl thermopol reaction buffer (10x),2 μl dntp混合液(2.5 mm),1 μl vent (exo

) dna 聚合酶,4 μl上游引物(10 μm),1.5 μl phix 174 dna,3 μl mgso4,
33.5 μl超纯水。将各组分在冰域中迅速混合,转移至pcr仪中。设置pcr反应程序为:
①ꢀ
95 ℃,2 min;
②ꢀ
98 ℃,10 s;37 ℃,30 s;72℃,5 min(设置30个循环)
③ꢀ
72 ℃,10 min;缓慢降温到4 ℃保存。所述环形phix 174dna的核苷酸序列在ncbi reference sequence nc001422.1中提供;phix 174 dna全长为5384 bp,本次pcr反应的上游引物序列为:5
’‑ꢀ
tgatatgcgagc
‑3’
,产物双链长度为5384 bp。
25.步骤s2基于切刻内切酶的“缺口”dna的制备,其具体操作为:nb.bsssi酶切为30 ul体系包含:1 ul nb.bsssi,3 ul nebuffer

r3.1,26 ul 步骤一所得的dna。经37℃孵育6 h后,80℃灭活后,用takara minibest dna fragment purification kit ver.4.0试剂盒纯化;结果如图7a和7b所示,利用琼脂糖凝胶电泳对构建的“缺口”dna进行表征,图7a中,左图为线性dna酶切前后示意图,右图为线性dna酶切前的origin dsdna和酶切后产生“缺口”模板nicked dsdna的琼脂糖凝胶电泳对比图;图7b中,左图为环形dna酶切前后示意图,右图为环形dna酶切前的origin dsdna和酶切后产生“缺口”模板nicked dsdna“缺口”模板的琼脂糖凝胶电泳对比图;步骤s3:利用三嵌段引物与t4 dna ligase补齐“缺口”的制备,其具体操作为:进行pcr反应,28 ul 的反应体系包含:3 ul t4 dna ligase reaction buffer,2 ul 1x ta

mg
2
缓冲液,21 ul
ꢀ“
缺口”dna,2 ul三嵌段引物。将各组分在冰域中迅速混合,转移至pcr仪中。设置pcr反应程序为:
①ꢀ
50 ℃,5 min;
②ꢀ‑
1℃/min 速率退到16℃;

16℃保温五分钟。所述三嵌段引物的核苷酸序列如序列 no:7所示;序列 no:7:ctcgtgtttttgcaggcgtta;以上操作完成后,加入2 ul t4 dna ligase放入pcr中16℃孵育12 h。加入5 ul edta进行灭活,经过琼脂糖凝胶电泳纯化后得到检测模板;结果如图8a和图8b所示,其中,图8a中,左图为线性双链lambda dna扩增后的短双链模板链上酶切后缺口补齐前后过程示意图;右图为线性双链lambda dna扩增后的短双链模板链上酶切后缺口补齐前状态下nicked dsdna和补齐后connect dsdna的琼脂糖凝胶电泳表征对比图,图8b中,左图为环形单链phix 174扩增后的环形双链模板链上酶切后缺口补齐前后过程示意图,右图为环形单链phix 174扩增后的环形双链模板链上酶切后缺口补齐前状态下nicked dsdna和补齐后connect dsdna的琼脂糖凝胶电泳表征对比图;步骤s4:利用dna折纸探针可视化基因定位过程,如图3所示,其具体操作为:(1)双链dna模板与dna折纸探针的杂交反应:选用三角折纸探针,捕获链中具有与上述三嵌段引物m3段互补的序列,将过量的dna折纸探针与双链dna模板混合,经pcr程序退火,其程序为:
①ꢀ
45 ℃,5 min;
②ꢀ‑
0.1℃/5min 速率退到4℃;得到最终待测样品。
26.(2)原子力显微镜表征:将新裁剪的云母片固定在平整的铁片上,并剥离至表面平整,将10 μl待测样品溶液滴加到平整的云母表面上,静置吸附3 min,使用超纯水冲洗以去除未吸附的样品,用空气吹干;将附着着云母的铁片置于原子力显微镜样品台上,选择tapping mode in air

soft tapping扫描模式,扫描频率1.1 hz进行扫描,结果如图4a和图4b所示,图4a为利用nb.bsssi在线性双链lambda dna扩增后的短双链模板链上酶切后利用十字形折纸探针基因定位的示意图和原子力显微镜表征图,酶切位点为32945bp以及37305bp;图4b为利用nb.bsssi在环形单链phix 174扩增后的环形双链模板链上酶切后利用十字形折纸探针基因定位的示意图和原子力显微镜表征图,酶切位点为534bp以及3279bp。
27.实施例2:仅采用nb.bbvci酶切与十字型折纸探针标记的定位方法实施例2除以下步骤不同外,其余操作均与实施例1相同:步骤s2采用的酶切体系为:nb.bbvci酶切为30 ul体系包含:1 ul nb.bbvci,3 ul rutsmart

缓冲液,26 ul 步骤s1所得的dna;步骤s3利用三嵌段引物与t4 dna ligase补齐“缺口”的制备中,所述三嵌段引物的核苷酸序列如序列 no:8所示,序列 no:8:gctgaggtttttaaaaaaaaaa;按照实施例1中的原子力显微镜表征,结果如图4c和4d所示,图4c为利用nb.bbvc在线性双链lambda dna扩增后的短双链模板链上酶切后利用三角形折纸探针基因定位的示意图和原子力显微镜表征图,酶切位点为34259bp以及3438b;图4d为利用nb.bbvc在环形单链phix 174扩增后的环形双链模板链上酶切后利用三角形折纸探针基因定位的示意图和原子力显微镜表征图,酶切位点为2038bp以及3698bp。
28.选用十字形折纸探针,捕获链中具有与本实施例三嵌段引物m3段互补的序列。
29.实施例3:同时采用两种切刻内切酶和相应折纸探针标记的基因定位方法,其具体操作为:(1)限制性内切酶酶切反应:此过程包括两种限制性内切酶的酶切反应,酶切为30 ul体系包含:1 ul nb.bbvci,1 ul nb.bsssi,3 ul nebuffer

r3.1,25 ul 步骤一所得的dna,经37℃孵育6 h后,80℃灭活后,用takara minibest dna fragment purification kit ver.4.0试剂盒纯化,由于nb.bbvci和nb.bsssi在nebuffer

r3.1中的活性为100%,所以以上反应buffer选择为nebuffer

r3.1。
30.(2)补齐“缺口”dna的pcr反应:28 ul 的反应体系包含:3 ul t4 dna ligase reaction buffer,2 ul 1x ta

mg
2
缓冲液,23 ul
ꢀ“
缺口”dna。将各组分在冰域中迅速混合,转移至pcr仪中。设置pcr反应程序为:
①ꢀ
50 ℃,5 min;
②ꢀ‑
1℃/min 速率退到16℃;

16℃保温五分钟。加入2 ul t4 dna ligase放入pcr中16℃孵育12 h。加入5 ul edta进行灭活,经过琼脂糖凝胶电泳纯化后得到检测模板,如图9所示为线性dna
ꢀ“
缺口”产生前的origin dsdna、有缺口的 nicked dsdna和缺口补齐后的connect dsdna相应的琼脂糖凝胶电泳表征对比图。
31.(3)双链dna模板与dna折纸探针的杂交反应:将过量的dna折纸探针与双链dna模板混合,经pcr程序退火,其程序为:
①ꢀ
45 ℃,5 min;
②ꢀ‑
0.1℃/5min 速率退到4℃;得到最终待测样品。
32.(4)原子力显微镜表征:将新裁剪的云母片固定在平整的铁片上,并剥离至表面平整,将10 μl待测样品溶液滴加到平整的云母表面上,静置吸附3 min,使用超纯水冲洗以去除未吸附的样品,用空气吹干;将附着着云母的铁片置于原子力显微镜样品台上,选择tapping mode in air

soft tapping扫描模式,扫描频率1.1 hz进行扫描;结果如图5a和5b所示,利用afm对dna折纸探针结构对特定基因进行定位形貌表征,图5a为本发明利用两种限制性内切酶在线性双链lambda dna上同时进行基因定位的示意图和原子力显微镜表征图,左图为基因定位的示意图,nb.bbvci和nb.bsssi在线性双链lambda dna上的酶切位点分别为34259bp、34368bp和32945bp、37305bp,对应的右图为其原子力显微镜表征;图5b为本发明利用两种限制性内切酶在环形双链phix 174上同时进行基因定位的示意图和原子力显微镜表征图,左图为基因定位的示意图,nb.bbvci和nb.bsssi在环形
双链phix 174上的酶切位点为2038bp、3698bp和534bp、3279bp,对应的右图为其原子力显微镜表征。
33.最后需要说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出的改变,而不偏离本发明所限定的范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献