一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种碳化硅MOSFET多管并联的控制方法及电路与流程

2021-12-17 20:01:00 来源:中国专利 TAG:

一种碳化硅mosfet多管并联的控制方法及电路
技术领域
1.本发明属于高压大功率场合的碳化硅mosfet并联应用控制技术领域,尤其涉及一种碳化硅mosfet多管并联的控制方法及电路。


背景技术:

2.随着第三代半导体技术的发展进步,市场对产品体积小型化和功率器件高频化的需求日益强烈,碳化硅mosfet在产品中应用也越来越广泛。受制于当前功率器件制造工艺技术,单个碳化硅mosfet的在较高等级电压下,导通阻抗rds只能做到为几毫欧甚至几十毫欧级别,无法做到更小值,这就造成了单个器件导流能力偏小,功率容量小,无法通过单体器件来实现产品在高压大功率场合的应用。因此在高压大功率场合,产品通过采用对碳化硅mosfet的多管并联技术,来提高功率容量,成了必然趋势。目前,碳化硅mosfet的多管并联技术的发展还处在不完善阶段,在应用中,常见的已有技术有:1)第一种:很多产品在实际的应用上通过预留较大mosfet的工作电流裕量,仅靠并联中的多个mosfet本身开关和阻抗特性去实现彼此内部之间的电流分配,这种粗犷式设计不仅造成了功率器件的浪费,还缺少对每个并联的mosfet进行监管,带来的产品炸机失效的风险系数高;2)第二种:通过采用对并联中的每一个碳化硅mosfet进行单独驱动和电流采样设计,这种并联技术需要pwm资源和adc资源丰富的mcu芯片或多个芯片实现,控制算法复杂,而且硬件相关驱动电路和采样电流设计繁多冗余复杂,且对硬件电路参数一致要求很高,产品制作成本十分昂贵。
3.在高压大功率应用场合,目前常用的碳化硅mosfet的多管并联技术存在的技术问题有:
4.针对第一种已有应用技术:
5.1)碳化硅mosfet单管电流设计余量大,造成器件功率容量浪费;
6.2)多管并联的mosfet仅靠自身内部阻抗特性实现各自电流分配,会造成并联中每个管子的温升不一致、各自相差较大现象;
7.3)鉴于每个管子内部参数不可能做到完全一致,会造成某个管子分配电流过大,出现热炸机失效问题;
8.针对第二种已有应用技术:
9.1)硬件设计繁多冗余复杂,硬件电路多,产品体积较大;
10.2)对硬件电路参数一致性精度要求高,采购成本高;
11.3)mcu控制芯片要求高,控制算法复杂;
12.4)产品制作成本高,不利于推广。


技术实现要素:

13.本发明实施例的目的在于提供一种碳化硅mosfet多管并联的控制方法及电路,能够控制每个单管的工作电流相对均衡一致,并简化实现的电路结构。
14.本发明实施例是这样实现的:
15.1、一种碳化硅mosfet多管并联的控制方法,包括:
16.101、对并联的碳化硅mosfet多管的实时工作温度分别进行温度采样,得到各管对应的工作温度采样结果;
17.102、在器件温升安全工作范围内,根据温度采样结果,在最高温度和最低温度之间取值,设定为温度阈值,在不同的工作周期内,实时更新设定所述温度阈值;
18.103、若某个的碳化硅mosfet单管的工作温度低于或等于所设定的温度阈值,则保持当前对相应的碳化硅mosfet管的pwm驱动波形控制方式,使相应的碳化硅mosfet管继续保持原本的工作状态;
19.104、若某个的碳化硅mosfet单管的工作温度高于所设定的温度阈值,则对相应的碳化硅mosfet管的pwm驱动波形进行调节,使其在开关频率不变的前提下,改变其驱动的波形,具体的为:采用间歇开关的方式,间歇式减少pwm驱动波形作用在碳化硅mosfet管上的持续时间,实现碳化硅mosfet管间歇性断开和导通,减少流经碳化硅mosfet管电流的有效值,从而降低碳化硅mosfet管的工作温度;
20.其中,针对某个单管采用间歇开关方式具体工作原理为:输出一组控制方波与该管的pwm驱动波形通过与门逻辑进行叠加,得到一组间歇式pwm驱动波形,实现碳化硅mosfet管间歇性断开和导通。
21.2、应用权利要求1所述控制方法的电路,其特征在于:包括mcu控制芯片、pwm信号调理电路、信号调理电路、与门芯片、驱动功率放大电路、门极匹配阻抗网络、温度采样电路以及温度采样信号调理电路;
22.所述mcu控制芯片分别与pwm信号调理电路和信号调理电路连接,与门芯片的输出端依次通过驱动功率放大电路和门极匹配阻抗网络连接碳化硅mosfet管的门极,与门芯片的数量、驱动功率放大电路的数量、门极匹配阻抗网络的数量都和碳化硅mosfet管的数量相同,pwm信号调理电路和信号调理电路分别与各个与门芯片的输入端连接,温度采样电路的数量与碳化硅mosfet管的数量相同,温度采样电路用于采集对应碳化硅mosfet管的工作温度,温度采样电路与温度采样信号调理电路连接,温度采样信号调理电路与所述mcu控制芯片连接;
23.温度采样电路采集各个碳化硅mosfet管的工作温度,由温度采样信号调理电路进行处理后,输出给mcu控制芯片,mcu控制芯片在器件温升安全工作范围内,根据获得的各个单管的最高温度和最低温度之间取值,实时更新设定控制温度阈值;
24.若某个的碳化硅mosfet单管的工作温度低于或等于所述温度阈值,则mcu控制芯片控制pwm信号调理电路保持当前输出pwm波形,mcu控制芯片控制信号调理电路持续输出高电平,所述当前输出pwm波形和高电平经与门逻辑叠加后,保持输出当前输出pwm波形,经驱动功率放大电路、门极匹配阻抗网络后输出到相应的碳化硅mosfet管的门极,使其继续保持原本的工作状态;
25.若某个的碳化硅mosfet单管的工作温度高于所述温度阈值,则mcu控制芯片控制信号调理电路输出一组控制方波信号,该信号与当前pwm波形经与门芯片逻辑叠加后,生成间歇式pwm波形,经驱动功率放大电路、门极匹配阻抗网络后输出到相应的碳化硅mosfet管的门极,使其间歇性断开和导通,降低碳化硅mosfet管的工作温度。
26.本发明提出的采用辅助间歇式控制方式,通过对并联电路中的各mosfet管温升状
态的实时检测,消除各管温升差异大的现象,进而改善每个mosfet管的工作电流有效值的均衡性,提高单管的功率容量利用率,在不增加复杂的电路的前提下,确保并联电路中各个mosfet管高性能工作,这种辅助间歇式控制技术不仅实现了并联各mosfet管单体功率容量的充分利用,降低产品生产成本,而且还能减小各mosfet管的热失效风险,提高产品的可靠性。
附图说明
27.图1是本发明碳化硅mosfet多管并联辅助间歇式控制电路框图;
28.图2是本发明具有辅助间歇式控制参与工作的mosfet管驱动合成波形图;
29.图3是本发明没有辅助间歇式控制参与工作的mosfet管驱动合成波形图。
具体实施方式
30.为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
31.现有在高压大功率场合应用中,碳化硅mosfet的多管并联现有技术存在的单管功率器件利用率低、设计电流裕量大、各并联单管温升不一致等问题;或采用电路设计复杂、电路参数一致性要求高、成本高昂、控制复杂繁琐等固有缺点,为解决以上问题,本发明提出了一种新型可靠的碳化硅mosfet多管并联技术,通过简单的电路设计和软件处理,即可实现对并联中的每一个碳化硅mosfet工作温升状态进行实时监测、在不影响其它mosfet的工作开关状态下,针对个体温升较大的mosfet,通过对其开关状态进行间歇式控制,实现并联mosfet的每一个单管温升处于均衡状态,进而保证多管并联中的每个mosfet单体在自身工作性能正常情况下,通过这种辅助间歇式的控制模式实现每个单管的工作电流相对均衡一致,避免因某个单管因长期工作在大电流状态,造成温升异常,从而导致热失效炸机等严重问题发生。
32.本发明提出的碳化硅mosfet多管并联技术主要是应用在车载电源、驱动控制器、新能源发电、通信电源、开关电源、工业变频器等高压大功率场合,是解决单管功率容量不足,提出的新型可靠并联技术,对并联中的每个mosfet进行有效监管和独立控制,提高产品可靠性。
33.以下结合具体实施例对本发明的具体实现进行详细描述:
34.一种碳化硅mosfet多管并联的控制方法,包括:
35.101、对并联的碳化硅mosfet多管的实时工作温度分别进行温度采样,得到各管对应的工作温度采样结果;
36.102、根据每个器件的温度采样结果,在器件温升安全工作范围内,在最高温度和最低温度之间合理取值,设定为该组并联器件的当前工作的温度阈值;
37.103、若某个碳化硅mosfet单管的工作温度低于或等于设定的温度阈值时,则保持当前对相应的碳化硅mosfet管的pwm驱动波形控制方式,使相应的碳化硅mosfet管继续保持原本的工作状态;
38.104、若某个碳化硅mosfet管的工作温度高于所设定的温度阈值,则对相应的碳化
硅mosfet管的pwm驱动波形进行调节,使相应的碳化硅mosfet管改变原本的工作状态,具体的为:采用间歇开关的方式,减少pwm驱动波形作用在该碳化硅mosfet管上的有效持续时间,实现碳化硅mosfet管间歇性断开和导通,减少流经碳化硅mosfet管电流的有效值,从而降低碳化硅mosfet管的工作温度;
39.其中,所述的针对某个单管采用间歇开关方式具体工作原理为:输出一组控制方波与该管的pwm驱动波形通过与门逻辑进行叠加,得到一组间歇式pwm驱动波形,实现碳化硅mosfet管间歇性断开和导通。
40.应用所述控制方法的电路,包括mcu控制芯片、pwm信号调理电路、信号调理电路、与门芯片、驱动功率放大电路、门极匹配阻抗网络、温度采样电路以及温度采样信号调理电路;
41.所述mcu控制芯片分别与pwm信号调理电路和信号调理电路连接,与门芯片的输出端依次通过驱动功率放大电路和门极匹配阻抗网络连接碳化硅mosfet管的门极,与门芯片的数量、驱动功率放大电路的数量、门极匹配阻抗网络的数量都和碳化硅mosfet管的数量相同,pwm信号调理电路和信号调理电路分别与各个与门芯片的输入端连接,温度采样电路的数量与碳化硅mosfet管的数量相同,温度采样电路用于采集对应碳化硅mosfet管的工作温度,温度采样电路与温度采样信号调理电路连接,温度采样信号调理电路与所述mcu控制芯片连接;
42.温度采样电路采集各个碳化硅mosfet管的工作温度,由温度采样信号调理电路进行处理后,输出给mcu控制芯片,mcu控制芯片在器件温升安全工作范围内,根据获得的各个单管的最高温度和最低温度之间合理取值,实时更新设定控制温度阈值;
43.若某个的碳化硅mosfet单管的工作温度低于或等于所述温度阈值,则mcu控制芯片控制pwm信号调理电路保持当前输出pwm波形,mcu控制芯片控制信号调理电路持续输出高电平,所述当前输出pwm波形和高电平经与门逻辑叠加后,保持输出当前输出pwm波形,经驱动功率放大电路、门极匹配阻抗网络后输出到相应的碳化硅mosfet管的门极,使其继续保持原本的工作状态;
44.若某个的碳化硅mosfet单管的工作温度高于所述温度阈值,则mcu控制芯片控制信号调理电路输出一组控制方波信号,该信号与当前pwm波形经与门芯片逻辑叠加后,生成间歇式pwm波形,经驱动功率放大电路、门极匹配阻抗网络后输出到相应的碳化硅mosfet管的门极,使其间歇性断开和导通,降低碳化硅mosfet管的工作温度。
45.本发明提出的一种可靠应用于高压大功率场合的碳化硅mosfet多管并联辅助间歇式控制系统框图,如图1所示,具体给出了同一路pwm驱动控制的n个并联碳化硅mosfet工作的拓扑单元组成,主要由以下几个部分:1)控制芯片mcu;2)pwm信号调理电路;3)间歇指令信号调理电路;4)与门逻辑电路;5)驱动功率放大电路;6)门极匹配阻抗网络;7)碳化硅mosfet(n个并联);8)温度采样(q1

qn);9)温度采样信号调理电路。其中,与门逻辑电路是主要是由n个与门芯片构成,这n个与门芯片分别匹配对应并联中的每一个碳化硅mosfet,使得并联中每一个碳化硅mosfet结合其自身工作的温度状态,通过控制芯片mcu合理调节控制其对应pwm驱动信号,即当其中某一个碳化硅mosfet管温度相对较高时,可以改变其对应的pwm驱动信号,使其间歇式处于工作,从而降低温升,在单位时间内,综合减小其流经电流的有效值。如果碳化硅mosfet管温度相对不高,其对应pwm驱动信号正常工作,与门逻辑
电路不参与改变驱动信号。另外,门极匹配阻抗网络主要是由每一个并联碳化硅mosfet管门极开通驱动电阻(ron1、ron2

ronn)和门极关断驱动电阻(roff1、roff12

roffn)构成。
46.本发明提出的这种应用于高压大功率场合的碳化硅mosfet多管并联辅助间歇式控制技术工作原理如下:
47.1)mcu通过实时收集和判断并联电路中的每个碳化硅mosfet的温度采集数据,在在器件温升安全工作范围内,根据所得到的每个碳化硅mosfet温度数据,统计出最高温度和最低温度,然后计算得出一个当前合理的调节温度阈值,将大于该温度阈值对应的碳化硅mosfet管驱动pwm形进行辅助间歇式控制调整(如图2所示),即通过mcu发出间歇式控制指令,该指令一般是一系列方波组成,方波频率和占空比可根据实际应用情况调节;然后经过信号调理电路后,辅助间歇式控制方波信号与pwm信号共同作用在与门的输入两端,经过与门逻辑信号处理后,得到一组间歇式的pwm驱动波形,再经由驱动功率放大电路和门极匹配阻抗网络后,作用在对应温度较高需要调节的碳化硅mosfet上,使该mosfet管处于间隙时工作模式,从而降低其温升和在单位时间内的电流有效值。图2中,第一行的波形为:mcu发出pwm,经驱动电路后输出到与门逻辑芯片

脚的波形,第二行的波形为:当检测到某个碳化硅mosfet管温度较高时,mcu将发出对该管进行单独调节的间歇式控制波形,即与门逻辑芯片

脚处的波形,第三行的波形为:与门逻辑叠加后,最终驱动的pwm波形,即与门逻辑芯片

脚处的波形。
48.2)mcu通过实时检测搜集并联电路中的每个碳化硅mosfet管温度状态,如果其中某个或某些碳化硅mosfet管当前温度低于或等于mcu实时计算得出的调节温度阈值时,mcu将对应mosfet管的间歇式控制脚保持在高电平状态(如图3所示),然后经过信号调理电路后,该高电平信号与pwm信号共同作用在与门的输入两端,经过与门逻辑信号处理后,不改变原pwm波形,使温度低于或等于mcu调节温度阈值的mosfet管正常按照原有控制芯片发出驱动pwm工作。图3中,第一行的波形为:mcu发出pwm,经驱动电路后输出到与门逻辑芯片

脚的波形,第二行的波形为:当检测到某个碳化硅mosfet管温度较低或者相对其他管温度不高时,mcu将对应的间歇式控制脚保持在高电平,即与门逻辑芯片

脚处的波形,第三行的波形为:经与门逻辑叠加后,最终驱动的pwm波形,即与门逻辑芯片

脚处的波形。
49.3)同一并联电路中各个碳化硅mosfet管基于自身温度情况,在经过mcu辅助间歇式控制指令工作后,如果之前温度较高于mcu调节温度阈值的mosfet管温度下降,低于mcu当前计算得出调节温度阈值,该mosfet管上的辅助间歇式控制停止参与工作,即将辅助间歇式控制方波信号转变为高电平状态;如果经过mcu辅助间歇式控制指令工作后,早先温度低于或等于mcu调节温度阈值的mosfet管温度上升,高于mcu当前计算得出调节温度阈值时,对应的mosfet管的间歇式控制脚由高电平状态转变为辅助间歇式控制方波信号,参与对该mosfet管驱动pwm波形调整,进行调节其的温度的变化。
50.以上所述仅为本发明的较佳实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献