一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种空分储能耦合富氧燃烧的系统及方法与流程

2021-12-03 23:47:00 来源:中国专利 TAG:


1.本发明涉及液化空气储能、空气分离及电厂调峰技术领域,具体涉及一种耦合液化空气储能及空气分离生成富氧燃烧的系统和方法。


背景技术:

2.随着能源和环境的问题日益突出,储能技术的研究和应用得到了广大的重视,储能技术的大规模应用将对能源的生产和利用产生重大的变革。液化空气储能技术将空气作为能量输入和输出双向流动的载体,可以将多余的电能储存于低温液态空气中,在需要使用的时候释放出来。
3.同时,随着我国能源政策的倾斜以及不稳定的新能源电量并网,大量的火电机组将参与电网的深度调峰。伴随着参与深度调峰,火电机组长时间偏离设计值运行,造成机组安全性、经济性下降,还不同程度地存在锅炉低负荷燃烧不稳和水动力循环的安全性问题、脱硝装置全负荷投入和汽轮机低负荷冷却问题、长期低负荷和快速变负荷时控制系统的灵活性问题、设备运行周期和寿命衰减的问题以及供热机组热电解耦等问题。


技术实现要素:

4.为了解决上述参与深度调峰的火电机组性能下降的问题,本发明提出了一种耦合液化空气储能,空气分离及富氧燃烧的系统和方法,该系统利用低谷过剩电量作为系统能量输入,一部分电能驱动压缩系统对空气进行压缩增压,高压空气经过深度冷却及膨胀做功后液化存入耐低温液空储罐,通过液泵加压及再热后进入膨胀机做功发电;另一部分电能驱动空分系统,在精馏塔中将液化空气分离成纯度较高的富氧和氮气,生成的富氧通入锅炉内燃烧,实现锅炉的快速爬峰。因此,本发明的目的在于储存低谷过剩电量,保证火电机组的长时间稳定运行,有效地减少机组经济性能和安全性能下降,提高能源利用率。
5.为实现上述目的,本发明的技术方案是:
6.一种空分储能耦合富氧燃烧的系统,由压缩系统1,级末冷却器2,蓄热罐3,填充床式蓄冷器4,深冷膨胀机5,气液分离器6,液空储罐7,分流器8,液泵9,再热器10,膨胀发电系统11,液压机12,精馏塔13,节流阀14,电厂锅炉15组成;
7.所述压缩系统1末级出口与级末冷却器2热端入口连通,级末冷却器2热端出口与填充床式蓄冷器4热端入口连通,填充床式蓄冷器4热端出口与深冷膨胀机5入口连通,深冷膨胀机5出口与气液分离器6入口连通,气液分离器6液相出口与液空储罐7进口连通,液空储罐7出口与分流器8入口连通,分流器8第一出口与液泵9入口连通,液泵9出口与填充床式蓄冷器4第一冷端入口连通,填充床式蓄冷器4第一冷端出口与再热器10冷端入口连通,再热器10冷端出口与膨胀发电系统11初级膨胀机入口连通,膨胀发电系统11末级膨胀机出口与大气连通;压缩系统1多级压缩机级间冷却器出口与蓄热罐3入口连通,蓄热罐3出口与膨胀发电系统11多级膨胀机级间入口连通;级末冷却器2冷端出口与蓄热罐3入口连通,蓄热罐3出口与再热器10热端入口连通;气液分离器6气相出口与填充床式蓄冷器4第二冷端入
口连通,填充床式蓄冷器4第二冷端出口与压缩系统1的初级压缩机入口连通;分离器8第二出口与液压机12入口连通,液压机12出口与精馏塔13下塔入口连通,精馏塔13下塔出口与节流阀14入口连通,节流阀14出口与精馏塔13上塔入口连通,精馏塔13上塔出口与电厂锅炉15入口连通;
8.所述压缩系统(1)中的级间换热,级末冷却器(2),储热罐(3),再热器(10),膨胀发电系统(11)中的级间再热器组成蓄热子系统;所述的深冷膨胀机(5)、气液分离器(6)、液空储罐(7)、分流器(8)、液泵(9)组成液化空气子系统;所述液压机(12)、精馏塔(13)、节流阀(14)组成空分子系统。
9.该系统将液态空气储能、空气分离和富氧燃烧耦合起来,液态空气储能和空气分离共用一套由深冷膨胀机(5)、气液分离器(6)、液空储罐(7)、分流器(8)、液泵(9)组成的空气液化系统将空气液化后储存在液空储罐7中,通过分流器8将液态空气分别送至膨胀发电系统11膨胀发电及精馏塔13中进行空气分离;精馏塔13分离出的富氧空气送至电厂锅炉15中完成富氧燃烧。
10.所述压缩系统1为2

4级压缩机组成,各级压缩机之间配有级间换热器并采用定压比压缩,结构简单,压比高;压缩系统1各级压缩机的出口空气在级间换热器内与储热介质进行换热,换热前的储热介质为常温常压状态,换热后的高温储热介质送至储热罐3内储存;
11.所述填充床式蓄冷器4,利用球形颗粒石子作为填充材料,外部采用真空填充保温方式;填充床式蓄冷器4工作状态为储存冷能时,第一冷端入口处为液泵9输送来的液态空气,第二冷端入口处为气液分离器6送来的气态低温空气,低温空气在填充床式蓄冷器4内与填充材料进行换热并汽化;填充床式蓄冷器4工作状态为释放冷能的时候,热端入口处为级末冷却器2过来的高温空气,高温空气在填充床式蓄冷器4内与填充材料进行换热后温度下降;
12.所述膨胀发电系统11由3

4级膨胀机组成,每台膨胀机都与一台发电机同轴连接,各级膨胀机之间配备了级间再热器并采用等压比膨胀;膨胀发电系统11级间膨胀机的入口空气在级间再热器内与储热罐3送来的高温储热介质进行换热,提高空气的温度后再进入膨胀机进行膨胀做功;
13.所述电厂锅炉15,当电厂需要快速提升负荷的时候,将空分生成的富氧空气导入至电厂锅炉15的燃烧室内,提升锅炉的燃烧速率,达到快速提升负荷的目的。
14.所述级末冷却器2,利用储热介质与压缩系统1末级出口的高温空气进行换热,空气温度降低,储热介质被加热为高温状态,由级末冷却器2冷端出口送至储热罐3储存;
15.所述蓄热罐3,用于储存换热的储热介质,接受由压缩系统1级间换热器、级末冷却器2来的储热介质;然后经过出口送至膨胀发电系统11的级间换热器以及再热器10加热低温空气;
16.所述再热器10,用于加热进入膨胀发电系统11的低温空气,通过空气与储热介质的表面换热,使储热介质温度降低,空气温度上升;
17.所述蓄热子系统中储热介质为液态导热油,液态导热油在蓄热子系统内为闭环状态,依靠循环泵推动液态导热油在各个换热器内工作;导热油的具体用量和在各个换热器之间的流速需要根据系统的容量来确定。
18.所述深冷膨胀机5,用于膨胀高压深冷的空气,空气经过膨胀后压力与温度下降,部分空气在深冷膨胀机5内发生液化,深冷膨胀机5出口为气液两相混合的空气;
19.所述气液分离器6,用于分离由深冷膨胀机5膨胀得到的气液两相混合空气,在气液分离器6内气液两相混合空气被分为气相和液相单相,液相空气从气液分离器6液相出口送至液空储罐7进行储存,气相空气从气液分离器6气相出口送至填充床式蓄冷器4释放冷能;
20.所述液空储罐7用以储存液化生成的空气,由耐低温材料制成,外部采用双层固定真空粉末保温方式,储罐内的液空气化率控制在0.3%以内;
21.所述分流器8,用于调控输入到膨胀发电系统11和空分子系统的液化空气量;
22.所述深冷液泵9,用于提高进入膨胀发电系统11的空气压力。
23.所述液压机12,用于提高液态空气进入精馏塔13的压力;
24.所述精馏塔13,用于分离空气,它由塔釜、塔板、筒壳及冷凝蒸发器组成,液态空气从塔釜进入精馏塔13,部分汽化上升与回流液进行热质交换,其余液态空气与回流的富氧液空混合,经过节流阀14节流后进入冷凝蒸发器的蒸发侧,冷却冷凝侧的氮气,自身蒸发变成富氧空气引出;液氮被冷却成液态后一部分作为产品从冷凝蒸发器顶盖下引出,另一部分作为回流液与上升的气体进行热质交换;
25.所述节流阀14,用于降低富氧液空温度,提高富氧液空的冷能。
26.净化空气在压缩系统1的压缩机中压缩,并在级间换热器内换热,空气在压缩系统1的末级压缩机出口为高温高压空气;压缩后的高温高压空气进入级末冷却器2,与储热介质进行换热降温,高压空气换热后变为常温空气;换热后的高温储热介质进入蓄热罐3存储;
27.冷却后的高压气体进入填充床式蓄冷器4吸收冷能,温度降低至深冷状态;高压低温空气进入深冷膨胀机5内膨胀液化,压力降低至常压,温度进一步降低至空气液化温度附近,部分空气发生液化,深冷膨胀机5出口为气液两相混合空气;气液两相混合空气进入气液分离器6进行两相分离,气相空气从分离器6气相出口引回填充床式蓄冷器4释放冷能,然后返回压缩系统1处进行再压缩,液相空气从分离器6液相出口引至液空储罐7处储存;
28.当空分和释能需要液态空气时,液态空气从液空储罐7中引至分流器8,分流器8将液态空气分流成两股流体,一股流体进入液压机12,将液空加压后送入精馏塔13;液态空气在精馏塔13内发生分离,在精馏塔的冷凝蒸发器的顶盖下可以引出氮气产品,在蒸发侧引出富氧空气产品;精馏塔13分离出的富氧空气送入电厂锅炉15内进行富氧燃烧,提升燃烧效率;
29.从分流器8中分流的另一股液态空气进入液泵9处进行加压;液泵9出来的高压液态空气进入填充床式蓄冷器4处释放冷能,温度升高至常温状态并汽化为气态空气;从填充床式蓄冷器4第二冷端出口出来的空气进入再热器10,与蓄热罐3送来的高温储热介质进行换热,温度进一步上升至高温状态;加热后的高压气体进入膨胀发电系统11中做功,推动同轴的发电机转动发电;空气在每一级的级间再热器与蓄热罐3送来的高温储热介质进行换热升温,再以高温态气体进入下一级膨胀机膨胀做功,经过多级膨胀机膨胀后,末级膨胀机出口的空气压力能消耗殆尽,恢复至常压状态。
30.所述压缩系统1,膨胀发电系统11,精馏塔13三者可以同时运行,也可以单独运行。
通过控制液空储罐7往外输送液态空气的流量以及分流器8分流量来达到空气分离,液态空气储能两者的耦合;通过调节精馏塔13生成的富氧空气进入电厂锅炉15进行富氧燃烧的量,可以达到空气分离和富氧燃烧两者的耦合。
31.和现有技术相比,本发明具有以下优点:
32.(1)本发明系统把液化空气储能生成的液化空气利用到空分系统中,既能够达到储能和空分生成富氧的目的,又能够节省空分子系统中压缩、液化的等方面的投资及能耗。
33.(2)本发明系统不仅能够达到储存电网低谷电能,保证电厂火电机组稳定运行的目的,同时还能够利用富氧燃烧快速提升火电机组负荷及释能阶段膨胀做功发电并网,进一步促进火电机组参与深度调峰。
34.(3)本发明系统里的蓄热子系统可以回收压缩热、填充床式蓄冷器可以回收液态空气的冷能,能够有效地提高能源的利用效率。
35.(4)采用液态空气储能方式,能够极大地减少空气储罐的容积,同时能够将存储压力降至常压,对储罐材质要求极大降低。
36.(5)空分子系统产生低温氮气,可以利用其冷能或者进一步将其液化作为产品销售。
附图说明
37.图1是本发明系统的结构示意图。
具体实施方式
38.请参阅图1,本发明实施例的一种空分储能耦合富氧燃烧的系统,由压缩系统1,级末冷却器2,蓄热罐3,填充床式蓄冷器4,深冷膨胀机5,气液分离器6,液空储罐7,分流器8,液泵9,再热器10,膨胀发电系统11,液压机12,精馏塔13,节流阀14,电厂锅炉15组成;
39.所述压缩系统1末级出口与级末冷却器2热端入口连通,级末冷却器2热端出口与填充床式蓄冷器4热端入口连通,填充床式蓄冷器4热端出口与深冷膨胀机5入口连通,深冷膨胀机5出口与气液分离器6入口连通,气液分离器6液相出口与液空储罐7进口连通,液空储罐7出口与分流器8入口连通,分流器8第一出口与液泵9入口连通,液泵9出口与填充床式蓄冷器4第一冷端入口连通,填充床式蓄冷器4第一冷端出口与再热器10冷端入口连通,再热器10冷端出口与膨胀发电系统11初级膨胀机入口连通,膨胀发电系统11末级膨胀机出口与大气连通;压缩系统1多级压缩机级间冷却器出口与蓄热罐3入口连通,蓄热罐3出口与膨胀发电系统11多级膨胀机级间入口连通;级末冷却器2冷端出口与蓄热罐3入口连通,蓄热罐3出口与再热器10热端入口连通;气液分离器6气相出口与填充床式蓄冷器4第二冷端入口连通,填充床式蓄冷器4第二冷端出口与压缩系统1的初级压缩机入口连通;分离器8第二出口与液压机12入口连通,液压机12出口与精馏塔13下塔入口连通,精馏塔13下塔出口与节流阀14入口连通,节流阀14出口与精馏塔13上塔入口连通,精馏塔13上塔出口与电厂锅炉15入口连通。所述压缩系统(1)中的级间换热,级末冷却器(2),储热罐(3),再热器(10),膨胀发电系统(11)中的级间再热器组成蓄热子系统;所述的深冷膨胀机(5)、气液分离器(6)、液空储罐(7)、分流器(8)、液泵(9)组成液化空气子系统;所述液压机(12)、精馏塔(13)、节流阀(14)组成空分子系统。
40.本发明系统中耦合了液态空气储能,空气分离,富氧燃烧等环节,各个环节之间可以独立运行,也可以通过控制循环参数同时运行。具体空分储能耦合富氧燃烧系统的工作方法如下:
41.常温常压的空气在经过过滤和净化,去除掉空气内的水和co2及固体杂质后,进入压缩系统1;各级压缩机之间配备了级间换热器,利用储热介质与各级间压缩机出口的高温空气进行换热,降低空气温度后进入下一级压缩机进行压缩,换热后的高温储热介质进入蓄热罐3存储;空气经压缩系统1压缩后,压力由0.1mpa提升至8mpa,温度由20℃提升至350℃;
42.压缩后的高温空气进入级末冷却器2,在级末冷却器2内与储热介质进行换热并降温,空气换热后温度从350℃降低至46℃;换热后的高温储热介质进入蓄热罐3存储;冷却后的空气进入填充床式蓄冷器4进行进一步降温,温度从46℃降低至

175℃;然后,空气进入深冷膨胀机5进行膨胀做功,压力从8mpa降低至0.1mpa,温度从

175℃降低至

196℃,部分空气发生液化,深冷膨胀机5出口为低温气液混合空气;气液混合空气进入气液分离器6进行两相分离,气相空气从分离器6气相出口引出返回填充床式蓄冷器4释放冷能,然后进入压缩系统1进行再压缩,液相空气从分离器6气相出口引出至液空储罐7处储存;
43.当空气分离和膨胀发电运行时,液态空气从液空储罐7中进入至分流器8,分流器8将液态空气分流成两股流体,一股流体进入液压机12,将液空压力增加至0.7mpa后送入精馏塔13;液态空气在精馏塔13内发生分离,在精馏塔的冷凝蒸发器的顶盖下可以引出氮气产品,在蒸发侧引出富氧空气产品;精馏塔13分离出的富氧空气送入电厂锅炉15内进行富氧燃烧,提升燃烧效率;
44.从分流器8中分流的另一股流体进入液泵9处加压,将压力增至7mpa;然后进入填充床式蓄冷器4释放冷能,温度升高并汽化,空气温度从

196℃升至17℃;从填充床式蓄冷器4出来的空气进入再热器10,与蓄热罐3送来的高温储热介质进行换热,温度从17℃提升至330℃;加热后的空气进入膨胀发电系统11中的透平膨胀机膨胀做功,推动同轴的发电机转动发电;空气在每一级膨胀机膨胀做功,温度、压力下降后,进入级间再热器与蓄热罐3过来的高温储热介质进行换热升温,提高温度后进入下一级膨胀机膨胀做功;经过三级膨胀机膨胀后,末级膨胀机出口的空气压力能消耗殆尽,恢复至常压。
45.以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献