一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

半导体器件和制造半导体器件的方法与流程

2021-11-20 03:14:00 来源:中国专利 TAG:


1.本公开涉及一种半导体器件和一种制造半导体器件的方法。


背景技术:

2.例如,jp2005

19447a公开了一种半导体器件,其具有作为功率转换单元的一部分的半导体元件。作为现有技术文献的jp2005

19447a的公开作为本说明书的技术要素的解释通过引用并入本文。


技术实现要素:

3.在jp2005

19447a中,发射电极形成在半导体衬底的表面上。发射电极具有由铝合金制成的基底电极和设置在基底电极上的连接电极。连接电极设置在保护膜的开口中。连接电极的外周边缘和保护膜之间的边界(界面)的位置在沿半导体衬底板厚方向投影的半导体衬底平面图中与半导体衬底的有源区域相对应。
4.在这种构造中,在焊料结合状态下,由于诸如功率循环或冷循环的应力,在边界正下方,即,在连接电极的外周边缘正下方的基底电极中,很可能出现裂纹。裂纹可延伸至位于边界正下方的半导体衬底的有源区域。从上述观点或从其它未提及的观点来看,需要对半导体器件进一步改进。
5.本公开的目的是提供一种半导体器件和一种用于制造半导体器件的方法,其能够抑制由于热应力而对有源区域造成的损害。
6.根据本公开的一个方面,半导体器件包括用于构成功率转换装置的半导体元件。所述半导体元件包括半导体衬底、表面电极和保护膜。所述半导体衬底具有作为元件形成区域的有源区域,所述有源区域邻近所述半导体衬底的前表面;并且具有在与所述半导体衬底的前表面正交的衬底厚度方向上投影的平面图中围绕所述有源区域的外周区域。表面电极包括设置在半导体衬底的前表面上的基底电极和设置在基底电极上的连接电极。保护膜覆盖基底电极的周边端部和连接电极的外周边缘。所述保护膜限定开口以露出所述连接电极,从而能够对所述连接电极形成焊料连接。此外,连接电极被布置成使得连接电极的外周边缘和保护膜之间的边界在沿衬底厚度方向的平面图中位于与半导体衬底的外周区域相对应的位置。
7.在根据上述方面的半导体器件中,连接电极的外周边缘和保护膜之间的边界位于远离有源区域的位置。因此,即使由诸如功率循环和冷热循环引起的热应力集中在边界正下方的部分,裂纹发展到有源区域的可能性也较小。因此,可以限制有源区域不被热应力损害。
8.根据本公开的一个方面,一种用于制造具有用于构成功率转换装置的半导体元件的半导体器件的方法,包括:制备半导体晶圆,所述半导体晶圆具有与所述半导体晶圆的前表面相邻的有源区域和围绕所述有源区域的外周区域;在所述半导体晶圆的整个前表面上形成氧化硅膜;将所述氧化硅膜图案化以形成包围所述有源区域的接触孔;在整个前表面
上形成基底电极以覆盖所述氧化硅膜;图案化所述基底电极,使得所述基底电极具有与所述氧化硅膜的接触孔的周边部分重叠的周边端部;在整个前表面上形成连接电极以覆盖所述基底电极和所述氧化硅膜;通过利用所述连接电极与所述氧化硅膜和所述基底电极的附着力的差异,去除形成在所述氧化硅膜上的连接电极的一部分,从而形成包括所述基底电极和堆叠在所述基底电极上的所述连接电极的表面电极;在整个前表面上形成保护膜以覆盖所述表面电极和所述氧化硅膜;图案化所述保护膜以形成开口从而露出连接电极的一部分作为焊料连接部,并且去除所述划片区域上方的一部分保护膜;以及在将保护膜图案化之后,沿着划片区域切割半导体晶圆,从而形成半导体元件。
9.在根据上述方面的方法中,氧化硅膜形成在半导体晶圆的整个前表面上,不包括与表面电极连接的部分,即不包括从接触孔露出的部分。利用连接电极与基底电极和氧化硅膜的附着力的差异和膜内残余应力的差异去除形成在氧化硅膜上的部分连接电极,而保留形成在基底电极上的部分连接电极。这样,在不使用光致抗蚀剂的情况下对连接电极进行图案化,并且可以在远离有源区域的位置处设置连接电极的外周边缘和保护膜之间的边界。因此,可以抑制由热应力引起的对有源区域的损害。
附图说明
10.通过以下参考附图的详细描述,本公开的目的、特征和优点将变得更加明显,在附图中,相同的部件由相同的附图标记表示,其中:
11.图1是示出采用根据第一实施例的半导体器件的车辆驱动系统的示意性构造的图;
12.图2是示出根据第一实施例的半导体器件的平面图的图;
13.图3是示出沿图2中的线iii

iii截取的截面图的图;
14.图4是示出根据第一实施例的半导体元件的平面图的图;
15.图5是示出沿图4中的线v

v截取的截面图的图;
16.图6是示出用于说明制造半导体元件的方法的截面图的图;
17.图7是示出用于说明制造半导体元件的方法的截面图的图;
18.图8是示出用于说明制造半导体元件的方法的截面图的图;
19.图9是示出用于说明制造半导体元件的方法的截面图的图;
20.图10是示出用于说明制造半导体元件的方法的截面图的图;
21.图11是示出用于说明制造半导体元件的方法的截面图的图;
22.图12是示出用于说明制造半导体元件的方法的截面图的图;
23.图13是示出用于说明制造半导体元件的方法的截面图的图;
24.图14是示出用于说明制造半导体元件的方法的截面图的图;
25.图15是示出作为参考示例的半导体器件的截面图的图;
26.图16是示出根据第一实施例的半导体元件和端子构件之间的焊料连接结构的半导体器件的截面图的图;
27.图17是示出作为修改示例的半导体器件的截面图的图;
28.图18是示出根据第二实施例的半导体器件的截面图的图;
29.图19是示出根据第三实施例的半导体器件的截面图的图;
30.图20是示出根据第四实施例的半导体器件的截面图的图;
31.图21是示出根据第五实施例的半导体器件的截面图的图。
具体实施方式
32.在下文中,将参考附图描述多个实施例。在实施例中,在功能和/或结构上相互对应和/或相互关联的部件被赋予相同的附图标记。对于相应部分和/或相关元件,可以参考其它实施例的描述。
33.本实施例的半导体器件应用于例如用于由旋转电动机器驱动的移动体的功率转换装置。例如,移动体是电动车辆(ev)、混合动力车辆(hv)、燃料电池车辆(fcv)、飞行器(例如无人机)、船舶、建筑机械或农业机械。在下文中,将描述将半导体器件应用于用于车辆的功率转换装置的示例。
34.(第一实施例)
35.首先,将参考图1描述车辆驱动系统的示意性构造。
36.<车辆驱动系统>
37.如图1所示,车辆驱动系统1包括dc电源2、电动发电机3和功率转换装置4。
38.dc电源2是直流电压源,包括可充/放电的二次电池。二次电池是例如锂离子电池或镍氢电池。电动发电机3是三相ac型旋转电机。电动发电机3用作车辆驱动电源,即电动马达。电动发电机3在再生过程中也起发电机的作用。功率转换装置4在dc电源2和电动发电机3之间执行电功率转换。
39.<功率转换装置>
40.接下来,将参考图1描述功率转换装置4的电路构造。功率转换装置4包括平滑电容器5和逆变器6。
41.平滑电容器5平滑从dc电源2提供的dc电压。平滑电容器5连接到作为高电位侧的电源线的p线7和作为低电位侧的电源线的n线8。p线7连接到dc电源2的正极,n线8连接到dc电源2的负极。平滑电容器5的正极在dc电源2和逆变器6之间的位置连接到p线7。类似地,平滑电容器5的负极在dc电源2和逆变器6之间的位置连接到n线8。平滑电容器5与dc电源2并联。
42.逆变器6是dc到ac的转换电路。逆变器6根据控制电路(未示出)的开关控制将dc电压转换为三相ac电压,并将三相ac电压输出到电动发电机3。结果,驱动电动发电机3以产生预定扭矩。在车辆再生制动时,逆变器6根据控制电路的开关控制,将电动发电机3通过接收车轮旋转力而产生的三相ac电压转换为dc电压,并将dc电压输出到p线7。以此方式,逆变器6在dc电源2和电动发电机3之间执行双向电功率转换。
43.逆变器6包括用于三相的上臂和下臂电路9。上臂和下臂电路9也将被称为桥臂。上臂和下臂电路9包括上臂9h和下臂9l。上臂9h和下臂9l在p线7和n线8之间串联连接,使得上臂9h与p线7相邻,下臂9l与n线8相邻。上臂9h和下臂9l之间的连接点通过输出线10连接到电动发电机3中相应相的绕组3a。逆变器6有六个臂。p线7、n线8和输出线10中的每一个的至少一部分由诸如母线的导电构件提供。
44.在本实施例中,由绝缘栅双极晶体管11(以下称为igbt 11)提供构成每个臂的开关元件。反向流动二极管12(以下称为fwd 12)反并联地连接到每个igbt 11。在上臂9h中,
igbt 11的集电极连接到p线7。在下臂9l中,igbt 11的发射极连接到n线8。上臂9h的igbt 11的发射极和下臂9l的igbt 11的集电极彼此连接。fwd 12的阳极连接到相应igbt 11的发射极,fwd 12的阴极连接到相应igbt 11的集电极。
45.功率转换装置4还可以包括作为功率转换电路的转换器。在这种情况下,转换器是将dc电压转换为具有不同值的dc电压的dc到dc的转换电路。转换器设置在dc电源2和平滑电容器5之间。转换器被构造为包括例如电抗器和上述上臂和下臂电路9。在这种构造中,可以升高和降低电压。功率转换装置4可以包括从dc电源2去除电源噪声的滤波电容器。在这种情况下,在dc电源2和转换器之间提供滤波电容器。
46.功率转换装置4可以包括用于驱动构成逆变器6等的开关元件的驱动电路。驱动电路基于来自控制电路的驱动命令向相应臂的igbt 11的栅极供应驱动电压。驱动电路通过施加驱动电压来驱动相应的igbt 11,即,接通和断开相应的igbt 11。驱动电路也可以称为驱动器。
47.功率转换装置4可以包括用于开关元件的控制电路。在这种情况下,控制电路生成用于操作igbt 11的驱动命令,并将该驱动命令输出到驱动电路。控制电路根据来自更高级别ecu(未显示)的扭矩请求或各种传感器检测到的信号生成驱动命令。各种传感器的示例包括电流传感器、旋转角度传感器和电压传感器。电流传感器检测流过每相绕组3a的相电流。旋转角度传感器检测电动发电机3的转子的旋转角度。电压传感器检测跨过平滑电容器5的电压。控制电路输出例如pwm信号作为驱动命令。控制电路包括例如微型计算机。“ecu”是“电子控制单元”的缩写。“pwm”是“脉宽调制”的缩写。
48.<半导体器件>
49.接下来,参照图2和图3描述应用半导体元件的半导体器件的示意性构造。图2是半导体器件的平面图。图2是从顶部观看的半导体器件的平面图。图3是沿图2的iii

iii线截取的截面图。在图3中,简化了半导体元件40的结构。
50.下面,半导体元件的板厚方向定义为z方向。板厚方向是测量半导体元件或半导体衬底的厚度的方向,并且对应于与半导体元件表面法向的方向。板厚方向也可称为衬底厚度方向。与z方向正交且对应于多个焊盘的对准方向的方向被定义为x方向。与z方向和x方向均正交的方向定义为y方向。除非另有规定,在z方向上观看或投影的平面图中的形状,即沿xy平面(包括x和y方向)的形状称为平面形状。此外,z方向的平面图可以简称为平面图。平面图是沿z方向投影的视图。
51.如图2和图3所示,半导体器件20包括密封树脂体30、半导体元件40、散热器50和60、端子构件70、主端子80和81以及信号端子82。半导体器件20构成一个臂。也就是说,两个半导体器件20构成用于一个相位的上臂和下臂电路9。
52.密封树脂体30对构成半导体器件20的其它元件的一部分进行密封。其它元件的剩余部分露出到密封树脂体30的外侧。密封树脂体30例如由环氧树脂制成。密封树脂体30例如通过转移模塑技术形成。如图2所示,密封树脂体30在平面图中具有基本为矩形的形状。密封树脂体30具有前表面30a和在z方向上与前表面30a相反的背表面30b。前表面30a和背表面30b例如是平坦表面。
53.半导体元件40由形成有垂直元件的半导体衬底41提供。半导体衬底41由硅(si)、具有比硅更宽带隙的宽带隙半导体等构成。宽带隙半导体的示例包括碳化硅(sic)、氮化镓
(gan)、氧化镓(ga2o3)和金刚石。垂直元件被形成为使得主电流在半导体元件40(半导体衬底41)的板厚方向上流动,即在z方向上流动。在本实施例中,垂直元件包括形成一个臂的igbt11和fwd 12。即,半导体元件40具有rc(反向传导)

igbt作为垂直元件。垂直元件是电传导时产生热量的发热元件。半导体元件40也可以称为半导体芯片。
54.半导体元件40具有形成在半导体衬底41上的栅极(未示出)。栅极具有例如沟槽结构。半导体元件40在半导体衬底41的每个板表面上具有主电极。半导体衬底41的板表面是面向z方向的表面。主电流在主电极之间流动。主电极包括形成为与半导体衬底41的前表面41a相邻的发射电极42和形成为与半导体衬底41的与前表面41a相反的背表面41b相邻的集电极43。半导体衬底41的前表面41a是与密封树脂体30的前表面30a相邻的表面。发射电极42对应于表面电极。
55.发射电极42还用作二极管的阳极电极。集电极43还用作二极管的阴极电极。集电极43形成在半导体衬底41的基本上整个背表面41b上。发射电极42形成在半导体衬底41的前表面41a的一部分上。在半导体衬底41的前表面41a上,作为信号电极的焊盘44形成在与形成发射电极42的区域不同的区域中。焊盘44与发射电极42电隔离。焊盘44形成于半导体衬底41的前表面41a的端部,该端部与形成发射电极42的区域在y方向上相反。焊盘44在y方向上与发射电极42对准。
56.焊盘44至少包括用于栅极的焊盘。本实施例的半导体元件40具有五个焊盘44。具体地,五个焊盘44被设置用于栅极、用于检测发射电极42的电势的开尔文发射极、电流感测、用于检测半导体元件40温度的温度传感器(温度敏感二极管)的阳极电势、和阴极电势。五个焊盘44共同形成在半导体元件40的在y方向的端部,其平面图中基本具有矩形形状。另外,五个焊盘44在x方向上并排布置。
57.散热器50和60被设置为沿z方向插入半导体元件40。散热器50和60被设置为在z方向上彼此面对。散热器50和60在平面图中包围半导体元件40。散热器50和60将半导体元件40产生的热量从半导体器件20的两侧散发到外侧。例如,散热器50和60可以均由直接结合铜(dbc)板、由诸如cu或cu合金制成的金属板等提供。散热器50和60可以均在其表面上具有由诸如镍或金制成的镀膜。在本实施例中,散热器50和60是由铜作为材料制成的金属板。
58.散热器50具有与半导体元件40相邻的面对表面50a和与面对表面50a相反的背表面50b。类似地,散热器60具有面对表面60a和背表面60b。散热器50和60在平面图中均具有基本矩形的形状。散热器50和60的背表面50b和60b从密封树脂体30中露出。背表面50b和60b可被称为热辐射表面或露出表面。
59.散热器50布置在与半导体元件40的发射电极42在z方向上相邻的一侧,并且经由焊料90电连接到发射电极42。散热器50用作将发射电极42电连接到另一构件的布线构件。散热器50经由端子构件70连接到发射电极42。焊料90分别插入在散热器50和端子构件70之间以及端子构件70和发射电极42之间。散热器50的背表面50b与密封树脂体30的前表面30a基本上齐平。焊料90是除sn之外还含有cu、ni等的多元素无铅焊料。
60.端子构件70沿z方向插入在半导体元件40和散热器50之间,并且电互连发射电极42和散热器50。端子构件70位于半导体元件40(发射电极42)和散热器50之间的导电和导热路径的中间。端子构件70是使用诸如cu或cu合金的金属材料形成的柱状体。端子构件70可在其表面上具有镀膜。端子构件70可被称为金属块体或互连构件。在本实施例中,端子构件
70是在平面图中具有基本矩形形状的柱状体。
61.散热器60布置在与半导体元件40的集电极43在z方向上相邻的一侧,并且经由焊料90电连接到集电极43。散热器60用作将集电极43电连接到另一构件的布线构件。在散热器60的面对表面60a和半导体元件40的集电极43之间形成焊料接头。散热器60的背表面60b与密封树脂体30的背表面30b基本上齐平。
62.主端子80和81以及信号端子82是用于将半导体器件20电连接到外侧装置的外侧连接端子。主端子80和81电连接到主电极。主端子80电连接到发射电极42。主端子80也可以被称为发射端子。主端子81电连接到集电极43。主端子81也可以称为集电端子。
63.主端子80经由散热器50连接到发射电极42。主端子80连接到散热器50在y方向上的一端。主端子80的厚度小于散热器50的厚度。例如,主端子80连接到散热器50以便与面对表面50a基本齐平。主端子80和散热器50可以由整体构件提供,使得主端子80连接到散热器50。可替代地,主端子80和散热器50可以由单独构件提供,并且可以彼此连接,使得主端子80连接到散热器50。
64.在本实施例中,主端子80与散热器50一体设置作为引线框架的一部分。主端子80从散热器50沿y方向延伸,并从密封树脂体30的侧面30c向外伸出。主端子80在被密封树脂体30覆盖的部分的中间具有弯曲部,并且从侧面30c上沿z方向的中心附近伸出。
65.主端子81经由散热器60电连接到集电极43。主端子81连接到散热器60在y方向上的一端。主端子81的厚度小于散热器60的厚度。例如,主端子81连接到散热器60以便与面对表面60a基本齐平。主端子81和散热器60可以由整体构件提供,使得主端子81连接到散热器60。可替代地,主端子81和散热器60可以由单独构件提供,并且可以彼此连接,使得主端子81连接到散热器60。
66.在本实施例中,主端子81与散热器60一体设置,作为与主端子80的引线框架分离的引线框架的一部分。主端子81从散热器60沿y方向延伸,并且从与主端子80相同的侧面30c向外伸出。主端子81也在被密封树脂体30覆盖的部分的中间具有弯曲部,并且从侧面30c上沿z方向的中心附近伸出。两个主端子80和81沿x方向并排布置。
67.信号端子82电连接到半导体元件40的焊盘44。在本实施例中,信号端子82经由结合线91连接到焊盘44。信号端子82在y方向上延伸,并且从密封树脂体30的侧面30d伸出。侧面30d是在y方向上与侧面30c相反的表面。本实施例的半导体器件20包括对应于五个焊盘44的五个信号端子82。例如,信号端子82形成在与散热器60和主端子81共用的引线框架中。通过切断系杆(未示出),信号端子82彼此电分离。
68.如上所述,在半导体器件20中,构成一个臂的半导体元件40被密封树脂体30密封。密封树脂体30整体密封半导体元件40、散热器50的一部分、散热器60的一部分、端子构件70、每个主端子80和81的一部分以及每个信号端子82的一部分。
69.在z方向上,半导体元件40布置在散热器50和60之间。半导体元件40插入在彼此面对的散热器50和60之间。结果,半导体元件40的热量可以从z方向的两侧散发。半导体器件20具有双面散热结构。散热器50的背表面50b与密封树脂体30的前表面30a基本上共面。散热器60的背表面60b与密封树脂体30的背表面30b基本上共面。由于背表面50b和60b是露出表面,因此可以改进散热。
70.<半导体元件>
71.接下来,将参考图4和图5描述半导体元件40。图4是从前表面侧观看的半导体元件40的平面图。在图4中,用虚线表示基底电极420的外周边缘420b和连接电极421的外周边缘421b,用长短交替的虚线表示氧化硅膜45的内周边缘45a。此外,由双点划线表示有源区域410的外周边缘410a,即有源区域410和外周区域411之间的边界。图5是沿图4中的线v

v截取的截面图。在以下描述中,“内侧”和“外侧”表示以半导体元件40的有源区域410的中心作为基准位置的相对位置关系。靠近中心的区域是内侧,远离中心的区域是外侧。
72.半导体衬底41在平面图中具有基本矩形的形状。半导体衬底41在与前表面41a相邻的表面层中具有有源区域410。有源区域410是形成元件的区域,并且也将被称为元件形成区域。有源区域410也将被称为主区域。尽管未示出,但有源区域410与rc

igbt的与前表面41a相邻的一部分一起形成。例如,在有源区域410中,形成igbt 11的沟槽栅、基底区、发射区和fwd 12的阳极区。在图5中,通过虚线示出有源区域410。
73.半导体衬底41具有包围有源区域410的外周区域411。在图5中,有源区域410和外周区域411之间的边界由长短交替的虚线表示。外周区域411是在平面图中有源区域410的外周边缘410a之外的区域。尽管未示出,但是在外周区域411中形成诸如保护环之类的耐压结构部分。
74.在半导体衬底41中,在与背表面41b相邻的表面层中形成igbt 11的集电极区域和fwd 12的阴极区域。背表面41b在z方向上与前表面41a相反。集电极43形成在半导体衬底41的基本上整个背表面41b上。
75.半导体元件40还包括氧化硅膜45和保护膜46。氧化硅膜45是形成在半导体衬底41的前表面41a上的层间绝缘膜。氧化硅膜45形成为环形,以便围绕有源区域410。氧化硅膜45形成在前表面41a上的外周区域411中。氧化硅膜45具有用于将发射电极42连接到半导体衬底41的接触孔。氧化硅膜45的端面提供开口端45a并限定接触孔。开口端45a位于比有源区域410的外周边缘410a更靠外的位置。氧化硅膜45的膜内残余应力是压应力。
76.在本实施例中,氧化硅膜45比保护膜46的外周边缘更向外延伸。氧化硅膜45具有从保护膜46露出的露出部45b。露出部45b包括划片区域。氧化硅膜45形成在半导体衬底41的前表面41a上,在不包括发射电极42的连接部分(接触)的几乎整个区域内,即,在不包括从接触孔露出的部分的几乎整个区域内。
77.发射电极42具有多层结构。发射电极42具有基底电极420和连接电极421。焊盘44还具有与发射电极42类似的结构。
78.在具有多层结构的发射电极42中,基底电极420是与半导体衬底41相邻形成的金属层。基底电极420也可以被称为下电极、下层电极、布线电极、第一金属层等。基底电极420连接到半导体衬底41的前表面41a和氧化硅膜45。与连接电极421相比,基底电极420对氧化硅膜45具有更高的附着力。基底电极420通过使用例如含有铝(al)作为主要成分的材料形成。在本实施例中,该材料是铝合金,例如alsi或alsicu。
79.基底电极420向上延伸到外周区域411上方的位置,同时在平面图中包括有源区域410。基底电极420连接到发射区域、基底区域和阳极区域。基底电极420的周边端部420a堆叠并布置在氧化硅膜45上。周边端部420a设置在氧化硅膜45的开口端45a的周边部上。周边端部420a在平面图中具有环形,并且布置在外周区域411的上方。基底电极420的外周边缘420b位于氧化硅膜45上。
80.为了提高与焊料90的结合强度并且改善相对于焊料90的润湿性,将连接电极421堆叠并布置在基底电极420上。连接电极421也可以被称为覆盖电极、上电极、上层电极和第二金属层。连接电极421包括至少一个金属层。构成连接电极421的金属层包含对氧化硅膜45的附着力低于基底电极420的材料,并且该材料包括例如ni、pd、au、pt和ag中的至少一种。连接电极421的膜内残余应力是拉伸应力。
81.本实施例的连接电极421至少包括镍(ni)层。镍比形成基底电极420的铝合金硬。连接电极421还可以在ni层上包括金(au)层。例如,au层抑制ni层的氧化,从而提高与焊料的润湿性。由于金在焊接过程中扩散到焊料中,因此金层在焊接前的状态中存在,而在焊料连接状态中不存在。
82.与基底电极420类似,连接电极421在平面图中包括有源区域410的同时在外周区域411的上方延伸。连接电极421的周边端部421a堆叠并布置在基底电极420的周边端部420a上。周边端部421a经由周边端部420a布置在氧化硅膜45上。周边端部421a在平面图中具有环形并且布置在外周区域411的上方。连接电极421的外周边缘421b位于氧化硅膜45上。周边端部420a对应于第一周边端部,周边端部421a对应于第二周边端部。
83.在本实施例中,连接电极421被布置成在平面图中与基底电极420基本重合。外周边缘420b和421b的位置在整个周边上基本彼此重合。外周边缘420b和421b位于比氧化硅膜45的开口端45a更靠外的位置。
84.保护膜46是设置在半导体衬底41的前表面41a上的绝缘膜,以便覆盖发射电极42的周边端部和氧化硅膜45。作为绝缘膜的材料,例如,可以使用聚酰亚胺、氮化硅膜等。保护膜46具有限定发射电极42和焊料90之间的连接区域的开口46a。开口46a允许发射电极42露出以使得能够与焊料90进行焊料结合。保护膜46具有为焊盘44提供连接区域的开口46b。每一个开口46a和46b都是在z方向上穿透保护膜46的通孔。在发射电极42(连接电极421)中,从保护膜46的开口46a露出的露出部421c与焊料90形成结合部。
85.在本实施例中,保护膜46由聚酰亚胺制成。保护膜46覆盖基底电极420的周边端部420a和连接电极421的周边端部421a。保护膜46覆盖氧化硅膜45的不包括露出部45b的部分。在从半导体衬底41的外周边缘起的预定区域中的划片区域中不设置保护膜46。开口46a的形状,即保护膜46的限定开口46a的开口端46c的形状在平面图中基本上是矩形。开口端46c也可以被称为内周边缘。开口端46c位于比有源区域410的外周端部410a更靠内侧的位置。
86.<半导体元件的制造方法>
87.接下来,将参考图6到图14描述用于制造半导体器件的方法,具体地,用于制造半导体元件的方法。图6到图14是示出对应于图5的半导体元件的制造工艺的截面图。图6示出了成膜氧化硅膜的步骤,图7示出了图案化氧化硅膜的步骤。图8示出了成膜基底电极的步骤,图9示出了图案化基底电极的步骤。图10示出了成膜连接电极的步骤,图11和图12示出了图案化连接电极的步骤。图13示出了形成保护膜的步骤,图14示出了形成集电极的步骤。
88.首先,通过离子注入等在晶圆状态的半导体衬底中形成元件(rc

igbt)。以下,将晶圆状态的半导体衬底称为半导体晶圆。然后,如图6所示,例如通过cvd技术形成氧化硅膜45。在这种情况下,形成氧化硅膜45使其覆盖半导体晶圆41w的整个前表面41a。因此,也在半导体晶圆41w的划片区域412上形成氧化硅膜45。考虑到切割,可以使划片区域412中的氧
化硅膜45的厚度比其它区域更薄。氧化硅膜45可以通过cvd技术以及热氧化技术形成。划片区域412也可以被称为划线。
89.接着,如图7所示,对氧化硅膜45进行图案化。例如,将光致抗蚀剂施加到氧化硅膜45的表面并通过曝光形成图案,并且使用光致抗蚀剂作为掩模来执行蚀刻,从而对氧化硅膜45图案化。具体地,在氧化硅膜45中形成用于将发射电极42连接到半导体晶圆41w的接触孔45c。在这种情况下,形成接触孔45c使其在平面图中包括有源区域410。
90.这样,在氧化硅膜45中,去除与发射电极42的接触部分相对应的部分,并留下另一部分。在外周区域411中,不仅有意地将氧化硅膜45留在其上堆叠有图案化基底电极420的区域中,而且有意地将氧化硅膜45留在堆叠区域之外的区域中。
91.接着,如图8所示,通过例如溅射技术或气相沉积技术将基底电极420(铝合金膜)形成膜。在这种情况下,基底电极420形成在整个前表面41a上,从而覆盖氧化硅膜45。
92.接着,如图9所示,对基底电极420进行图案化。例如,将光致抗蚀剂施加到基底电极420的表面并通过曝光形成图案,并且使用光致抗蚀剂作为掩模来执行蚀刻,从而对基底电极420图案化。结果,基底电极420位于上述外周边缘420b内侧的部分被留下。即,留下氧化硅膜45的开口端45a内侧的部分和堆叠在氧化硅膜45上的周边端部421a。
93.在形成基底电极420之后,可以执行等离子体处理作为形成连接电极421的预处理。具体地,使用诸如cf4的氟基气体作为用于等离子体处理的气体。然后,如图9中的箭头所示,将氟基气体喷射到基底电极420的表面和氧化硅膜45的从基底电极420露出的表面上。结果,在去除基底电极420表面上的氧化膜之后,氟附着到基底电极420和氧化硅膜45的表面从而形成氟化物层(未示出)。
94.通过在真空中连续形成氟化物层,基底电极420上的大部分氧被氟取代,并且氟和氧混合并存在于基底电极420上。另一方面,在氧化硅膜45的表面上形成具有高浓度氟的层。作为等离子体处理的气体,氧气可以与氟基气体一起使用。使用氧气可以延长氟自由基的寿命。
95.接着,如图10所示,通过例如溅射技术或薄膜沉积技术将连接电极421(ni膜)形成膜。在这种情况下,基底电极420/连接电极421形成在整个前表面41a上,从而覆盖基底电极420和氧化硅膜45。
96.接着,如图11所示,对连接电极421进行图案化。在图11中,沿前表面41a扫描喷嘴100以向连接电极421喷水。扫描喷嘴100以将水喷洒到整个前表面41a上。在这种情况下,水的压力(水压)被设置一个范围内,在该范围内,可以将连接电极421从氧化硅膜45上剥离,并且半导体晶圆41w、基底电极420和基底电极420上的连接电极421不会被损害。例如,水压设定在0.2到20mpa的范围内。
97.连接电极421(ni层)对氧化硅膜45的附着力低于基底电极420(al合金层)。此外,由于用于电极材料的金属具有比衬底(例如,si)更大的线性膨胀系数,所以基底电极420和连接电极421的膜内残余应力都是拉伸应力。另一方面,由于二氧化硅具有比衬底(si)更小的线性膨胀系数,因此氧化硅膜45的膜内残余应力是压应力。由于连接电极421对氧化硅膜45具有较低的附着力并且存在应力差,因此当喷水时,连接电极421直接堆叠在氧化硅膜45上的部分421d从氧化硅膜45上剥离。
98.在本实施例中,具体地,如上所述执行预处理(等离子体处理)。例如,当通过溅射
技术形成连接电极421时,由于在成膜期间产生的热,基底电极420上的氟化物层中的氟移动到连接电极421。由于基底电极420和连接电极421是金属结合的,因此连接电极421对基底电极420具有更高的附着力。因此,即使喷水,连接电极421也不容易从基底电极420上剥离。
99.另一方面,在氧化硅膜45的表面层上的氟层中,生成具有弱结合力的部分。因此,连接电极421对氧化硅膜45的附着力较低。因此,当喷水时,碳和氟之间的结合被破坏,使得连接电极421(部分421d)容易与氟层一起从氧化硅膜45上剥离。
100.如上所述,通过利用连接电极421与基底电极420和氧化硅膜45的附着力的差异来去除氧化硅膜45上的连接电极421,因此如图12所示对连接电极421进行图案化。基底电极420上的连接电极421保留,因此连接电极421在平面图中具有与基底电极420基本重合的布置。连接电极421的周边端部421a堆叠并布置在基底电极420的周边端部420a上,并且外周边缘421b基本上与外周边缘420b重合。
101.接着,如图13所示,形成保护膜46。例如,将液态聚酰亚胺施加到半导体晶圆41w的前表面41a上并旋转涂覆以在整个前表面41a上形成保护膜46。然后,将光致抗蚀剂施加到保护膜46的表面并通过曝光形成图案,并且使用光致抗蚀剂作为掩模来执行蚀刻以对保护膜46图案化。结果,在保护膜46中形成开口46a和46b。此外,划片区域412被打开以分隔形成在半导体晶圆41w上的多个半导体元件。通过打开划片区域412,氧化硅膜45的部分45b被露出为露出部分。
102.接着,如图14所示,通过例如溅射技术在半导体晶圆41w的背表面41b上形成集电极43。然后,半导体晶圆41w沿着划片区域412被切割成各个芯片,尽管未示出。这样,可以生产如上所述的半导体元件40。
103.<第一实施例概要>
104.图15是示出参考示例的截面图。在参考示例中,通过在本实施例中的附图标记的尾部添加“r”来表示与本实施例相同或相关的元件。图15示出了发射电极42r和端子构件70r之间的焊料连接结构。
105.同样在参考示例的半导体器件20r中,与本实施例类似,半导体元件40r的发射电极42r具有基底电极420r和连接电极421r。连接电极421r设置在基底电极420r从保护膜46r的开口46ar露出部分的表面上。连接电极421r仅设置在开口46ar中且不被保护膜46r覆盖。连接电极421的外周边缘421br与保护膜46r的开口端46cr接触。连接电极421r包括例如镀膜。在形成保护膜46r以覆盖基底电极420r并且图案化以形成开口46ar之后形成连接电极421r。
106.在半导体元件40r中,保护膜46r和连接电极421r之间的边界(界面)位于基极420r的上方。在该边界的正下方存在有源区域410r。在这样的构造中,诸如功率循环或冷循环引起的热应力集中在边界正下方的部分,即,外周边缘421br正下方的部分,如虚线箭头所示。因此,在基底电极420r的边界正下方的部分中可能出现裂纹。裂纹可以增长到存在于边界正下方的有源区域410r。热应力是由于半导体元件40r(半导体衬底41r)和诸如端子构件70r的金属构件之间的线性膨胀系数的差异而产生的。在这种情况下,“正下方”意味着下部元件的位置在z方向上与上部元件重合,并不一定意味着下部元件与上部元件直接接触。
107.具体地,在参考示例的构造中,焊料90r的外周端部基本上与保护膜46r的开口端
46cr重合。即,焊料90r和保护膜46r之间的边界基本上与连接电极421r和保护膜46r之间的边界重合。因此,外周边缘421br、开口端46cr和焊料90r的外周端部的位置在平面图中,即在z方向上相互重叠,使热应力更集中在边界正下方的部分。
108.图16示出了本实施例的半导体器件20。为方便起见,图16示出了半导体元件40和端子构件70之间的焊料连接结构。图16对应于图15。如图16所示,连接电极421向上延伸到在平面图中即在z方向上与外周区域411重叠的位置。连接电极421的周边端部421a被保护膜46覆盖。在平面图中,在与半导体衬底41的外周区域411重叠的位置处设置连接电极421的外周边缘421b,即外周边缘421b和保护膜46之间的边界(界面)。即,外周边缘421b和保护膜46之间的边界位于与半导体衬底41的外周区域411在z方向上相对应的位置。
109.这样,在平面图中,在远离有源区域410的位置处设置外周边缘421b和保护膜46之间的边界。因此,即使由于诸如功率循环或冷/热循环导致的热应力集中在边界正下方的部分中,裂纹也不太可能发展到有源区域410中。因此,可以抑制有源区域410被热应力损害。
110.在本实施例中,连接电极421的外周边缘421b和保护膜46之间的边界的位置相对于焊料90和保护膜46之间的边界的位置向外偏移。结果,热应力被分散。因此,可以减小作用在外周边缘421b和保护膜46之间的边界正下方的热应力。
111.连接电极421的外周边缘421b的位置可以设置在与外周区域411重叠的范围内。例如,如在图17所示的修改中,可以相对于基底电极420的外周边缘420b偏移外周边缘421b的位置。图17是该修改的截面图,并且对应于图16。外周边缘421b位于比外周边缘420b更靠内侧的位置。在平面图中,外周边缘421b和保护膜46之间的边界设置在远离有源区域410的位置。因此,可以限制有源区域410不被热应力损害。
112.另一方面,在本实施例中,设置连接电极421使其在平面图中与基底电极420基本重合。外周边缘420b和421b的位置在整个周边上基本彼此重合。在该构造中,基底电极420不位于外周边缘421b和保护膜46之间的边界正下方。因此,可以抑制由于热应力集中而在基底电极420的边界正下方的部分中出现裂纹。氧化硅膜45存在于边界正下方。即使热应力集中在氧化硅膜45的边界正下方的部分上,氧化硅膜45是脆性材料,并且不会由于重复而发生塑性断裂。因此,可以限制半导体衬底41不被热应力损害。
113.在本实施例中,氧化硅膜45形成在半导体晶圆41w的整个前表面41a上,除了与发射电极42相连接的部分之外。然后,通过利用连接电极421对基底电极420和氧化硅膜45的附着力的差异和膜内残余应力的差异,去除连接电极421在氧化硅膜45上的部分,而连接电极421在基底电极420上的部分被留下。当连接电极421从氧化硅膜45上的任何位置剥离时,连接电极421可以从作为起点的剥离位置上从氧化硅膜45上剥离,同时氧化硅膜45上的连接电极421保持连接状态。因此,可以在不使用抗蚀剂的情况下对连接电极421进行图案化。
114.在本实施例中,尤其是,在形成基底电极420之后并且在形成连接电极421之前执行等离子体处理。在等离子体处理中采用氟基气体。结果,在去除基底电极420表面上的氧化膜之后,氟附着在基底电极420和氧化硅膜45的表面上以在基底电极420和氧化硅膜45的表面上形成氟化物层。由于氟层的形成,与连接电极421的附着力的差异变得更大,并且氧化硅膜45上的连接电极421可以容易地剥离。
115.当剥离氧化硅膜45上的连接电极421(ni层)时,可以在基本为盘状的半导体晶圆41w绕其中心轴线旋转的同时喷水。结果,可以将水基本均匀地施加到半导体晶圆41w的前
表面41a上。这样,可以使用旋转清洁。
116.可以使用其它液体(如有机溶剂)代替水。可以喷射像空气这样的气体代替水。利用液体或气体的压力,可以剥离连接电极421中具有较低附着力的部分。
117.此外,氧化硅膜45上的连接电极421可以通过湿法清洁来剥离。在这种情况下,可使用含有硫酸(例如,硫酸过氧化氢)的蚀刻溶液。硫酸过氧化氢是硫酸和过氧化氢的混合溶液。
118.(第二实施例)
119.第二实施例是对作为基本构造的前一实施例的修改,并且可以包括前一实施例的描述。在前一实施例中,焊料90和保护膜46之间的边界,即保护膜46的开口端46c设置在与有源区域410重叠的位置,即,在z方向上与有源区域410相对应的位置。可替代地,保护膜46的开口端46c可位于比有源区域410更靠外侧的位置。
120.图18是根据本实施例的半导体器件20的截面图。图18还示出了如图16中的半导体元件40和端子构件70之间的焊料连接结构。在平面图中,保护膜46的开口端46c位于比有源区域410的外周边缘410a更靠外侧的位置。开口端46c位于与外周区域411重叠的位置,即,位于在z方向上与外周区域411相对应的位置。结果,在焊料90和保护膜46之间的边界正下方,不存在有源区域410,而是存在外周区域411。其它构造类似于前一实施例的构造(例如,参见图16)。
121.<第二实施例概要>
122.如上所述,诸如功率循环或冷循环引起的热应力也集中在焊料90和保护膜46之间的边界上。在本实施例中,除了连接电极421的外周边缘421b和保护膜46之间的边界之外,焊料90和保护膜46之间的边界也位于与外周区域411重叠的位置。因此,可以更有效地抑制由于热应力对有源区域410的损害。
123.由于焊料90和保护膜46之间的边界在平面方向上设置在有源区域410之外,因此在与z方向正交的方向上半导体元件40的尺寸增大。根据前一实施例中描述的构造,可以在减小半导体元件40的尺寸的同时抑制由于热应力对有源区域410的损害。
124.本实施例的构造可以与前一实施例中所示的修改相结合。
125.(第三实施例)
126.本实施例是对作为基本构造的先前实施例的修改,并且可以结合先前实施例的描述。在先前实施例中,连接电极421具有单层结构。可替代地,连接电极421可以具有多层结构。
127.图19是根据本实施例的半导体器件20的截面图。图19还示出了如图16中的半导体元件40和端子构件70之间的焊料连接结构。连接电极421具有两层结构。连接电极421具有作为与基底电极420接触的层的下层4210和作为与焊料90接触的层的上层4211。
128.下层4210是由金属制成的层,对氧化硅膜45的附着力低于对基底电极420的附着力。下层4210对基底电极420和上层4211的附着力高于对氧化硅膜45的附着力。上层4211是由金属制成的层,比下层4210具有更好的可焊性。在本实施例中,铂(pt)层用作下层4210,镍层用作上层4211。下层4210(pt)还起到阻挡层的作用,以防止焊料90与sn形成合金。下层4210和上层4211通过溅射技术和气相沉积技术形成。其它构造类似于先前实施例的构造(例如,参见图16)。
129.<第三实施例概要>
130.在本实施例中,连接电极421具有多层结构。连接电极421的下层4210与氧化硅膜45的附着力低,上层4211与焊料90的可结合力优异。因此,可以容易地剥离氧化硅膜45上的连接电极421,同时确保高结合强度。尽管pt是难以蚀刻的硬材料,但是可以通过利用下层4210对基底电极420和氧化硅膜45的附着力的差异来去除氧化硅膜45上的下层4210以及上层4211。因此,可以留下基底电极420上的连接电极421。
131.上面描述了下层4210是pt层而上层4211是ni层的示例。然而,下层4210和上层4211不限于这样的示例。例如,下层4210可以是pd层。pd层也起到阻挡层的作用。此外,下层4210可以是pt层,上层4211可以是ag层。ag的线性膨胀系数高达19ppm/℃。因此,拉伸应力增大,并且整个连接电极421易于剥离。
132.连接电极421不限于双层结构。连接电极421可以具有三层或更多层的多层结构。例如,可以在下层4210和上层4211之间提供用作阻挡层的中间层(未示出)。作为中间层,例如,可以使用ti层。
133.本实施例的构造可以与第一实施例所示的修改和第二实施例所示的构造相结合。
134.(第四实施例)
135.本实施例是对作为基本构造的先前实施例的修改,并且可以并入先前实施例的描述。在先前实施例中,连接电极421仅具有通过去除(剥离)布置在氧化硅膜上的部分而形成的层(多层)。可替代地,连接电极421可以具有在形成保护膜46之后布置在开口46a中的镀层。
136.图20是示出根据本实施例的半导体器件20的截面图。图20还示出了如图16中的半导体元件40和端子构件70之间的焊料连接结构。类似于第三实施例(参见图19),连接电极421具有两层结构。连接电极421具有作为与基底电极420接触的层的下层4212和作为与焊料90接触的层的上层4213。
137.下层4212通过与先前实施例中描述的用于形成连接电极421的方法相同的方法形成在基底电极420上。上层4213通过镀技术形成在开口46a中。上层4213堆叠在从保护膜46的开口46a露出的基底电极420上。在本实施例中,通过溅射技术形成的ni层用作下层4212,并且通过无电镀技术形成的ni层用作上层4213。上层4213比下层4212厚。
138.<第四实施例概要>
139.如上所述,本实施例的连接电极421具有作为镀层的上层4213。在平面图中,上层4213的外周边缘和保护膜46之间的边界位于基底电极420和有源区域410的上方。即使热应力集中在上层4213的外周边缘和保护膜46之间的边界上,位于该边界正下方的下层4212(ni层)也比基底电极420(铝合金)硬。此外,由于下层4212的外周边缘和保护膜46之间的边界位于比有源区域410更靠外侧的位置,因此热应力被分散。因此,可以抑制基底电极420中裂纹的发生以及对有源区域410的损害。
140.当镀层直接形成在基底电极上时,需要利用蚀刻工艺去除基底电极表面上的氧化膜。当氧化膜被去除时,由于铝的腐蚀,基底电极的表面变得不平整。腐蚀部分具有凹陷形状,热应力倾向于集中在其上。另一方面,在本实施例中,作为镀层的上层4213经由下层4212形成在基底电极420(铝合金层)上方。因此,不需要去除氧化膜的步骤,并且可以抑制基底电极420的表面的不平整性。
141.本实施例的构造可以与第一实施例所示的修改和第二实施例所示的构造相结合。
142.(第五实施例)
143.本实施例是对作为基本构造的先前实施例的修改,并且可以并入先前实施例的描述。在先前实施例中,连接电极421的一部分被保护膜46覆盖。可替代地,可以使用仅设置在保护膜46的开口46a中的连接电极。
144.图21是根据本实施例的半导体器件20的截面图。图21还示出了如图16中的半导体元件40和端子构件70之间的焊料连接结构。与先前实施例不同的是,连接电极421仅布置在保护膜46的开口46a中。连接电极421设置在从开口46a露出的基底电极420上。连接电极421例如是由镀技术形成的ni层。
145.连接电极421的外周边缘421b与保护膜46的开口端46c接触。连接电极421和保护膜46之间的边界(界面)在平面图中设置在与外周区域411重叠的位置。
146.<第五实施例概要>
147.在本实施例中,连接电极421和保护膜46之间的边界位于比有源区域410的外周边缘410a更靠外侧的位置。因此,即使由于功率循环和冷循环等引起的热应力集中在边界正下方的部分,裂纹也不太可能发展到有源区域410。因此,可以抑制有源区域410被热应力损害。
148.在本实施例的构造中,焊料90的外周边缘与保护膜46的开口端46c基本重合。因此,在平面图中,外周边缘421b、开口端46c和焊料90的外周边缘彼此重叠。当三相点形成时,热应力更容易集中在三相点正下方的部分。然而,在本实施例中,由于连接电极421和保护膜46之间的边界位于比有源区域410更靠外侧的位置,因此可以抑制有源区域410不受热应力的损害。
149.(其它实施例)
150.本说明书和附图中的公开不限于示例性实施例。本公开包括上述实施例和本领域技术人员基于上述实施例的修改。例如,本公开不限于实施例中所示的组件和/或元件的组合。本公开可以各种组合来实施。本公开可以具有可添加到实施例中的附加部分。本公开包括对实施例的组件和/或元件的省略。本公开包括在一个实施例和另一实施例之间更换或组合组件和/或元件。公开的技术范围不限于实施例的描述。所公开的几个技术范围由权利要求的描述表示,并且应被解释为包括与权利要求描述等同的含义和范围内的所有修改。
151.本说明书、附图等的公开不受权利要求书的说明的限制。本说明书、附图等中的公开包括权利要求中描述的技术思想,并进一步扩展到比权利要求书中的技术思想更广泛的各种技术思想。因此,可以从说明书、附图等公开中提取各种技术思想,而不限于权利要求的描述。
152.对“布置在上面”、“连接到”或“被连接到”的元件或层的描述可以意味着该元件或层直接布置在另一元件或层上、直接连接到或被直接连接到另一元件或层,或者可以在它们之间存在中间元件或中间层。相反,当一个元件或层被描述为“直接布置在另一元件或层上”、“直接连接到”或“被直接连接到”另一元件或层时,则在它们之间不存在中间元件或中间层。用于描述元件之间关系的其它术语(例如,“之间”对“直接之间”以及“相邻”对“直接相邻”)应作类似解释。如本文所使用的,术语“和/或”包括与一个或多个相关列表项有关的任何组合和所有组合。例如,术语a和/或b包括只有a、只有b或者a和b两者。同样地,术语“a
和b中的至少一个”包括只有a、只有b或者a和b两者。
153.本文使用空间相对术语“内侧”、“外侧”、“背面”、“底部”、“下”、“顶”、“高”等来方便描述一个元件或特征与另一个元件或特征之间的关系。除了在附图中描绘的方向之外,空间相对术语还可包括在使用或操作中的装置的不同定向。例如,当翻转附图中的装置时,被描述为在另一元件或特征的“下方”或“正下方”的元件被指为在另一元件或特征的“上方”或“正上方”。因此,术语“下方”可以包括上方和下方。该装置可朝向另一方向(旋转90度或任何其它方向),并且本文中使用的空间相对术语被相应地解释。
154.车辆驱动系统1不限于上述构造。例如,举例说明了具有一个电动发电机3的车辆驱动系统1。然而,本公开不限于这样的示例。采用本公开的半导体器件的车辆驱动系统1可以具有多个电动发电机。已经举例说明了包括逆变器6作为功率转换器的功率转换装置4。然而,功率转换装置4不限于此示例。例如,功率转换装置4可以包括多个逆变器。功率转换装置4可以包括至少一个逆变器和至少一个转换器。功率转换装置4可以仅包括转换器。
155.半导体器件20的构造不限于上述示例。半导体器件20可以至少包括半导体元件40。
156.已举例说明了在前表面41a上具有发射电极42和在背表面41b上具有集电极43作为主电极的半导体元件40。然而,半导体元件40的构造不限于所描述的示例。半导体元件40可以仅在前表面41a上具有主电极。
157.已举例说明平面图中具有矩形形状的开口46a。然而,开口46a的形状不限于所描述的示例。
158.已举例说明了具有rc

igbt作为元件的半导体元件40。然而,半导体元件40不限于这样的例子。开关元件和二极管可以在单独的芯片中提供。igbt已被作为开关元件的例子。然而,开关元件不限于igbt。例如,开关元件可以是mosfet。
159.已举例说明了散热器50和60的背表面50b和60b从密封树脂体30露出的结构。然而,半导体器件20的构造不限于这样的示例。背表面50b和60b中的至少一个可以被密封树脂体30覆盖。背表面50b和60b中的至少一个可以被不同于密封树脂体30的绝缘构件(未示出)覆盖。已举例说明包括密封树脂体30的半导体器件20。然而,半导体器件20的构造不限于这样的示例。半导体器件20可以不具有密封树脂体30。
160.已举例说明仅包括构成一个臂的一个半导体元件40的半导体器件20。然而,半导体器件20的构造不限于这样的示例。半导体器件20可以包括多个半导体元件40,这些半导体元件40构成一个相位的上臂和下臂电路9。半导体器件20可以包括构成用于多个相位的上臂和下臂电路9的多个半导体元件40。
161.已经举例说明了经由结合线91连接到焊盘44的信号端子82。然而,信号端子82的连接可以不限于这样的示例。例如,信号端子82可以经由焊料连接到焊盘44。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献