一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

水净化模块及空调的制作方法

2021-11-09 20:15:00 来源:中国专利 TAG:


1.本技术涉及空气处理技术领域,例如涉及一种水净化模块及空调。


背景技术:

2.目前市场上的空调,例如空调器,其净化功能多是采用传统的hepa(high efficiency particle air,海帕)滤网或静电除尘或电产生负离子净化等水净化模块实现,通过不同的净化技术,实现除尘功能或实现除甲醛功能或实现杀菌功能,净化功能单一。而且空调器的净化功能运行一段时间后,需要更换水净化模块(针对传统的物理水净化模块,例如hepa滤网),导致二次消费,消费者难以接受。或者需要定期的清洗水净化模块(针对主动的水净化模块,如静电除尘、负离子净化等等),使用不方便,而且电解形式产生的负离子对人体无益处,还会带来空气的二次污染。


技术实现要素:

3.为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
4.本公开实施例提供一种水净化模块及空调,以解决现有的水净化模块净化功能单一、且水净化模块需要定期更换或清洗的问题。
5.根据本技术实施例的第一方面,提供了一种水净化模块,包括:空气输送组件,包括进气口、出风通道以及连通所述进气口和所述出风通道的净化腔;水箱,设置于所述空气输送组件,并与所述净化腔相连通,所述水箱与所述空气输送组件之间的间隙形成连通通道,所述进气口通过所述连通通道与外界相连通。
6.根据本技术实施例的第二方面,提供了一种空调,包括如权上述实施例中任一项所述的水净化模块。
7.本公开实施例提供的水净化模块及空调,可以实现以下技术效果:
8.水箱中的水流入净化腔,在净化腔内形成水洗环境,外界空气通过连通通道进入进气口,并从进气口进入净化腔,净化腔中的水对进入净化腔的空气进行清洗,从而可有效去除空气中的粉尘颗粒,经净化的空气从出风通道流出,从而可起到对空气净化的效果,在提供空气洁净度的同时,还改变了空气的湿度,净化功能多样化。相比于现有技术中应用hepa滤网,本技术中的水净化模块不需要定期更换,使用成本低;相比于静电除尘或电产生负离子净化等水净化模块,本技术中的水净化模块不需要定期清洗,使用方便,而且安全环保,避免采用电解的形式产生对人体无益处且会带来空气二次污染的负离子。
9.水箱与空气输送组件之间的间隙形成连通通道,一方面不用单独设置连通通道,简化了水净化模块的结构,另一方面,降低了对水箱与空气输送组件之间的安装精度的要求,也降低了对水箱和空气输送组件的加工精度的要求,降低了水净化模块的成本。
10.以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本技术。
附图说明
11.一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
12.图1是本公开实施例提供的一个水净化模块的结构示意图;
13.图2是本公开实施例提供的一个水净化模块的分解结构示意图;
14.图3是本公开实施例提供的一个水净化模块的剖视结构示意图;
15.图4是本公开实施例提供的水净化模块的结构示意图;
16.图5是本公开实施例提供的水净化模块的另一结构示意图;
17.图6是本公开实施例提供的净化腔的结构示意图;
18.图7是本公开实施例提供的净化腔的另一结构示意图;
19.图8是本公开实施例提供的净化腔的另一结构示意图;
20.图9是本公开实施例提供的另一种水路结构的爆炸结构示意图;
21.图10是本公开实施例提供的另一种水路结构的剖面结构示意图;
22.图11是本公开实施例提供的用于水净化模块的防水盖的结构示意图;
23.图12是本公开实施例提供的用于水净化模块的防水盖的剖视图;
24.图13是本公开实施例提供的图12的局部放大图;
25.图14是本公开实施例提供的用于水净化模块的出风盖的结构示意图;
26.图15是本公开实施例提供的风机罩壳的结构示意图;
27.图16是本公开实施例提供的风机罩壳的后视图;
28.图17是本公开实施例提供的一种水路结构的结构示意图;
29.图18是本公开实施例提供的一种水路结构的爆炸结构示意图;
30.图19是本公开实施例提供的一种水路结构的剖面结构示意图;
31.图20是本公开实施例提供的一种水路结构的结构示意图;
32.图21是本公开实施例提供的一种水路结构的剖面结构示意图;
33.图22是本公开实施例提供的另一种水路结构的结构示意图;
34.图23是本公开实施例提供的一种对喷件的结构示意图;
35.图24是本公开实施例提供的一种对喷件的结构示意图;
36.图25是本公开实施例提供的另一种对喷件的结构示意图;
37.图26是本公开实施例提供的对喷件的结构示意图;
38.图27是本公开实施例提供的对喷件的结构示意图;
39.图28是本公开实施例提供的一个水箱的结构示意图;
40.图29是本公开实施例提供的一个水箱盖的结构示意图;
41.图30是本公开实施例提供的一个集水组件与空气输入组件的装配结构示意图;
42.图31是本公开实施例提供的一个水净化模块一个视角的结构示意图;
43.图32是图31所示的水净化模块另一个视角的结构示意图;
44.图33是图32中h-h向的剖视结构示意图;
45.图34是本公开实施例提供的一个水净化模块的结构示意图;
46.图35是图34中f-f向的剖视结构示意图;
47.图36是本公开实施例提供的一个水净化模块的局部剖视结构示意图;
48.图37是本公开实施例提供的空调的外部结构示意图,图中视窗罩板已拆卸于视窗口;
49.图38是本公开实施例提供的空调的外侧结构示意图。
50.附图标记:
51.100、净化腔;101、第一进风口;102、第一出风口;103、进气口;104、安装孔;110、第二筒体;111、第二中空部;120、第三筒体;121、第三中空部;130、第一衔接部;131、汇集段;132、回流段;133、导流槽;140、第二衔接部;150、第一筒体;200、对喷件;210、第一喷头;211、第一喷嘴;220、第二喷头;221、第二喷嘴;230、第一挡片;232、雾化夹层;240、第二挡片;
52.310、水箱;314、安装缺口;315、滑槽;320、供水管件;321、插接部;322、流通通道;323、水流通道;325、连通孔;330、水泵;340、供水管道;
53.400、集水组件;410、挡水沿;420、引流管;421、第一端;422、第二端;430、集水箱;
54.510、风机罩壳;511、第一方向出风口;512、第二方向出风口;513、第二进风口;520、第一格栅;540、第二方向出风通道;550、离心风机;
55.600、防水盖;610、第一中心盖板;620、第一环形盖板;630、第一环形衔接部;631、斜格栅;632、折线形通道;
56.700、出风盖;710、第二中心盖板;720、第二环形盖板;730、第二环形衔接部;731、格栅;732、出风通道;
57.801、净化空间;810、机壳;840、排水管路;900、连通通道;
58.91、壳体;911、安装空间;912、进入口;913、流出口;92、净化结构;921、净化片;9211、竖直面;9212、倾斜面;9213、凹凸结构;9241、流道;9242、流道的入风口;93、进水水路;94、水泵;95、风机;96、连接结构。
具体实施方式
59.为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
60.本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
61.本公开实施例中,术语“上”、“下”、“内”、“中”、“外”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本公开实施例及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。
对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本公开实施例中的具体含义。
62.另外,术语“设置”、“连接”、“固定”应做广义理解。例如,“连接”可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本公开实施例中的具体含义。
63.除非另有说明,术语“多个”表示两个或两个以上。
64.需要说明的是,在不冲突的情况下,本公开实施例中的实施例及实施例中的特征可以相互组合。
65.结合图1至图3所示,本公开实施例提供一种水净化模块,包括空气输送组件和水输送组件。
66.空气输送组件和水输送组件限定有共同使用的净化腔100,并设有进气口103和出风通道732,进气口103和出风通道732均与净化腔100相连通,空气在该净化腔100内被通过水洗的方式实现净化。这里,为了便于解释本实施例的产品结构,分别对净化腔100与空气输送组件相关的部件的配合结构,与水输送组件相关的部件的配合结构做示例性说明。
67.在一些可选地实施例中,空气输送组件包括:进风风路,设置于水净化模块的下部并从周侧方向进风;净化风路,与进风风路相连通,其被设置为沿竖向方向送风并对气流进行水洗净化;出风风路,与净化风路相连通,被设置为排出净化后的气流。
68.采用上述实施例,通过进风风路、净化风路和出风风路由下往上依次设置,实现竖向送风模式,便于净化风路对气流水洗净化后,气流携带的水滴在重力作用下向下运动,与向上流动的气流分离,有助于减少气流中水滴的含量,提高输送至室内环境的空气质量。
69.结合图4和图5所示,可选地,水净化模块包括第一筒体150,围限出进风风路,第一筒体150的侧壁开设有进气口103;净化腔100的第二筒体110设置于第一筒体150上方且与第一筒体150连通。结合图2所示。这样,通过第一筒体150和第二筒体110实现周侧进风,沿竖向方向送风的送风模式,便于气流在第二筒体110进行水洗净化。
70.在本实施例中,净化腔100是作为空气输送组件的净化风路。
71.结合图6至图8所示,净化腔100包括:第二筒体110,设有第一进风口101,包括与第一进风口101连通的第二中空部111;第三筒体120,设置于第二筒体110上方且顶部设有第一出风口102,包括与第一出风口102连通的第三中空部121;第二衔接部140,自第二筒体110的侧壁向外延伸至第三筒体120的侧壁,连接第二筒体110和第三筒体120;其中,第二筒体110的侧壁设置有与水输送组件的对喷件配合的安装孔104。
72.这里,净化腔100通过第一进风口101与第一筒体150的进气口103相连通,以及通过第一出风口102与出风通道732相连通。
73.采用本公开实施例,气流经第二筒体110进入第三筒体120,并在第二筒体110内进行水洗净化,基于第二衔接部140自第二筒体110侧壁向外延伸至第三筒体120的侧壁,连接第二筒体110和第三筒体120,从而,水幕的可覆盖面积大于气流由第二筒体110流向第三筒体120的横截面积,有效提高水幕对气流进行净化时的覆盖范围,提高净化效果。
74.气流从第二筒体110的第一进风口101进入第二中空部111,在第二中空部111和第三中空部121内竖向送风,对气流的水洗净化,便于第二筒体110的对喷件对气流水洗净化
后,气流携带的水滴在重力作用下向下运动,从而与向上流动的气流分离,有助于减少气流中水滴的含量,提高输送至室内环境的空气质量。
75.第二衔接部140自第二筒体110的侧壁向外延伸至第三筒体120的侧壁,连接第二筒体110和第三筒体120可以得到,第三筒体120的通风面积大于第二筒体110的通风面积,这样,便于在第三筒体120的第一出风口102处设置出风盖和防水盖,减少第二中空部111的出风气流对出风盖的冲击力;其次,有助于通过出风盖和防水盖降低气流中携带的水滴,提高净化后的空气质量。
76.可选地,如图19至图21所示,第二筒体110包括:第一衔接部130,自第二筒体110的侧壁向内延伸,环绕形成第二筒体110的第一进风口101。这样,有助于实现水幕对进气气流的全面覆盖。
77.第一衔接部130自第二筒体110的侧壁向内延伸环绕形成第二筒体110的第一进风口101可以得到,第二筒体110的第二中空部111的通风面积大于第一进风口101的通风面积,从而当对喷件设置于第二筒体110的侧壁时,有助于实现第二筒体110内的水幕对进气气流进行全面覆盖。
78.对喷件形成的水幕对流经的气流进行水洗净化时,水幕中的水滴在气流的冲击下,向外飞溅至第二筒体110的侧壁和第一衔接部130,通过第一衔接部130可以对飞溅的水滴进行回收。
79.可选地,第一衔接部130上表面的部分或全部倾斜设置。这样,有助于飞溅至第二筒体110和第一衔接部130的水滴向下流动,便于收集回收脏水。例如,当第一衔接部130上表面的部分倾斜设置时,脏水可汇集到第一衔接部130上表面未倾斜的部分,第一衔接部130还可起到收集一定量脏水的作用;当第一衔接部130上表面全部倾斜设置时,脏水直接流入用于脏水回收的装置,第一衔接部130上表面不再存留收集脏水。
80.可选地,结合图7和图8、如图19至图21所示,第一衔接部130包括:汇集段131,环绕第二筒体110的第一进风口101;回流段132,环绕汇集段131,且被第二筒体110环绕;其中,回流段132的上表面自第二筒体110一侧向汇集段131一侧,向下倾斜。这样,通过回流段132对飞溅的水滴进行汇流并引流至汇集段131,通过汇集段131收集脏水,在排放不及时的情况下,可存留一定量的脏水。
81.可选地,与汇集段131连接处的回流段132的上表面高于或等于汇集段131的上表面。这样,有助于引流汇集脏水。例如,当与汇集段131连接处的回流段132的上表面高于汇集段131的上表面时,汇集段131在存留一定量脏水的时候不会占用回流段132的空间;当与汇集段131连接处的回流段132的上表面等于汇集段131的上表面,即,与汇集段131连接处的回流段132的上表面和汇集段131的上表面为同一平面,这样,有助于避免脏水由回流段132流向汇集段131产生水流噪音。
82.可选地,如图8所示,第一衔接部130的回流段132包括排列设置的多个导流槽133;其中,导流槽133的底面高于或等于汇集段131的上表面。这样,通过导流槽133可以将飞溅的水滴进行汇流并引流至汇集段131。例如,当导流槽133的底面高于汇集段131的上表面时,汇集段131在存留一定量脏水的时候不会占用回流段132的空间;当导流槽133的底面等于汇集段131的上表面,即,导流槽133的底面和汇集段131的上表面为同一平面,这样,有助于避免脏水由导流槽133流向汇集段131产生水流噪音。
83.可选地,导流槽133自第二筒体110一侧向汇集段131一侧,向下倾斜。这样,有助于将飞溅的水滴汇流并引流。
84.可选地,多个导流槽133沿径向延伸且沿周向间隔排布,且,均朝向第一衔接部130的轴线设置。这样,通过导流槽133对飞溅的水滴汇流并引流。
85.可选地,导流槽133的顶端靠近或接触第二筒体110的侧壁。这样,当导流槽133的顶端接触第二筒体110的侧壁时,可以更好的对第二筒体110侧壁上的水滴进行汇流并引流;当导流槽133的顶端靠近第二筒体110的侧壁时,便于第一衔接部130与第二筒体110连接,防止连接处缝隙因脏水汇集产生裂缝。
86.在一些实施例中,结合图9和图10所示,水净化模块还包括防水盖600和/或出风盖700。防水盖600和出风盖700设置于第一出风口102上。防水盖600上设置有多个折线形通道632,且多个折线形通道632呈环形设置;出风盖700上设置有多个出风通道732,且多个出风通道732呈环形设置。防水盖600通过折线形通道632的设置可将净化空气中携带的部分水汽或水分子团被拦截,并在重力作用下流回净化腔100内,从而有效减小流出的气流中的含水量。出风盖700对流出净化腔100的净化空气进行导流,降低净化空气的流速,从而实现更加平稳的出风效果。
87.可选地,出风盖700在下侧,防水盖600在上侧。
88.图11是本公开实施例提供的用于水净化模块的防水盖的结构示意图;图12是本公开实施例提供的用于水净化模块的防水盖的剖视图;图13是本公开实施例提供的图12的局部放大图。
89.结合图11至图13所示,本公开实施例提供一种用于水净化模块的防水盖,包括第一中心盖板610、第一环形盖板620和第一环形衔接部630。第一环形盖板620与第一中心盖板610同轴;第一环形衔接部630,连接第一中心盖板610和第一环形盖板620,包括排列设置的多个斜格栅631,且相邻的斜格栅631之间构成折线形通道632。
90.采用本公开实施例提供的用于水净化模块的防水盖,通过连接第一中心盖板和第一环形盖板的相邻的斜格栅之间构成了折线形通道,经过该通道的气流中含有的水汽或水分子团流动过程中被拦截,并在重力作用下沿格栅壁向下流淌,从而有效减小经由防水盖流出的气流中的液滴水量。
91.图14是本公开实施例提供的用于水净化模块的出风盖的结构示意图。结合图14所示,本公开实施例提供一种用于水净化模块的出风盖,包括第二中心盖板710、第二环形盖板720和第二环形衔接部730。第二环形盖板720与第二中心盖板710同轴设置;第二环形衔接部730,连接第二中心盖板710和第二环形盖板720,包括沿周向设置的多个出风盖的出风口;出风口设有格栅731;相邻的格栅731之间构成出风通道732。
92.可选地,第二环形衔接部730沿周向设有多个出风口,出风口设有多个格栅731,相邻的格栅731之间构成出风通道。这样,能够使空气沿出风通道732从出风盖的一侧平稳地流动至风盖的另一侧。
93.采用本公开实施例提供的用于水净化模块的出风盖,通过设置在出风口的格栅,能够分散沿净化腔吹出的空气,有效降低空气的流速,从而实现更加平稳的出风效果。
94.在一些实施例中,第二环形衔接部730自第二环形盖板720一侧向第二中心盖板710一侧向上倾斜设置。第二环形衔接部730和第二中心盖板710之间形成夹角。这样,能够
分散沿净化腔吹出的空气,并改变空气流动的方向,有效降低了空气的流速,实现了平稳的出风效果。
95.可选地,结合图4、图15和图16所示,出风风路包括:风机罩壳510,设置于第二筒体110上方且与第二筒体110连通,侧壁开设有风机罩壳的出风口;离心风机550,设置于风机罩壳510内,被配置为将气流从进风口吸入,流经进风风路和净化风路后从出风口排出。这样,通过离心风机550将洁净的空气从风机罩壳510的出风口排出,出风口设置在风机罩壳510的侧壁,便于送风。风机罩壳510设置于第二筒体110的上方,气流向上流动的过程中,有助于气流与水滴分离,进一步的减少净化后空气中的水滴含量,避免增加室内空间的湿度。
96.可选地,风机罩壳510的出风口包括:第一方向出风口511,设置于风机罩壳510的侧壁的第一位置,设置有多个可转动的第一格栅520,被配置为将净化后的空气排出至外部环境,如图4所示。这样,通过可转动的第一格栅520,控制第一方向出风口511的气流流量,提高舒适性。
97.第一位置位于风机罩壳510的前侧,其中,“风机罩壳510的前侧”可以理解为:面向用户的一侧。这样,有助于离心风机550将净化后的空气直接吹向用户,使用户获得较好的感受。
98.可选地,风机罩壳510的出风口还包括:第二方向出风口512和第二方向出风通道540,第二方向出风口512设置于风机罩壳510的侧壁的第二位置,被配置为将净化后的空气排出至换热器的进风侧;其中,风机罩壳510的第二位置与风机罩壳510的第一位置相对设置,如图15所示。这样,有助于提高经过换热器后排出的空气的质量。第一位置与第二位置相对设置,在第一方向出风口511和第二方向出风口512同时出风时,互不干涉。
99.在一些实施例中,如图15所示,用于水净化模块的风机罩壳还包括第二进风口513,设置于罩壳主体的底壁,被配置为吸入净化腔净化后的空气。可选地,第二进风口513与水净化模块的出风口连接。这样能够保证通过水净化模块净化后的空气直接通过风机被送入室内或者室内换热器的进风侧。
100.水净化后的空气有两种控制模式,及两个风道,一种是净化后的空气通过风机前外壳,再经过前面板吹出;一种是通过风机后外壳,经过风道向上吹向换热器,经过换热器的冷凝作用冷凝后重新回到水净化的净化腔100,这样减少用户换水的频次同时避免过多的水汽流入室内,实现对室内的湿度控制。或者,水洗后的空气根据不同的室内湿度需求,来控制净化后的空气的流动,一种是直接出吹,另一种是通过风道进入换热器,经过换热器的除湿功能,将冷凝后的水回流到水洗净化模块中。
101.综上所述,本技术提供的水净化模块,通过对空气进行水洗,实现对空气的温度湿度洁净度的三度调节;通过水洗空气的技术实现“无耗材”净化、纯生态环保、享受雨后清新空气;通过模拟大自然现象,产生对人身体有益的生态负离子。
102.在一些可选地实施例中,水输送组件包括水净化组件、进水水路和回水水路。
103.结合图17至图26所示,本公开实施例提供一种用于水净化模块的水净化组件,包括净化腔100和对喷件200。对喷件200设置于净化腔100内;对喷件200能够使水流对向喷射并在水流发生碰撞后在净化腔100内形成水雾或水滴。
104.本公开实施例提供的用于水净化模块的水净化组件中,对喷件200利用对向喷射出的水流的对撞,产生水雾或水滴,水雾或水滴弥漫在整个净化腔100内,能完全覆盖气流
的流路截面,对流经净化腔100的气流进行全面的水洗净化。而且,对喷件产生的水雾或水滴的雾化效果更好,水滴粒径更小更均匀,起到更好的水洗净化效果。
105.对喷件200包括喷头和进水口,对喷件200的喷头和对喷件的进水口相连通,喷头位于净化腔100内,用于向净化腔100内喷水。进水水路的出水口与对喷件的进水口相连通。回水水路的进水口与净化腔100相连通,用于将净化腔100中的水流导出净化腔100。
106.在一些实施例中,结合图23至图26所示,对喷件200的喷头包括第一喷头210和第二喷头220。第一喷头210包括第一喷嘴211,第二喷头220包括第二喷嘴221,第二喷嘴221与第一喷嘴211相对设置;第一喷头210和/或第二喷头220上设置有挡片。对喷件利用相对的两个喷头喷射出的水流的对撞,产生水雾或水滴,水雾或水滴弥漫在净化腔100内,对流经净化腔100的气流进行水洗净化。挡片的设置,可以帮助对喷件200形成更好的水雾效果,形成更小的液滴,并弥漫在整个净化腔100的腔体内部,使流经净化腔100的空气充分地与水接触,达到水洗净化效果。
107.在一些实施例中,挡片包括第一挡片230和/或第二挡片240,第一挡片230设置于第一喷嘴211的周向或第二喷嘴221的周向上;第二挡片240设置于第一喷嘴211或第二喷嘴221的背向位置上。
108.本公开实施例中,第一挡片230设置于喷嘴(第一喷嘴211或第二喷嘴221)的周向上,使对向的喷嘴喷出的水撞击在第一挡片230上,提高水雾效果。第二挡片240设置在所在喷头的与喷射方向相反的方向侧的位置(即,背向位置)上,对喷射处出的水流起到防护作用,避免外界环境对水流的影响。例如,对喷件200处于净化腔100的气流风路上,气流会使喷射水流发生偏移,导致相对喷射的水流的对冲效果变差,影响水雾的形成,亦会使得形成的水雾或水滴向出风侧偏移,进而影响水雾的形成,最终导致净化效果降低。
109.可选地,第二挡片240设置于迎风侧的第一喷头210或第二喷头220上,且位于进风与迎风侧的第一喷嘴211或第二喷嘴221之间,以为对喷件200的第一喷嘴211和第二喷嘴221提供很好的防护作用。
110.本公开实施例的对喷件至少具有以下三种结构,第一种对喷件,结合图23所示,在第一喷嘴211的周向和第二喷嘴221的周向上均设置第一挡片230。第二种对喷件,结合图25所示,在迎风侧的第一喷头210或第二喷头220的背向位置上设置第二挡片240。第三种对喷件,结合图27所示,在第一喷嘴211的周向和第二喷嘴221的周向上均设置第一挡片230,在迎风侧的第一喷头210的背向位置上设置第二挡片240。依据实际需要选择合适的对喷件200即可。
111.可选地,第一喷头210上的第一挡片230与第二喷头220上的第一挡片230形成有雾化夹层232。雾化夹层232能够使碰撞后的水滴进行再次碰撞。
112.可选地,如图20所示,净化腔100的腔壁上设置有安装孔104。例如,净化腔100的腔壁上一体成型有安装孔104,安装孔104可视为通孔。在净化腔的腔壁上设置安装孔,便于安装固定对喷件。
113.可选地,结合图1和图2所示,水净化模块包括水箱310,水箱310设置于空气输送组件。
114.可选地,如图3所示,水净化模块包括供水管件320。供水管件320设置于空气输送组件,供水管件320限定出水流通道323,水流通道323连通在水箱310与流通通道322之间。
115.供水管件320用于连通水箱310与流通通道322。水箱310中的水经过水流通道323流入流通通道322,经流通通道322流入进水水路的进水口,并经进水水路的出水口流入对喷件200的进水口,再流向喷头,经喷头喷入净化腔100。
116.可选地,如图28所示,水箱310和空气输送组件滑动连接,其中,水箱310和空气输送组件中的一个上设有滑块,另一个上设有滑槽315,滑块位于滑槽315内并能够相对于滑槽315滑动。
117.水箱310与空气输送组件滑动连接,这样可以通过抽拉水箱310的方式,将水箱310安装在空气输送组件上或从空气输送组件上取下,提高了用户拿取水箱310换水及装载水箱310的便捷性。
118.可选地,如图28所示,水箱310上设有把手313。
119.用户可以手握把手313,实现水箱310的抽拉,进一步提高了用户将水箱310安装在空气输送组件上或从空气输送组件上取下的便捷性。
120.可选地,水箱310的侧壁凹陷形成把手313,且把手313位于水箱310相对于空气输送组件的滑动方向上。
121.水箱310的侧壁凹陷形成把手313,避免把手313凸出水箱310的侧壁而导致水箱310的体积增大,从而把手313凹陷可以减小水箱310的占用空间,还能够增强水箱310的美观性。
122.把手313位于水箱310相对于空气输送组件的滑动方向上,这样手握把手313可以方便的将水箱310沿滑块相对于滑槽315的运动方向拉出或推入。
123.可选地,水箱310上设有滑槽315,供水管件320凸出空气输送组件并形成滑块,这样供水管件320除限定出水流通道323的作用外,还形成滑块,通过滑块与滑槽315的配合,用于引导水箱310相对于空气输送组件的运动,增加供水管件320的作用,减少了水净化模块的零部件数量,进一步提高了水净化模块结构的紧凑性。
124.可选地,如图19所示,滑槽315设置在水箱310的底部,例如滑槽315设置在水箱310的下表面上。
125.如图19和图28所示,水箱310包括本体311和出水阀。本体311限定出具有底部开口的容水空间;出水阀设置在容水空间的开口处;供水管件320上设有用于控制出水阀打开的顶出机构324。
126.将水箱310安装在供水管件320上后,顶出机构324将出水阀顶开,容水空间中的水从容水空间的开口处流入水流通道323内。
127.滑槽315设置在水箱310上,容水空间的开口设置在滑槽315的底壁上,当滑槽315滑入供水管件320时,顶出机构324与出水阀相抵接,使得出水阀打开。例如,出水阀包括阀体和弹性件,当顶出机构324与出水阀抵接时,阀体相对于容水空间的开口运动,容水空间的开口打开,容水空间中的水流入水流通道323,此时弹性件被压缩。当顶出机构324与出水阀相分离时,在弹性件的作用下阀体复位将容水空间的开口关闭。如图6所示,顶出机构324包括顶出杆,顶出杆固定在水流通道323的底壁面上。
128.可选地,如图29所示,水箱310包括水箱盖312,水箱盖312能够开合的盖设在容水空间的开口处,例如水箱盖312与本体311通过螺纹连接。出水阀设置在水箱盖312上,水箱盖312在水箱310底部靠近把手313的地方,换水或装水时将水箱盖312从本体311上拧下,水
箱310装满水后拧上水箱盖312后水箱310不漏水,待将水箱310装配上去后,水箱盖312恰好顶住顶出机构324,使得水箱310里的水能够流入供水管件320中。
129.结合图2所示,空气输送组件包括插接部321和净化部。其中净化部限定出净化腔100,插接部321与净化腔100相连接,如图3所示,插接部321内设有流通通道322,流通通道322连通在水箱310与进水水路的进水口之间。
130.结合图1所示,水箱310与空气输送组件之间的间隙形成连通通道900,进气口103通过连通通道900与外界相连通。净化部位于插接部321的上方,净化腔100位于流通通道322的上方,外界空气从连通通道900中进入进气口103后,流入流通通道322,空气向上流入净化腔100。对喷件200位于净化腔100中,对喷件200中喷出的水在净化腔100中形成一种水洗环境,对进入净化腔100的空气进行清洗。进气口103通过连通通道900与外界相连通,避免需要在空气输送组件上单独设置连通通道900,简化了空气输送组件的结构,降低了空气输送组件的成本。
131.净化腔100位于流通通道322的上方,来自流通通道322的空气向上流入净化腔100,对喷件200喷出的水向下流动,从而增大水与空气的接触面积,增强水对空气的清洗效果。
132.进气口103通过连通通道900与外界相连通,避免需要在空气输送组件上单独设置连通通道900,简化了空气输送组件的结构,降低了空气输送组件的成本。
133.净化部位于插接部321的上方,且净化部的外尺寸大于插接部321的外尺寸,插接部321位于水箱310的安装缺口314内,这样可以减小水净化模块的占用体积。如图3所示,净化部和插接部321均呈圆柱状,此时净化部的外尺寸大于插接部321的外尺寸是指净化部的外径大于插接部321的外径。
134.可选地,如图2所示,水净化模块还包括集水组件400。
135.集水组件400限定出集水箱430,集水箱430与回水水路的出水口相连通;其中,插接部321位于集水组件400和净化部之间,插接部321的外尺寸小于集水组件400的外尺寸并小于净化部的外尺寸。
136.集水箱430与净化腔100相连通,用以回收对空气净化后的水。对喷件200中喷出的水对净化腔100中的空气进行清洗后,水变脏,脏水从净化腔100流入集水箱430。
137.集水组件400位于插接部321的下方,净化部位于插接部321的上方,插接部321的外尺寸小于集水组件400的外尺寸并小于净化部的外尺寸,水箱310装配到空气输送组件后,可以使得从上到下水净化模块的外尺寸大致相等,使得水净化模块占用体积小。
138.可选地,插接部321的侧壁上设有引流管420,引流管420连通在净化腔100与脏水腔之间。将引流管420设置在插接部321的侧壁上,可以是设置在插接部321的内壁面上或是外壁面上,在实现净化腔100与集水箱430的连通的同时,使得水净化模块结构更加紧凑。
139.可选地,结合图3和图28所示,插接部321与净化部相连接,水箱310上设有安装缺口314,插接部321至少部分位于安装缺口314内。
140.设置安装缺口314,避免水箱310与插接部321相干涉,实现水箱310在空气输送组件上的安装。插接部321插入安装缺口314的方向与滑块相对于滑槽315的运动方向在同一直线上或相平行,这样在滑块相对于滑槽315的滑动过程中,插接部321插入到安装缺口314中。
141.水箱310与净化部之间的间隙形成连通通道900,进气口103位于插接部321靠近净化部的一端部,提高水净化模块结构的紧凑性。结合图3所示,水箱310的上表面与净化部之间的间隙形成连通通道900,进气口103设置在插接部321的上端部。
142.可选地,如图28所示,水箱310还包括遮挡沿316,遮挡沿316凸设在本体311靠近净化部的一侧,并设在插接部321的外侧;进气口103设置在插接部321靠近净化部的端部,遮挡沿316与净化部之间的间隙形成连通通道900。插接部包括第一筒体,进气口103设置在第一筒体上。
143.本体311靠近净化部的表面(上表面)向上凸出形成遮挡沿316,遮挡沿316连接在本体311的边沿,并罩设在插接部321的外侧,如图3所示,遮挡沿316罩设在进气口103的外侧,这样既能够形成连通通道900,而且能够防止外界杂物进入水箱310与空气输送组件之间的间隙。
144.结合图20至22所示,本公开实施例提供一种用于水净化模块的集水组件,包括挡水沿410和引流管420,其中回水水流包括引流管420。挡水沿410设置于净化腔100的出水口上,限定出回水汇集区;引流管420设置于净化腔100的出水口的下方,第一端421与回水汇集区连通,第二端可将水排出。
145.本公开实施例的集水组件400,先将由净化腔100中的回水汇集后,经引流管420引流,将净化空气后的水回流收集,避免重新回到盛装净化水的水箱内,保证进入对喷件的水是干净的水,不会带来二次污染,保证净化效果。也不需要对进入对喷件的水进行过滤,减少了过滤装置的设置,进而无需定期对过滤装置进行清洗或更换,无需二次消费,降低成本。而且,降低了回水沿净化腔100的出水口的边沿流下时产生的噪声。同时,当净化腔100的出水口与进风口重合时,挡水沿410的设置,可以避免回水与进风的正面碰撞,降低了风阻,而且避免进风再带入回水中的杂质和微生物等,提高净化效果。
146.本公开实施例中,引流管420的第二端422将水排出,可以直接到外部,也可以排至内部设置的集水箱430内。依据实际情况确定即可。
147.在一些实施例中,如图22和图30所示,集水组件400还包括集水箱430。集水箱430设置于净化腔100下方;且与引流管420的第二端422连通。将净化处理后的回水引流至集水箱430中,方便集中处理。
148.可选地,结合图22所示,集水箱430可与外部空调的排水管路840连通。外部空调可以是空调,例如,柜式空调。将集水箱430内的水通过外部空调的排水管路840排除,避免了集水箱430的拆卸,方便排水。
149.可选地,如图2所示,供水管件320设置于集水组件400的顶盖上,提高了净化模块结构的紧凑性,减少了净化模块的占用空间,提高了对空间的利用率。
150.可选地,如图2所示,水箱310上设有与净化腔100和/或插接部321相对应的观察口317,观察口317能够扩大用户的视野,使得用户能够清楚地看到净化效果。
151.可选地,观察口317设置在遮挡沿316上,观察口317、把手313、滑槽315位于水箱310的同一侧,且沿自上而下的方向依次设置。
152.可选地,如图2所示,水净化模块还包括水泵330,进水水路包括供水管道340,水泵330设置在供水管道340上,用于将供水管道340中的水输送至对喷件的进水口。
153.如图3所示,插接部321上设有连通孔325,连通孔325位于进气口103的下方。连通
孔325与供水管件320位于插接部321相对的两侧,连通孔325与流通通道322相连通,并通过供水管道路340与净化腔100相连通。水泵330为对喷件200提供一定压力的水,使得水能够从水箱310持续流入净化腔100中。水箱310中的水通过水流通道323、流通通道322、连通孔325进入供水管道340,在水泵330的驱动下,供水管道340中的水流入对喷件的进水口。
154.可选地,如图2和图3所示,水泵330用于将进水水路中的水输送至净化腔100,水泵330至少部分位于安装缺口314内。插接部321插入安装缺口314后,水泵330至少部分位于安装缺口314内,进一步地提高水净化模块的结构紧凑性。
155.可选地,如图2和图3所示,水净化模块还包括防震垫块350,防震垫块350设置于水泵330的底部,集水组件400上设有用于避让防震垫块350的避让缺口439。
156.防震垫块350具有一定的弹性,能够消除水泵330工作时的振动噪音,还可以弥补工人装配水净化模块时水净化模块放置平面不水平的问题。
157.防震垫块350位于避让缺口439内,使得水净化模块结构合理,避让缺口439与安装缺口314相对应,这样既能够实现水泵330和防震垫块350的安装,还能够使得防震垫块350位于水泵330的下方。
158.水泵330与水箱310采用快捷插头对接,对水泵330编程控制,在水箱310没有水自动检测,先低速运行10秒,还是没有水,水泵330停转,再秒水泵330启动,检测无水,再停10秒后,再启动无水则水泵330断电报警,提醒用户换水。
159.可选地,净化腔100、插接部321、集水组件400、供水管件320之间固定连接,例如为一体式结构。
160.结合图31至36所示,本公开又一实施例提供了另一种水净化模块,包括壳体91、进水水路93和净化结构92。
161.壳体91限定出安装空间911,壳体91上设有流出口913和进入口912,流出口913和进入口912均与安装空间911相连通。
162.结合图33所示,净化结构92位于安装空间911内,净化结构92的至少部分表面呈凹凸结构9213,凹凸结构9213位于空气从进入口912流至流出口913的流路上,并与进水水路93的出水口相对应,以使出水口流出的水流能够流至凹凸结构9213。
163.凹凸结构9213与进水水路93的出水口相对应,这样进水水路93的出水口流出的水流能够流至凹凸结构9213,受到凹凸结构9213的影响,水流在凹凸结构9213上不是沿直线流动,而是呈紊流的流动状态。凹凸结构9213位于空气从进入口912流至流出口913的流路上,从而从进入口912流入安装空间911的空气经过凹凸结构9213后,从流出口913流出安装空间911。空气流至凹凸结构9213时,空气也受到凹凸结构9213的影响,在凹凸结构9213上呈紊流的流动状态。从而呈紊流状态的水能够充分与紊流状态的空气接触,进而对空气进行水洗,空气中的粉尘等融入水中,提高了空气的洁净度。
164.可选地,结合图33、图35和图36所示,净化结构92包括多个净化片921,多个净化片921沿由内向外的方向依次设置,相邻两个净化片921之间限定出与进入口912和流出口913均相连通的流道9241,凹凸结构9213位于净化片921的外表面和/或内表面上。
165.从进入口912进入的空气经过流道9241流至流出口913,空气在流经流道9241时经过凹凸结构9213,形成紊流状态,水在经过凹凸结构9213时也呈紊流状态,实现水流对空气的净化。
166.设置多个净化片921,并在净化片921的外表面和内表面中的至少一个上设置凹凸结构9213,从而可以增大凹凸结构9213的面积,增大水流与空气的接触面积,增强水流对空气的清洗效果。结合图33所示,凹凸结构设置在净化片的外表面上。
167.可选地,结合图36所示,净化片921呈沿净化结构92的周向延伸的环形。
168.多个净化片921呈环形,沿由内到外的方向,外层的净化片921套设在内层的净化片921的外侧。环形的净化片921可以增大环形的面积,从而增大凹凸结构9213的面积,增强水流对空气的净化效果。
169.进入口912呈环形,并沿壳体91的周向设置,进入口912内设有格栅。设置环形的进入口912,能够增大进入口912的面积,增大单位时间内的进风风量。
170.或者进入口912的数量为多个,多个进入口912沿壳体91的周向设置。设置多个的进入口912,能够增大进入口912的面积,增大单位时间内的进风风量。
171.可选地,沿自上而下的方向,净化片921的外表面和/或内表面向外倾斜形成倾斜面9212,凹凸结构9213设置在倾斜面9212上。
172.进水水路93的出水口位于凹凸结构9213的上方,这样进水水路93的出水口流出的水流流至凹凸结构9213后,在水流重力和净化片921粘力的作用下,沿着净化片921下流,下流的过程受凹凸结构9213的影响,水不是直下的,而是紊流下流。
173.流道的入风口9242位于凹凸结构9213的下方进入口912进入的空气经流道的入风口进入流道9241,由于入风口位于凹凸结构9213的上方,因而空气沿净化片921向上运动,在经过凹凸结构9213时受到凹凸结构9213的影响,形成紊流状态。
174.水流沿凹凸结构9213整体向下流动,空气沿凹凸结构9213整体向上流动,换言之在凹凸结构9213上水流和空气的流动方向相反,从而使得水流和空气充分接触,增强水流对空气的清洗效果。
175.凹凸结构9213设置在倾斜面9212,使得凹凸结构9213也呈倾斜状态,在使得空气和水流均能够形成紊流状态的前提下,增强空气和水流在凹凸结构9213上的流动的路径长度,进一步使得空气和水流充分接触,增强水流对空气的净化效果。
176.结合图36所示,净化片921还包括竖直面9211,竖直面9211沿竖直方向设置,且竖直面9211的上端与倾斜面9212的下端相连接。
177.可选地,最外侧的净化片921(最外侧的净化片为图33中d所示)与壳体91的内壁面相抵接,进入口912和流出口913分别位于最外侧的净化片921与壳体91的内壁面相抵接处的两侧,结合图36所示,进入口912位于最外侧的净化片921与壳体91的内壁面相抵接处的下方,流出口913位于最外侧的净化片921与壳体91的内壁面相抵接处的上方。
178.最外侧的净化片921与壳体91相抵接,从而减小最外侧的壳体91与壳体91之间的间隙,避免进入口912中的气流不经过流道9241而直接从净化片921与壳体91的内壁面之间的间隙流至流出口913。可选地,最外侧的净化片921与壳体91的内壁面的抵接处设有密封件,以进一步增强最外侧的净化片921和壳体91的内壁面之间的密封性。最外侧的净化片921与壳体91相抵接的具体方式,可以是壳体的内壁面向内凸出形成第一凸起,第一凸起抵接至最外侧的净化片上,或者,最外侧的净化片向外凸出形成第二凸起,第二凸起抵接在壳体的内壁面上。
179.可选地,结合图33所示,进水水路93设置在最内侧的净化片921(最内侧的净化片
为图33中c所示)的内侧,且进水水路93的进水口与安装空间911的底部相连通,安装空间的底部结合图33中b所示。
180.最内侧的净化片921中间设有进水管,进水水路93包括进水管,或者最内侧的净化片921中间设有流道,进水水路93包括流道。进水水流设置在最内侧的净化片921的内侧,这样水流经过进水水路93的入水口流入进水水路93并将进水水路93的出水口流出时,水流可以到达从内到外的各个凹凸结构9213。
181.水位于安装空间911的底部,进水水路93的进水口与安装空间911的底部相连通,安装空间911底部的水经过进水水路93流至凹凸结构9213,水流对空气进行清洗后,在水流重力的作用下,水流沿净化片921流下,再流至安装空间911的底部。
182.可选地,进入口912位于安装空间911的底部的水的上方,防止安装空间911底部的水经过进入口912流出安装空间911。
183.可选地,结合图33所示,净化结构92还包括连接结构96,连接结构96与多个净化片921相连接,连接结构96上设有连通孔,流道9241通过连通孔与流出口913相连通。
184.连接结构96实现多个净化片921之间的连接,增强净化结构92的结构稳定性。可选地,连接结构96与多个净化片921固定连接,例如连接结构96与多个净化片921相焊接或采用螺钉连接。
185.进入口912中的气流流经流道9241后,从连通孔流向流出口913,实现空气流通。可选地,结合图31所示,流出口的数量为多个,且多个流出口沿壳体的周向分布,且流出口对应凹凸结构的设置,结合图33所示,流出口位于凹凸结构的正上方。
186.可选地,水净化模块还包括水泵94和风机95。
187.结合图33所示,水泵94设置在进水水路93上,水泵94驱动安装空间911底部的水流入进水水路93并驱动进水水路93中的水流向出水口,再从出水口流向凹凸结构9213,实现水流从安装空间911的底部流向凹凸结构9213。可选地,水泵94位于安装空间911的底部,提高水净化模块的结构紧凑性。
188.结合图33所示,风机95位于净化结构92与流出口913之间,用于将空气排送至流出口913。
189.风机95为空气从进入口912到流出口913的流动提供驱动力,实现空气在安装空间911中的流动。可选地,风机95位于净化片921与凹凸结构9213之间。
190.可选地,凹凸结构9213呈波纹状,波纹状的凹凸结构9213易于加工,且能够使流经波纹结构的空气和水流呈紊流的状态。
191.可以理解,凹凸结构9213也可以不呈波纹状,例如呈锯齿形。
192.本公开实施例提供了一种空调,如图37和图38所示,空调包括空调主体和一个或多个水净化模块。本实施例中空调主体主要指空调的室内机部分,其涵盖机壳810、设置于机壳810内部的电控组件、换热器、风机、冷媒管路等多个部件;水净化模块为上述多个实施例中示出的一种或多种水净化模块,其设置于空调主体中,其能够在空调主体进行送风、制冷、制热、除湿等多种工作模式时配合进行净化工作,或者其也能够单独运行进行净化工作。
193.可选地,水净化模块位于机壳810内的下部。这样,一方面有助于对室内的空气进行充分的循环净化,提高室内空气质量;另一方面,水净化模块的洁净空气可继续向上输
送,输送至空调的换热器,洁净的空气经过换热器后排至室内,从而获得温度、洁净度适宜的空气,提高用户的舒适性。
194.空调内设有净化空间801,水净化模块放置于净化空间801内。为使用户能够更加直观的查看净化空间801内的水净化模块的工作状态,在一些可选地实施例中,机壳810对应净化空间801的部位开设有一视窗,视窗位于净化空间801的周侧位置,使得用户可以通过该视窗从侧面看到处于净化空间801内部的水净化模块的工作状态。
195.在一些可选地实施例中,结合图38所示,空调主体还包括接水盘和排水管路840。其中,接水盘一般设置于换热器的下部,由于空调在运行制冷和除湿等模式时换热器的温度较低,因此在换热器表面会凝结较多的冷凝水,这部分冷凝水会在自身重力作用下向下流动并滴落至接水盘中,排水管路840与接水盘相连通,其用于将接水盘内汇集的冷凝水排出至室外侧。
196.本实施例中为了实现对接水盘汇集的冷凝水的再利用,供水组件300设置有一冷凝水进口,该冷凝水进口与排水管路840的上游管段相连通,这样在冷凝水流经排水管路840的上游管段时,至少部分冷凝水会被分流至供水组件300内,这部分分流的冷凝水可以作为供水组件300的补充水源,有效降低了用户对水净化模块补水加水的频次,降低了用户的操作负担。
197.应当理解的是,本技术并不局限于上面已经描述并在附图中示出的流程及结构,并且可以在不脱离其范围进行各种修改和改变。本技术的范围仅由所附的权利要求来限制。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献