一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于絮凝反应特性的淤泥脱水工艺的制作方法

2021-11-05 23:25:00 来源:中国专利 TAG:


1.本发明属于水环境治理技术领域,具体涉及一种基于絮凝反应特性的淤泥脱水工艺。


背景技术:

2.随着经济社会的快速发展,过程中被忽视的环境问题愈发突显。为确保可持续发展,近年来黑臭水体治理工作迫在眉睫。清淤工程是黑臭水体治理中的重要内容,对清淤淤泥进行高效脱水可大幅减少淤泥的最终处置量和对环境二次污染的影响。
3.现今,行业内淤泥高效脱水方法主要采用机械脱水。机械脱水的工艺流程为:垃圾筛分、絮凝沉淀、压滤脱水、尾水处理。筛分、絮凝沉淀、压滤各环节所使用的设备分别为滚筒筛、浓缩罐和压滤机。采用机械脱水方式进行工程实践时,多发生脱水效率低、脱水效果不好的情况,使得设备设施投入产出经济性差。经过深入分析发现,造成上述现象的根本原因在于:机械脱水各个工艺环节涉及专业技术种类多、范围广,大家无法对各个工艺环节的设备设施参数进行设计确定,仅仅将各类别设备盲目组合在一起形成淤泥脱水生产线,最终使得因各工艺环节参数选取不合理导致生产线无法正常、高效运转。
4.行业内也有少量长期从事水环境治理的企业,通过工程实践经验来反向确定淤泥脱水工艺参数。但受淤泥组分复杂、类别多样性的影响,上一个工程项目的实践经验对于新工程往往不适用。因此,如何针对不同种类的淤泥,不同的淤泥脱水工程来确定合理且准确的工艺参数,对确保机械脱水工艺流程能正常、高效运转具有重要的研究和应用意义。


技术实现要素:

5.本发明为解决上述技术问题提供一种基于絮凝反应特性的淤泥脱水工艺。该工艺由于可以确定出各个工艺环节的关键工艺参数,可确保淤泥脱水工艺合理,生产线高效运转。
6.为实现上述目的,本发明的技术方案如下:
7.一种基于絮凝反应特性的淤泥脱水工艺,包括如下步骤:
8.1)垃圾筛分;
9.2)将垃圾筛分后的淤泥添加絮凝剂进行絮凝沉淀;其中絮凝沉淀时间的确定方法为进行絮凝反应实验,将絮凝剂与淤泥混合进行絮凝沉淀反应,记录反应时间time1和沉降高度height,绘制height—time沉降曲线,在height—time1沉降曲线图上绘制15
°
~30
°
直线与沉降曲线相切,其切点所对应的沉淀时间选取为脱水现场工艺沉淀时间t;
10.3)使用压滤机进行压滤脱水;
11.4)尾水处理。
12.优选地,步骤3)中,所述压滤机的压差单位:n/m2;a为压滤机过滤面积,单位:m2;其中b、srf、u和c的确定方法如下:取步骤2)沉淀后的淤泥进行比阻测定试验,记录过滤时间time2与滤出液体积v,测定滤出液的动力粘滞度u,单位:n
·
s/m2,测定单位体
积滤出液所得滤饼干重c,单位:kg/m3,绘制time2/v—v线性图,测定其比过滤阻力srf,单位:m/kg;b为time2/v—v线性图斜率。
13.优选地,步骤1)利用滚筒筛进行垃圾筛分,所述滚筒筛转速为单位:转/s,其中g为重力加速度;r1为滚筒筛滚筒半径,单位:m。
14.优选地,步骤2)中淤泥在浓缩罐中进行絮凝沉淀,所述浓缩罐的直径为:
15.单位:m;其中,qmax为最大设计流量,单位:m3/s;k2为流量总变化系数,取2~2.3;v为浓缩罐中流速;v0为中心进水管内流速,单位:m/s。
16.优选地,v为0.3~0.8mm/s。
17.优选地,步骤2)中淤泥在浓缩罐中进行絮凝沉淀,所述浓缩罐由上至下依次包括圆柱状罐身和圆截锥状罐底,所述圆柱状罐身从上至下依次包括超高段、沉淀段及缓冲层。
18.优选地,所述浓缩罐总高度h=h1 3600vt h3 (r

r2)tanω,单位:m;其中,h1为超高段的高度;h3为缓冲层高度;r为浓缩罐半径,r=d/2;r2为圆截锥状罐底的下底面半径,单位:m;v为浓缩罐中流速;t为步骤2)得到的沉淀时间t;ω为圆截锥侧长与平面间的夹角。
19.优选地,ω为45
°
~60
°

20.优选地,所述步骤4)尾水处理的工艺选择依据为:测定絮凝反应试验所产生上清液和比阻测定试验所产生滤出液中的氨氮、化学需氧量cod、悬浮物,氨氮大于25mg/l或化学需氧量cod大于300mg/l时,选择气浮;悬浮物大于300mg/l时,选择絮凝沉淀。
21.本发明的技术原理为:
22.1)采用机械脱水工艺技术时,淤泥通过滚筒筛筛分后将淤泥内石块、树枝、垃圾等进行筛离;筛分淤泥进入浓缩罐后添加絮凝剂进行絮凝沉淀,初步降低淤泥含水率;最后将沉淀淤泥输送至压滤机内进行深度脱水,实现泥水分离。在絮凝沉淀环节和压滤脱水环节,其上清液和脱水过滤液均以尾水形态进入尾水处理工艺环节。
23.2)在筛分环节,淤泥进入滚筒筛后,随同筒筛一起作圆周运动,在离心力的作用下实现垃圾筛分。在筒筛的最顶端,淤泥的离心力需克服淤泥自重才能实现有效垃圾筛分。故而,离心力=m(2πrs)2r1>mg=自重,即滚筒筛转速
24.3)在絮凝沉淀环节,淤泥在浓缩罐内实现药剂混合、絮凝反应和沉淀。淤泥絮凝反应和沉淀均需要一定的停留时间,这使得浓缩罐需要具备一定的容积和水流路径长度。浓缩罐容积和尺寸的设计可使得浓缩罐更加具有经济适用性,而浓缩罐容积和尺寸计算的依据主要为絮凝沉淀时间t。通过试验发现,height—time1沉降曲线图总体呈弧状,如图1。随着时间的发展,沉降高度height变化由早期的快逐渐变慢最后直至曲线平缓。浓缩罐絮凝沉淀仅为初步降低淤泥含水率,沉淀效率应作为考虑重点。故而,绘制15
°
~30
°
切线与曲线相切,以切点位置所对应的时间为絮凝沉降时间t,可使得设计出的浓缩罐能够保障高效沉降期内的停留时间,其容积和尺寸又具有经济性。
25.4)浓缩罐的断面面积由两部分组成,分别为中心进水管面积f=qmax/v0和沉淀部分有效断面面积故而浓缩罐直径:单位:
m。
26.5)浓缩罐的高度h由四部分组成,即h=h1 h2 h3 h4。其中,h1为罐体超高段的高度,保障罐体容积有一定富裕;h2为沉淀部分有效水深h2=3600vt;h3为缓冲层高度,为沉淀部分与沉泥区的过渡层;h4为圆截锥(即圆台)高度h4=(r

r2)tanω
°
,主要为沉泥区。浓缩罐总高度h=h1 h2 h3 h4=h1 3600vt h3 (r

r2)tanω,单位:m。
27.6)在压滤脱水环节,压滤初期时主要通过过滤介质加上一定的压差实现泥水分离;当压滤一段时间后,因为泥饼的积累导致泥饼亦成为了过滤介质,给压滤带来了更大的阻力;当压滤至后期,泥饼的过滤阻力远大于过滤介质的过滤阻力。淤泥比过滤阻力便是体现淤泥在压滤过程中所产生的压滤阻力指标。在实验室内测定淤泥的比过滤阻力,便可依据其计算出压滤设备所需要提供的压差,进而更为科学的确定压滤设备的选型。
28.7)针对絮凝沉淀环节产生的上清液和压滤脱水环节产生的脱水尾水,尾水内各关键指标的含量不同,应针对性的制定尾水处理工艺。氨氮和cod含量较高时,采用气浮工艺对尾水中富营养情况进行消解。悬浮物浓度较大时,采用絮凝沉淀原理进行固液分离。各项指标限值满足国家规定的排入市政管网的水质标准。
29.本发明的有益效果是:
30.1)科学性强:相较于行业技术现状:盲目选择工艺设备设施或者依据以往工程经验确定工艺设备设施的工艺参数,本发明基于絮凝反应试验和比阻测定试验科学地确定出絮凝反应时间和比过滤阻力,再通过科学的设计计算确定出各关键工艺参数如滚筒筛转速、浓缩罐尺寸、压滤机压差等,具有极强的科学性。
31.2)实用性强:本发明中所选取的关键工艺参数,如滚筒筛转速、浓缩罐尺寸、压滤机压差等,均为各个工艺设备中工作原理中的关键指标,对工艺设备在使用过程的效率和效果均具有决定性影响。通过对各个工艺设备的关键参数进行确定,对确保生产线的正常、高效运转非常具有实用意义。
32.3)填补技术空白:对于淤泥机械脱水技术,行业内现今仅简单地选取工艺设备组建生产线,或者利用以往工程经验确定工艺参数。本项发明首次提供了基于试验和科学计算的工艺参数确定方法,填补了淤泥机械脱水的技术空白。
附图说明
33.图1为实施例1的height—time沉降曲线示例图。
34.图2为实施例2的height—time沉降曲线示例图。
35.图3为实施例1的time2/v—v线性示例图。
具体实施方式
36.以下结合附图和具体实施例对本发明作进一步的详细描述。
37.实施例1
38.中山市某水环境治理工程,项目清淤工程量约88万m3,拟建立三条生产线,一年工期完成全部淤泥脱水处理。单条生产线产能需达到80m3/h。qmax=0.022m3/s。
39.本发明针对该工程提供一种基于絮凝反应特性的淤泥脱水工艺,包括如下步骤:
40.1)垃圾筛分;
41.本实施例是利用滚筒筛进行垃圾筛分,滚筒筛半径r1=0.75m,滚筒筛转速转/s。
42.2)将垃圾筛分后的淤泥添加絮凝剂进行絮凝沉淀;将河道淤泥与絮凝剂聚丙烯酰胺(cpam、apam)、聚合氯化铝pac、聚合硫酸铁pfs四种分别混合进行絮凝沉淀反应,绘制height—time沉降曲线见图1。沉降曲线显示,本实施例淤泥采用cpam时,絮凝沉淀高度更高、耗时更短,絮凝沉淀反应效果最佳。绘制30
°
直线与cpam沉降曲线相切,取切点所对应的沉淀反应时间为t=1.5h。
43.本实施例中,淤泥在浓缩罐中进行絮凝沉淀,所述浓缩罐的直径为:
44.淤泥在浓缩罐中进行絮凝沉淀,所述浓缩罐由上至下依次包括圆柱状罐身和圆截锥状罐底,所述圆柱状罐身从上至下依次包括超高段、沉淀段及缓冲层。浓缩罐总高度h=h1 3600vt h3 (r

r2)tanω,单位:m;其中,h1为超高段的高度;h3为缓冲层高度;r为浓缩罐半径,r=d/2;r2为圆截锥状罐底的下底面半径,单位:m;v为浓缩罐中流速;t为步骤2)得到的沉淀时间t;ω为圆截锥侧长与平面间的夹角。在本实施例中,r=d/2=3.85m,r2=0.5m,浓缩罐总高度h=h1 3600vt h3 (r

r2)tan55
°
=0.3 3600x0.4x10
‑3x1.5 0.3 (3.85

0.25)xtan55
°
=7.9m。
45.3)使用压滤机进行压滤脱水;其中压滤机的压差单位:n/m2;a为压滤机过滤面积,单位:m2;其中b、srf、u和c的确定方法如下:取步骤2)沉淀后的淤泥进行比阻测定试验,记录过滤时间time2与滤出液体积v,测定滤出液的动力粘滞度u,单位:n
·
s/m2,测定单位体积滤出液所得滤饼干重c,单位:kg/m3,绘制time2/v—v线性图(如图3所示),测定其比过滤阻力srf,单位:m/kg;b为time2/v—v线性图斜率。在本实施例中,测得线性图斜率b=0.28。测得滤出液的动力粘滞度u=1.1n
·
s/m2,测得单位体积滤出液所得滤饼干重c=800kg/m3,测得其比过滤阻力srf=320,单位:m/kg。故压滤机压差p=(srf*uc)/(2ba2)=320x1.1x800/2x0.28x202=1257n/m2。
46.4)尾水处理:测定絮凝反应试验所产生上清液和比阻测定试验所产生滤出液中的氨氮:20mg/l,化学需氧量cod:400mg/l,悬浮物:400mg/l。选择尾水处理工艺为:尾水引入浓缩罐再次絮凝沉淀后进行气浮处理。
47.经过该工艺处理后,生产线运转顺畅,淤泥脱水工效由60m3/h提高到80m3/h,项目工期整体节省63天。相较于传统方法节约了设备的采购费用和工艺水池超大部分的建造费用。
48.实施例2
49.福州市鼓台区某水环境治理工程,项目清淤工程量约17万m3,拟建立一条生产线,一年工期完成全部淤泥脱水处理。单条生产线产能需达到50m3/h。qmax=0.014m3/s。
50.本发明针对该工程提供一种基于絮凝反应特性的淤泥脱水工艺,包括如下步骤:
51.1)垃圾筛分;
52.本实施例是利用滚筒筛进行垃圾筛分,滚筒筛半径r1=0.5m,滚筒筛转速
转/s。
53.2)将垃圾筛分后的淤泥添加絮凝剂进行絮凝沉淀;将河道淤泥与絮凝剂聚丙烯酰胺(cpam、apam)、聚合氯化铝pac、聚合硫酸铁pfs四种分别混合进行絮凝沉淀反应,绘制height—time沉降曲线见图1。沉降曲线显示,本实施例淤泥采用pac时,絮凝沉淀高度更高、耗时更短,絮凝沉淀反应效果最佳。绘制30
°
直线与pac降曲线相切,取切点所对应的沉淀反应时间为t=1.67h。
54.本实施例中,淤泥在浓缩罐中进行絮凝沉淀,所述浓缩罐的直径为:
55.淤泥在浓缩罐中进行絮凝沉淀,所述浓缩罐由上至下依次包括圆柱状罐身和圆截锥状罐底,所述圆柱状罐身从上至下依次包括超高段、沉淀段及缓冲层。浓缩罐总高度h=h1 3600vt h3 (r

r2)tanω,单位:m;其中,h1为超高段的高度;h3为缓冲层高度;r为浓缩罐半径,r=d/2;r2为圆截锥状罐底的下底面半径,单位:m;v为浓缩罐中流速;t为步骤2)得到的沉淀时间t;ω为圆截锥侧长与平面间的夹角。在本实施例中,r=d/2=3.07m,r2=0.5m,浓缩罐总高度h=h1 3600vt h3 (r

r2)tan55
°
=0.3 3600x0.4x10
‑3x1.67 0.3 (3.07

0.25)x tan55
°
=7.03m。
56.3)使用压滤机进行压滤脱水;其中压滤机的压差单位:n/m2;a为压滤机过滤面积,单位:m2;其中b、srf、u和c的确定方法如下:取步骤2)沉淀后的淤泥进行比阻测定试验,记录过滤时间time2与滤出液体积v,测定滤出液的动力粘滞度u,单位:n
·
s/m2,测定单位体积滤出液所得滤饼干重c,单位:kg/m3,绘制time2/v—v线性图,测得线性图斜率b=0.32。测得滤出液的动力粘滞度u=1.3n
·
s/m2,测得单位体积滤出液所得滤饼干重c=700kg/m3,测得其比过滤阻力srf=370,单位:m/kg。故压滤机压差p=(srf*uc)/(2ba2)=370x1.3x700/2x0.32x202=1315n/m2。
57.4)尾水处理:测定絮凝反应试验所产生上清液和比阻测定试验所产生滤出液中的氨氮:60mg/l,化学需氧量cod:500mg/l,悬浮物:200mg/l。选择尾水处理工艺为:尾水进行气浮处理。
58.经过该工艺处理后,通过正向的、科学的设计计算工艺设备参数和工艺水池容积,规避了工艺设备低负荷运转和工艺水池超大的问题。根据项目实际产能需求建立经济适用的生产线,极大减少了生产线一次建造投入。
59.以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,同样也应视为本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献