一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种三苯甲基类发光自由基材料及其制备方法和应用与流程

2021-11-06 00:32:00 来源:中国专利 TAG:


1.本发明涉及有机发光材料技术领域,尤其涉及一种三苯甲基类发光自由基材料及其制备方法和应用。


背景技术:

2.生物硫醇主要包括半胱氨酸(cys)、谷胱甘肽(gsh)和同型半胱氨酸(hcy)。生物体中的生物硫醇在信号的传递、转换、细胞死亡的监控、蛋白质的合成、免疫系统的调节、维持生物体内生理平衡、氧化还原平衡和生物体排毒解毒等方面发挥着巨大的作用,它们含量异常是多种疾病的重要信号。因此开发迅速准确检测生物硫醇的荧光探针具有重要的科学价值和生理意义。
3.稳定的自由基是一类特殊的有机材料,因其拥有特殊的单电子结构而在自旋电子学、分子磁体、电子顺磁共振成像、有机场效应晶体管和有机电致发光器件中有广泛的应用。在稳定自由基材料中,室温发光性质是罕见的。目前已经报道的拥有室温发光性质的有机自由基材料只有三芳基甲基自由基,包括三(2,4,6

三氯代苯)甲基自由基(ttm)、全氯代三苯甲基自由基(ptm)和3,5

二氯吡啶二(2,4,6

三氯代苯)甲基自由基(pybtm)以及它们的衍生物,他们都拥有三个多氯取代苯环或者类似的结构由此产生较大的位阻来使自由基稳定。
4.目前已经有很多荧光分子作为检测生物硫醇的荧光团,包括罗丹明、萘酰亚胺、咔唑和吲哚等。但这些荧光团大多只能提供单一的荧光信号,无法排除背景荧光的干扰。


技术实现要素:

5.有鉴于此,本发明的目的在于提供一种三苯甲基类发光自由基材料及其制备方法和应用。本发明提供的三苯甲基类自由基发光材料具有良好的电子传输能力和良好的反应活性,能够达到对生物硫醇的荧光、比色和epr信号的三通道响应的目的,并且在rgb图案化、模拟临床化验和线虫的荧光成像中实现对半胱氨酸(cys)检测的应用。
6.为了实现上述发明目的,本发明提供以下技术方案:
7.本发明提供了一种三苯甲基类发光自由基材料,具有式i所示的结构:
[0008][0009]
其中r独立地为h或no2,且r不同时为h或no2,式i中
·
为自由基单电子。
[0010]
优选地,所述的三苯甲基类发光自由基材料具有式a~e所示的结构:
[0011][0012]
本发明还提供了上述技术方案所述的三苯甲基类发光自由基材料的制备方法,包括以下步骤:
[0013]
将1,3,5

三氯苯进行傅克烷基化反应,得到傅克烷基化产物;
[0014]
将所述傅克烷基化产物进行硝化反应,得到硝化产物;
[0015]
将所述硝化产物进行脱氢反应,得到所述三苯甲基类发光自由基材料。
[0016]
优选地,所述傅克烷基化反应的温度为50~85℃,时间为3~5h。
[0017]
优选地,所述硝化反应的温度为75~135℃,时间为12~72h。
[0018]
优选地,所述硝化反应使用的试剂为浓硫酸与浓硝酸的混合溶液,所述浓硫酸与浓硝酸的体积比为1:3,所述浓硫酸的质量分数为98%,所述浓硝酸的质量分数为65%。
[0019]
优选地,所述脱氢反应的溶剂为四氢呋喃,所述脱氢反应使用的碱为叔丁醇钾,所述脱氢反应在避光条件下进行。
[0020]
本发明还提供了上述技术方案所述的三苯甲基类发光自由基材料或上述技术方案所述的制备方法制得的三苯甲基类发光自由基材料上的自由基电子和硝基基团作为制备检测生物硫醇的反应位点的应用。
[0021]
本发明还提供了上述技术方案所述的三苯甲基类发光自由基材料或上述技术方案所述的制备方法制得的三苯甲基类发光自由基材料在制备对半胱氨酸检测的工具中的应用,所述检测包括对半胱氨酸的荧光、比色、电子自旋共振的单一或多重信号的检测。
[0022]
本发明还提供了上述技术方案所述的三苯甲基类发光自由基材料或上述技术方案所述的制备方法制得的三苯甲基类发光自由基材料在制备对半胱氨酸检测的工具中的应用,所述检测包括在rgb图案化、模拟临床化验和线虫的荧光成像中对半胱氨酸的检测。
[0023]
本发明提供了一种三苯甲基类发光自由基材料,整个分子骨架由三苯甲基自由基和硝基构成,连接强吸电子效应的硝基基团的三苯甲基自由基;中心的三苯甲基自由基不但作为该类分子的发光构筑基团,同时也作为活化基团使三苯甲基自由基更易被生物硫醇亲核取代,两个单元(三苯甲基自由基和硝基的)协同作用使得该材料实现了对生物硫醇多重响应的检测目的,以三苯甲基自由基作为橙红光构筑基元和生物硫醇的识别位点,该类有机自由基发光材料,具有如下特点:
[0024]
本发明提供的三苯甲基类自由基类发光材料具有良好的电子传输能力,是很好的
橙红光有机发光材料,其光学信息表明,在四氢呋喃溶液中有高的荧光效率;本发明提供的三苯甲基类自由基拥有特殊的未成对电子结构具有良好的epr信号所以在检测生物硫醇时,可以通过epr作为新的识别信号;本发明提供的三苯甲基类自由基母体上连接不同数量的硝基基团,不但作为生物硫醇的还原位点,同时还作为吸电子基团活化了三苯甲基自由基上的单电子使其成为新的亲核反应位点,从而实现荧光、比色和epr信号的三通道响应;本发明提供的三苯甲基自由基类发光材料可以实现简单的rgb图案化检测,更加方便快捷的检测半胱氨酸;本发明提供的三苯甲基类自由基发光材料可以模拟临床化验半胱氨酸,同时还可以实现在线虫体内对半胱氨酸的定性检测。
[0025]
本发明还提供了上述技术方案所述三苯甲基类发光自由基材料的制备方法,包括以下步骤:将1,3,5

三氯苯进行傅克烷基化反应,得到傅克烷基化产物;将所述傅克烷基化产物进行硝化反应,得到硝化产物;将所述硝化产物进行脱氢反应,得到所述三苯甲基类发光自由基材料。本发明提供的制备方法流程简单,原料来源广泛,产品收率和纯度高。
附图说明
[0026]
图1为归一化ttm

3no2在溶液状态下的紫外吸收光谱和荧光发射光谱图;
[0027]
图2为ttm

3no2在半胱氨酸溶液中荧光强度,吸收光谱和epr强度随着半胱氨酸浓度的变化;
[0028]
图3为ttm

3no2在半胱氨酸溶液中荧光,吸收和epr淬灭率和其线性拟合图;
[0029]
图4为ttm

3no2在半胱氨酸溶液中荧光强度,epr信号和溶液颜色随着时间的变化;
[0030]
图5为ttm

3no2在多种氨基酸溶液(cys、gsh、hcy、his、asp、pro、lys、arg、gly、glu、ala、phe)中的荧光,吸收和epr淬灭率柱状图;
[0031]
图6为ttm

3no2检测多种氨基酸类化合物的应用实图;
[0032]
图7为ttm

3no
2 rgb图案化检测半胱氨酸;
[0033]
图8为ttm

3no2模拟临床化验半胱氨酸;
[0034]
图9为ttm

3no2在线虫体内对半胱氨酸定性检测的共聚焦显微镜照片;
[0035]
图10为ttm

3no2的红外光谱图;
[0036]
图11为ttm

nno2识别半胱氨酸的应用实物图。
具体实施方式
[0037]
本发明提供了一种三苯甲基类发光自由基材料,具有式i所示的结构:
[0038][0039]
其中r独立地为h或no2,且r不同时为h或no2,式i中
·
为自由基单电子。
[0040]
在本发明中的具体实施例中,所述的三苯甲基类发光自由基材料具有式a~e所示的结构:
[0041][0042]
本发明还提供了上述技术方案所述的三苯甲基类发光自由基材料的制备方法,包括以下步骤:
[0043]
将1,3,5

三氯苯进行傅克烷基化反应,得到傅克烷基化产物;
[0044]
将所述傅克烷基化产物进行硝化反应,得到硝化产物;
[0045]
将所述硝化产物进行脱氢反应,得到所述三苯甲基类发光自由基材料。
[0046]
本发明将1,3,5

三氯苯进行傅克烷基化反应,得到傅克烷基化产物。
[0047]
在本发明中,所述傅克烷基化反应的温度优选为50~85℃,更优选为80℃,时间优选为3~5h。在本发明中,所述傅克烷基化反应优选在耐压瓶中进行。在本发明的具体实施例中,所述傅克烷基化反应的具体步骤为:在耐压瓶中依次加入1,3,5

三氯苯、无水三氯甲烷和三氯化铝,将所述耐压瓶在密封条件下加热到进行所述傅克烷基化反应,所述傅克烷基化反应后自然冷却至室温,将所得产物与盐酸混合,得到的混合物用二氯甲烷萃取,所得有机相用无水硫酸镁干燥后减压除去溶剂并通过柱层析提纯,得到所述傅克烷基化产物。在本发明中,所述1,3,5

三氯苯、无水三氯甲烷和三氯化铝的用量比为330.7mmol:3.0ml:41.2mmol。在本发明中,所述盐酸的浓度优选为1m。在本发明中,所述柱层析提纯使用的洗脱剂为石油醚。
[0048]
得到傅克烷基化产物后,本发明将所述傅克烷基化产物进行硝化反应,得到硝化产物。
[0049]
在本发明中,所述硝化反应的温度优选为75~135℃,时间优选为12~72h。本发明通过控制所述硝化反应的温度和时间得到不同硝基取代基的硝化产物。
[0050]
在本发明中,所述硝化反应使用的试剂优选为浓硫酸与浓硝酸的混合溶液,所述浓硫酸与浓硝酸的体积比优选为1:3,所述浓硫酸的质量分数优选为98%,所述浓硝酸的质量分数优选为65%。
[0051]
在本发明中,所述傅克烷基化产物、浓硫酸与浓硝酸的用量比优选为4g:15ml:
45ml。
[0052]
所述硝化反应完成后,本发明优选将所得产物自然冷却至室温后,加入蒸馏水,得到的混合物用二氯萃取,再进行干燥并且通过柱层析提纯,得到所述硝化产物。在本发明中,所述柱层析提纯的洗脱剂优选为石油醚和二氯甲烷的混合液,所述石油醚与二氯甲烷的体积比优选为3:1。
[0053]
得到硝化产物后,本发明将所述硝化产物进行脱氢反应,得到所述三苯甲基类发光自由基材料。
[0054]
在本发明中,所述脱氢反应的溶剂优选为四氢呋喃,更优选为无水四氢呋喃,所述脱氢反应使用的碱优选为叔丁醇钾(kotbu),所述脱氢反应的脱氢试剂优选为四氯苯醌,所述脱氢反应优选在避光条件下进行。
[0055]
在本发明中,所述脱氢反应优选在保护气氛中进行,所述保护气氛优选为氮气。
[0056]
在本发明中,所述无水四氢呋喃、硝化产物、kotbu和四氯苯醌的用量比优选为20ml:2.9mmol:16.2mmol:15mmol。
[0057]
脱氢反应完成后,本发明优选将所得产物通过柱层析提纯,所述柱层析提纯使用的洗脱剂为石油醚和二氯甲烷的混合液,所述石油醚和二氯甲烷的体积比优选为3:1。
[0058]
本发明还提供了上述技术方案所述的三苯甲基类发光自由基材料或上述技术方案所述的制备方法制得的三苯甲基类发光自由基材料上的自由基电子和硝基基团作为制备检测生物硫醇的反应位点的应用。
[0059]
在本发明中,所述检测生物硫醇优选包括溶液中半胱氨酸的检测。本发明对所述半胱氨酸的检测的操作没有特殊的限定,采用本领域技术人员熟知的自由基材料检测半胱氨酸的技术方案即可。
[0060]
本发明还提供了上述技术方案所述的三苯甲基类发光自由基材料或上述技术方案所述的制备方法制得的三苯甲基类发光自由基材料在制备对半胱氨酸检测的工具中的应用,所述检测包括对半胱氨酸的荧光、比色、电子自旋共振(epr)的单一或多重信号的检测。
[0061]
在本发明中,所述半胱氨酸的检测方法优选包括以下步骤:将自由基材料溶液与待测溶液混合,检测待测溶液的荧光强度,得到荧光强度与半胱氨酸浓度的关系,做出线性曲线,可定量的检测半胱氨酸。
[0062]
本发明优选将所述三苯甲基类发光自由基材料与四氢呋喃溶剂配制成自由基材料溶液,将所述自由基材料溶液与待测半胱氨酸水溶液混合后,进行荧光和紫外吸收强度的检测,得到荧光和紫外吸收强度与半胱氨酸浓度的关系。在本发明中,所述自由基材料溶液中三苯甲基类发光自由基材料的浓度优选为10μmol/l。在本发明中,所述待测溶液中半胱氨酸的浓度优选为0~400μmol/l。
[0063]
本发明对所述荧光强度的检测方法没有特殊的限定,采用本领域技术人员熟知的检测的操作即可。在本发明中,所述荧光强度的检测优选在rf

5301荧光和shimadzuuv

2550分光光度计上测量,激发波长优选根据自由基特征吸收确定,具体如375nm。
[0064]
本发明对所述epr强度的检测方法没有特殊的限定,采用本领域技术人员熟知的检测的操作即可。在本发明中,所述epr强度的检测优选在elexsys

ii e500 cw

epr光谱仪上测量。
[0065]
在本发明中,所述淬灭率=1

i/i0,其中,i0为自由基材料溶液的初始强度,i为待测溶液的强度。
[0066]
在本发明中,得到淬灭率后,本发明优选根据所测强度与半胱氨酸浓度的关系做出预定的线性曲线,即可得到待测溶液中半胱氨酸的浓度。在本发明中,所述线性曲线为半胱氨酸浓度与强度的线性曲线;所述线性曲线优选按照如下方法获得:
[0067]
提供梯度浓度的半胱氨酸标准溶液;
[0068]
将所述半胱氨酸标准溶液与自由基材料溶液混合,得到待测标准溶液;
[0069]
将所述待测标准溶液进行荧光强度检测,得到待测标准溶液的荧光强度,根据待测标准溶液的荧光强度和自由基材料溶液的荧光强度,得到预定的线性曲线;
[0070]
在本发明中,所述线性曲线的线性范围优选为0~400μmol/l。
[0071]
本发明还提供了上述技术方案所述的三苯甲基类发光自由基材料或上述技术方案所述的制备方法制得的三苯甲基类发光自由基材料在制备对半胱氨酸检测的工具中的应用,所述检测包括在rgb图案化、模拟临床化验和线虫的荧光成像中对半胱氨酸的检测。
[0072]
为了进一步说明本发明,下面结合实例对本发明提供的三苯甲基类发光自由基材料及其制备方法和应用进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
[0073]
实施例1
[0074]
首先将1,3,5

三氯苯与无水三氯甲烷反应制备式(ⅲ)化合物(httm);再由式(ⅲ)经硝化反应生成式(ⅳ);最后由式(ⅳ)脱氢生成三苯甲基自由基探针ttm

3no2;反应式如下:
[0075]
制备方法步骤包括:
[0076]
httm的合成,原理如下式所示:
[0077][0078]
350ml的耐压瓶中先后加入式(ⅱ)1,3,5

三氯苯(60.0g,330.7mmol)、无水三氯甲烷(3.0ml)和三氯化铝(5.5g,41.2mmol)。反应瓶密封条件下加热到80℃反应3h,随后冷却至室温,瓶中加入200ml稀盐酸(1m)。混合物用二氯甲烷萃取多次,有机相用无水硫酸镁干燥后减压除去溶剂并通过柱层析提纯(石油醚作为洗脱溶剂)。最终得到14.1g白色粉末式iii(httm),产率为61%。1h nmr(500mhz,cdcl3):δ7.39(d,j=2.4hz,3h),7.26(d,j=2.2hz 3h).6.71(s,1h);gc

ms(m/z)[m]

:553.65。
[0079]
httm

no2的合成,原理如下式所示:
[0080][0081]
250ml的圆底烧瓶中先后加入浓硫酸(15ml)、浓硝酸(45ml)和式ⅲ化合物(4g,5.8mmol),加热到75℃,反应12h,随后冷却至室温,瓶中加入100ml蒸馏水。混合物用二氯萃取多次,干燥并且通过柱层析提纯(石油醚:二氯甲烷=3:1为洗脱剂)。最终得到2.5g白色粉末式i(httm

no2),产率为58%。gc

ms(m/z)[m]

:595.75。
[0082]
httm

2no2的合成,原理如下式所示:
[0083][0084]
250ml的圆底烧瓶中先后加入浓硫酸(15ml)、浓硝酸(45ml)和式(ⅲ)(4g,5.8mmol)。加热到100℃,反应24h,随后冷却至室温,瓶中加入100ml蒸馏水。混合物用二氯萃取多次,干燥并且通过柱层析提纯(石油醚:二氯甲烷=3:1为洗脱剂)。最终得到1.6g白色粉末式ii(httm

2no2),产率为34%。gc

ms(m/z)[m]

:642.73。
[0085]
httm

3no2的合成,原理如下式所示:
[0086][0087]
250ml的圆底烧瓶中先后加入浓硫酸(15ml)、浓硝酸(45ml)和式(ⅲ)(4g,5.8mmol)。加热到135℃,反应36h,随后冷却至室温,瓶中加入100ml蒸馏水。混合物用二氯萃取多次,干燥并且通过柱层析提纯(石油醚:二氯甲烷=3:1为洗脱剂)。最终得到3g白色粉末式iii(httm

3no2),产率为70%。1hnmr(500mhz,cdcl3)δ7.66

7.61(m,1h),7.50(d,j=4.3hz,1h),6.90

6.70(m,1h);gc

ms(m/z)[m]

:687.98。
[0088]
httm

4no2的合成,原理如下式所示:
[0089][0090]
250ml的圆底烧瓶中先后加入浓硫酸(15ml)、浓硝酸(45ml)和式(ⅲ)(4g,5.8mmol)。加热到135℃,反应48h,随后冷却至室温,瓶中加入100ml蒸馏水。混合物用二氯萃取多次,干燥并且通过柱层析提纯(石油醚:二氯甲烷=3:1为洗脱剂)。最终得到1.45g白色粉末式iv(httm

4no2),产率为24%。gc

ms(m/z)[m]

:732.77。
[0091]
httm

5no2的合成,原理如下式所示:
[0092][0093]
250ml的圆底烧瓶中先后加入浓硫酸(15ml)、浓硝酸(45ml)和式(ⅲ)(4g,5.8mmol)。加热到135℃,反应72h,随后冷却至室温,瓶中加入100ml蒸馏水。混合物用二氯萃取多次,干燥并且通过柱层析提纯(石油醚:二氯甲烷=3:1为洗脱剂)。最终得到1g白色粉末式v(httm

5no2),产率为22%。gc

ms(m/z)[m]

:777.59。
[0094]
ttm

nno2的合成,原理如下式所示:
[0095][0096]
(r不能同时为h和no2)
[0097]
在氩气保护和避光条件下,100ml双口瓶中加入20ml无水四氢呋喃、式(i~v)(2.9mmol)和kotbu(1.8g,16.2mmol),反应5h后加入四氯苯醌(3.5g,15mmol)反应1.5h。反应结束后,石油醚:二氯甲烷=3:1为洗脱剂,通过柱层析提纯,最终得到红色式a~e(ttm

nno2)。malid

tof(m/z)[m]

:594.7(式a),641.59(式b),688.27(式c),731.89(式d)和776.12(式e)。
[0098]
性能测试
[0099]
本实施例制得的化合物ttm

3no2(式c)用作检测生物硫醇的实施例:
[0100]
制备浓度为1
×
10
‑2mol/l的ttm

3no2溶液,其中,溶剂为四氢呋喃。配置浓度为1
×
10
‑2mol/l的半胱氨酸(cys)溶液;
[0101]
取3μl ttm

3no2溶液置于比色皿中,记录此时的紫外吸收波长和荧光强度,归一化后的荧光光谱和紫外吸收波长如图1所示;
[0102]
取30μl ttm

3no2溶液置于比色皿中,记录此时的荧光强度和紫外吸收强度依次取0.3μl,0.6μl,0.9μl,1.2μl,1.5μl,1.8μl,2.4μl,3.0μl,3.6μl,4.2μl,4.8μl,5.4μl,6.0μl,9.0μl,12.0μl,15.0μl,18.0μl,21.0μl,24.0μl的半胱氨酸溶液置于装有ttm

3no2溶液的比色皿中,总体积为3ml,混合均匀,待荧光和吸收稳定后,检测溶液的荧光和吸收强度,如图2中(a)和(b)所示;取1
×
10
‑4mol/l的ttm

3no2溶液3ml置于比色皿中,记录此时的epr信号,依次取15μl,30μl,60μl,90μl,120μl的半胱氨酸溶液置于装有ttm

3no2溶液的比色皿中,总体积为3ml,混合均匀,测试溶液的epr信号,epr信号谱图如图2中(c)所示。
[0103]
计算不同半胱氨酸浓度下溶液的荧光,紫外和epr淬灭率,并且线性拟合如图3所示,其中(a)为荧光,(b)为紫外,(c)epr,为荧光淬灭率=1

i/i0,其中i0为ttm

3no2溶液初始的荧光强度;i为不同半胱氨酸浓度下溶液的荧光强度;计算可得,ttm

3no2对半胱氨酸的检测限分别为0.695μm(荧光),0.352mμ(吸收)和7.637μm(epr);
[0104]
取30μl ttm

3no2溶液置于3ml四氢呋喃中,加入四倍当量的半胱氨酸溶液,记录此时溶液的荧光强度和epr强度,随后每5min记录一次溶液的荧光强度和epr强度,此时得到了ttm

3no2在半胱氨酸溶液中荧光强度和epr强度随着时间的变化,如图4中(a)和(b)所示;取3μl ttm

3no2溶液置于3ml四氢呋喃中,加入四倍当量的半胱氨酸溶液,记录此时溶液的颜色,15s后溶液颜色不变如图4中(c)所示。
[0105]
ttm

3no2对其他氨基酸的检测:
[0106]
配制浓度为1
×
10
‑3mol/l的ttm

3no2溶液,其中,溶剂为四氢呋喃。配置浓度为1
×
10
‑2mol/l的其他氨基酸溶液,包括cys、gsh、hcy、his、asp、pro、lys、arg、gly、glu、ala、phe;
[0107]
取30μl ttm

3no2溶液置于比色皿中,加入12.0μl的氨基酸溶液,所得溶液中氨基酸的浓度为40μm;记录加入不同氨基酸后溶液的荧光强度;按照上述方法,分别得到含cys、gsh、hcy、his、asp、pro、lys、arg、gly、glu、ala、phe的溶液的荧光强度,计算荧光淬灭率,结果如图5中(a)所示;其中,荧光淬灭率=1

i/i0,其中,i0为ttm

3no2溶液初始荧光强度,i为加入不同氨基酸后溶液的荧光强度;取30μl ttm

3no2溶液置于比色皿中,加入12.0μl的氨基酸溶液,所得溶液中氨基酸的浓度为40μm;记录加入不同氨基酸后溶液的紫外吸收光谱;按照上述方法,分别得到含cys、gsh、hcy、his、asp、pro、lys、arg、gly、glu、ala、phe的溶液的紫外吸收光谱,计算i
488
/i
375
,结果如图5中(b)所示;相同的取300μl ttm

3no2溶液置于比色皿中,加入120μl的氨基酸溶液,所得溶液中氨基酸的浓度为0.4mm;记录加入不同氨基酸后溶液的epr强度;按照上述方法,分别得到含cys、gsh、hcy、his、asp、pro、lys、arg、gly、glu、ala、phe的溶液的epr强度,计算epr淬灭率,结果如图5中(c)所示。
[0108]
由图5可知,含有cys的ttm

3no2溶液的三通道淬灭率最大为95%,含有其他氨基酸的ttm

3no2溶液的荧光淬灭率<40%,表明本发明提供的荧光探针对半胱氨酸(cys)的选择性高。
[0109]
ttm

3no2在浓度为40μm的不同氨基酸(cys、gsh、hcy、his、asp、pro、lys、arg、gly、glu、ala、phe)中溶液的荧光变化如图6所示,图6上图为日光灯下含不同氨基酸的ttm

3no2溶液的荧光变化图,图6下图为在365nm的紫外灯照射下含不同氨基酸的ttm

3no2溶液的荧
光变化图,由图6可知,其他氨基酸存在时荧光探针溶液的荧光基本不淬灭,只有在半胱氨酸的存在下,三苯甲基自由基发光材料的荧光显著淬灭,溶液颜色由无色变为粉红色;表明本发明提供的ttm

3no2自由基对半胱氨酸(cys)检测专一性好。
[0110]
rgb图案化
[0111]
rgb图案化是一种用于化学和生物传感领域的有利分析方法在这里,向含10μμ的ttm

3no2的thf溶液中分别加入0

40μμ的cys等待20s,暂时用手机来分析解图的各个rgb值(图7中(a))。绿色通道强度值(r2=0.986)和蓝色通道强度值(r2=0.996)与cys浓度具有良好的线性相关性(图7中(b)),这表明无需使用昂贵的仪器即可在rgb模式下定量检测cys。此外,这种rgb图案可以通过数字手段有效消除人类对颜色的感知误差。
[0112]
模拟临床化验
[0113]
cys的正常细胞内水平(30~200μm)对于维持各种蛋白质和抗氧化剂gsh的水平至关重要。因此,们在胎牛血清中加入0~700μm cys模拟人体血液环境,然后用thf将血清稀释至0~70μm,并分别加入10μm ttm

3no2检测紫外吸收光谱(图8中(a))。如图8中(b)所示,log(i
488nm
/i
375nm
)与cys浓度呈良好的线性关系,说明ttm

3no2自由基可实现临床水平的cys定量检测。
[0114]
在线虫中检测cys
[0115]
线虫在20℃的条件下孵化24h,在荧光共聚焦显微镜下基本观察不到线虫中的荧光(如图9中(a)所示)。然后,线虫在含有1mg/ml ttm

3no2的营养液中孵化12h,培养温度为20℃,在荧光共聚焦显微镜下观察到线虫内有很强的荧光(如图9中(b)所示)。然后,将在含有ttm

3no2的线虫用cys(1mg/ml)孵化6h,后观察到明显的淬灭(如图9中(c)所示);以上线虫的活体实验表明,本发明提供的三苯甲基类自由基可以用于检测活体动物中的cys;这为发光自由基在生物中的应用提供了良好的前景。
[0116]
图10为ttm

3no2的红外光谱图。
[0117]
ttm

nno2(式a~e)对半胱氨酸的实际应用
[0118]
配制浓度为1
×
10
‑3mol/l的ttm

nno2溶液,其中,溶剂为四氢呋喃。配置浓度为1
×
10
‑2mol/l的半胱氨酸水溶液。取30μl ttm

nno2溶液置于比色皿中,加入12.0μl的半胱氨酸溶液,所得溶液中半胱氨酸的浓度为40μm;记录不同探针溶液的颜色。如图11,从左到右依次为式a~e识别半胱氨酸的应用实图,发现加入半胱氨酸时五种自由基均可以对半胱氨酸进行响应。
[0119]
以上所述仅是本发明的优选实施方式,并非对本发明作任何形式上的限制。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献