一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

省级电网供电综合碳排放因子的计算方法、系统及介质

2023-03-20 03:37:44 来源:中国专利 TAG:


1.本技术涉及电力系统技术领域,具体涉及一种省级电网供电综合碳排放因子的计算方法、系统及介质。


背景技术:

2.对电力行业而言,供电侧排放因子的计算是连接电力消费与碳排放量的关键桥梁。因此需要尽快构建合理的供电侧排放因子的计算模型。
3.世界各国的电网企业开展碳排放核算研究起步较晚,多数地区消纳电量的类型,交换电量的发电类型的统计数据是不全面的,并且在分布式电源大规模发展、可再生能源占比不断提高、跨区电力输送规模不断扩大、火电机组逐渐转为调峰备用电源及双向互动新电气化逐步推进的背景下,各级电网电力来源时空域差异已显著加大、不同发电类型发电量和双向负荷上网电量波动性剧烈,继续采用区域电网平均排放因子进行电网企业碳排放核算会产生较大误差,而对于考虑年、月、日不同时间尺度和省级的电网排放因子尚无成熟的计算方法,导致在实际计算各地区消纳电量时并不准确。在针对某个省进行碳排放量计算时,采用现有的两种核算方法:物料守恒法,排放因子法。但不同省之间电力资源的在时间和空间上有着差距较大,如果仅用该省所在地区的排放因子计算本省的碳排放量是存在较大误差的。


技术实现要素:

4.本技术的目的是提出一种省级电网供电综合碳排放因子的计算方法、系统及介质,有助于避免“碳泄漏”带来的影响,帮助电网企业实现碳排放精准核算。
5.本技术的技术方案:
6.第一方面,本技术实施例提供一种省级电网供电综合碳排放因子的计算方法,包括如下步骤:
7.确定省级电网消纳电量的来源,确定省内主网发电厂的发电量,已知外送到外省的电量和主网受入外省的电量;
8.统计省内各主网发电厂的发电总量,并确定发电类型;
9.得到输送外省的各类型电量;
10.得到省内主网各类型的消纳电量,将各类型的消纳电量乘以对应的碳排因子得到主网的总碳排量;
11.将主网的总碳排放量除以主网的总消纳电量,得出省级电网的综合碳排放因子。
12.得到输送外省的各类型电量具体为,在扣除已知外送各类型发电量后,再按本省主网消纳的火、水、风、光发电量的比例进行分配,得到输送外省的各类型电量。
13.省内主网发电厂的发电量、外送到主网的电量和主网下网的电量计算方法如式(1)所示:
[0014][0015]
式中e
发电厂
为省内电厂总发电量;e
发电厂,k
为省内第k种类型电厂发电量;为输送至外省主网第k类电量,
[0016]
对输送至外省各类型发电量,如式(2)所示的计算方法:
[0017][0018]
式中,py为已知输送外省各类型发电量的省份;p为所有外送的省份;为输送至第p个省份的第k种发电量;为输送第p个省份的总电量;为受入第p个省份的第k种发电量;为受入第p个省份的总电量。
[0019]
省级电网消纳的各类型发电量计算方法为:
[0020][0021]
当得到省内各个区域的各类型消纳电量后,发电企业二氧化碳的排放总量为:
[0022][0023]
式中:为区域i第k种发电企业单位综合发电二氧化碳排放量,单位为吨二氧化碳每兆瓦时,cei为区域i的总碳排放量。
[0024]
区域i的供电排放因子可由式(5)得出:
[0025][0026]
第二方面,本技术实施例提供一种省级电网供电综合碳排放因子的计算系统,包括,
[0027]
电量确定模块,用以确定省级电网消纳电量的来源,确定省内主网发电厂的发电量,已知外送到外省的电量和主网受入外省的电量;
[0028]
统计模块,用以统计省内各主网发电厂的发电总量,并确定发电类型;
[0029]
输送外省电量获取模块,用以得到输送外省的各类型电量;
[0030]
总碳排量计算模块,用以得到省内主网各类型的消纳电量,将各类型的消纳电量乘以对应的碳排因子得到主网的总碳排量;
[0031]
综合碳排放因子计算模块,用以将主网的总碳排放量除以主网的总消纳电量,得出省级电网的综合碳排放因子。
[0032]
所述输送外省电量获取模块包括比例分配单元,比例分配单元在扣除已知外送各
类型发电量后,再按本省主网消纳的火、水、风、光发电量的比例进行分配,得到输送外省的各类型电量。
[0033]
所述电量确定模块包括省内主网发电厂的发电量计算单元、外送到主网的电量计算单元和主网下网的电量计算单元,所述省内主网发电厂的发电量计算单元用以计算省内主网发电厂的发电量,外送到主网的电量计算单元用以计算外送到主网的电量,主网下网的电量计算单元用以计算主网下网的电量。
[0034]
第三方面,本技术实施例提供一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的省级电网供电综合碳排放因子的计算方法的步骤。
[0035]
第四方面,本技术实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有程序代码,所述程序代码被处理器执行时,实现如上所述的省级电网供电综合碳排放因子的计算方法的步骤。
[0036]
与现有技术相比,本技术的有益效果是:本技术通过分析各级电网供电排放因子的影响因素,建立省级电网电量交换计算模型,编制了涵盖省级电网的计算方法。此方法有助于避免“碳泄漏”带来的影响,帮助电网企业实现碳排放精准核算。
附图说明
[0037]
图1为本技术实施例省级主网不同发电类型电量交换模型图;
[0038]
图2为本技术实施例的方法流程示意图;
[0039]
图3为本技术实施例的系统框图。
具体实施方式
[0040]
下面将结合本技术实施例中的附图,对本技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本技术一部分实施例,而不是全部的实施例。基于本技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本技术保护的范围。
[0041]
如图2所示的方法流程图,一种省级电网供电综合碳排放因子的计算方法,实施步骤如下:
[0042]
s1.首先明确省级电网消纳电量的来源,即省内主网发电厂的发电量,已知外送到外省的电量和主网受入外省的电量。
[0043]
s2.统计省内各主网发电厂的发电总量,并明确发电类型。
[0044]
s3.未知输送外省各类型发电量在扣除已知外送各类型发电量后,再按本省主网消纳的火、水、风、光发电量的比例进行分配,得到输送外省的各类型电量。
[0045]
s4.由步骤s2和s3得到省内主网各类型的消纳电量后,将各类型的消纳电量乘以对应的碳排因子即可得到主网的总碳排量。
[0046]
s5.将主网的总碳排放量除以主网的总消纳电量,得出省级电网的综合碳排放因子。
[0047]
省级电网基本以500kv电压等级为主网,并以500kv变电站为关口与其他省级电网进行电力交换,本技术提出如图1所示的省级电网不同发电类型电量交换等效模型图。
[0048]
其中,m表示主网;e
m-i
表示主网经500kv变压器注入区域i的下网电量;e
i-m
表示区域i经500kv变压器流入主网的上网电量;e
m-为本省主网流向不同外省的电量;e
m
为不同外省注入本省主网的电量;h、s、f、g表示火电、水电、风电和光伏四种不同发电类型;分别代表主网中火、水、风、光四类电厂的发电量;分别代表区域i内火、水、风、光四类电厂的发电量。
[0049]
一般省内碳排放有三个主要来源:省内发电并被本省消纳导致的碳排放、外省电量交换导致的碳排放和网损导致的碳排放,本技术提出将网损计入区域负荷,本技术提出省内消纳总电量及所消纳的各发电类型电量的计算方法如式(1)所示。
[0050][0051]
式中,ad为省内消纳的总电量;e为省内发电并被本省消纳的电量;adk为省内消纳的第k种类型电量,其中k为火(h)、水(s)、风(f)、光(g)四种发电类型之一;ek为省内发电并被本省消纳的第k类电量;为主网受入外省的第k类电量。
[0052]
本技术依据式(1),先计算省内电网自我的消纳电量,然后根据电量所属区域的火、水、风、光等不同发电种类电量比例对省内电网其他区域电网受入(流出)的电量进行计算。
[0053]
本技术提出省内总发电量及各类型发电量的计算方法如式(2)所示:
[0054][0055]
式中e
发电厂
为省内电厂总发电量;e
发电厂,k
为省内第k种类型电厂发电量;为输送至外省主网第k类电量。式(2)中各变量仅与省内各类型发电量参数有关。
[0056]
我国现阶段多数省级电网碳排放管理刚刚起步,尚未形成完备的消纳电量中各类型发电量比例的统计,也未完成碳足迹追踪,为求输送外省各类型发电量,本技术提出的方法为:未知输送外省各类型发电量在扣除已知外送各类型发电量后,再按火、水、风、光发电量的比例进行分配。
[0057]
对输送至外省各类型发电量,本技术提出如式(3)所示的计算方法:
[0058][0059]
式中,py为已知输送外省各类型发电量的省份;p为所有外送的省份;为输送至第p个省份的第k种发电量;为输送第p个省份的总电量;为受入第p个省份的第k种发电量;为受入第p个省份的总电量。
[0060]
本技术提出省级电网消纳的各类型发电量计算方法为:
[0061][0062]
当得到省内各个区域的各类型消纳电量后,发电企业二氧化碳的排放总量为:
[0063][0064]
式中:为区域i第k种发电企业单位综合发电二氧化碳排放量,单位为吨二氧化碳每兆瓦时(tco2/mwh),cei为区域i的总碳排放量。
[0065]
则区域i的供电排放因子可由式(6)得出:
[0066][0067]
如图3所示,本技术实施例提供一种省级电网供电综合碳排放因子的计算系统,包括,
[0068]
电量确定模块1,用以确定省级电网消纳电量的来源,确定省内主网发电厂的发电量,已知外送到外省的电量和主网受入外省的电量;
[0069]
统计模块2,用以统计省内各主网发电厂的发电总量,并确定发电类型;
[0070]
输送外省电量获取模块3,用以得到输送外省的各类型电量;
[0071]
总碳排量计算模块4,用以得到省内主网各类型的消纳电量,将各类型的消纳电量乘以对应的碳排因子得到主网的总碳排量;
[0072]
综合碳排放因子计算模块5,用以将主网的总碳排放量除以主网的总消纳电量,得出省级电网的综合碳排放因子。
[0073]
所述输送外省电量获取模块包括比例分配单元,比例分配单元在扣除已知外送各类型发电量后,再按本省主网消纳的火、水、风、光发电量的比例进行分配,得到输送外省的各类型电量。
[0074]
所述电量确定模块包括省内主网发电厂的发电量计算单元、外送到主网的电量计算单元和主网下网的电量计算单元,所述省内主网发电厂的发电量计算单元用以计算省内主网发电厂的发电量,外送到主网的电量计算单元用以计算外送到主网的电量,主网下网的电量计算单元用以计算主网下网的电量。
[0075]
某省所有发电厂的发电数据所下表所示。
[0076]
表1该省发电厂发电数据(亿千瓦时)
[0077]
火电e
发电厂,h
113.64水电e
发电厂,s
63.00风电e
发电厂,f
2.96光伏e
发电厂,g
2.96合计e
发电厂
182.55
[0078]
为求该省电网供电排放因子,不仅需要该省内各发电类型发电厂所发的电量,还需知道该省与其他省的电量交换。由上述所建立的省级电网供电排放因子计算模型可知,
省间仅通过500kv及以上的主网进行电量交换,处理后主网受入外省电量数据如表2所示。
[0079]
表2主网受入外省电量数据(亿千瓦时)
[0080][0081][0082]
各类型发电厂分布受地理因素影响较大,故我国各省市发电类型分布不均,导致输送外省发电量类型也因地理位置不同而存在较大差异。根据上述所建立的模型:未知输送外省各类型发电量在扣除已知外送各类型发电量后,再按火、水、风、光发电量的比例进行分配,因此,处理后该省输送至外省主网电量数据如下表3所示。
[0083]
表3输送至外省主网电量数据(亿千瓦时)
[0084][0085]
本技术从消纳侧计算该省电网供电排放因子,结合上述的数据并结合省级电网消纳电量中各发电类型占比的计算模型,计算出该省内电量消纳情况如下表所示。
[0086]
表4湖北省内消纳各类型电量(亿千瓦时)
[0087]
水电108.09火电78.23风电2.84光伏2.85合计192.01
[0088]
再根据式(5),式(6)计算得出该省电网供电排放因子为0.32tco2/mwh。
[0089]
本技术实施例还提供一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的省级电网供电综合碳排放因子的计算方法的步骤。
[0090]
本技术还提供一种计算机可读存储介质,所述计算机可读存储介质存储有程序代码,所述程序代码被处理器执行时,实现如上所述的省级电网供电综合碳排放因子的计算方法的步骤。
[0091]
本领域内的技术人员应明白,本技术的实施例可提供为方法、系统、或计算机程序
产品。因此,本技术可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本技术可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、cd-rom、光学存储器等)上实施的计算机程序产品的形式。
[0092]
本技术是参照根据本技术实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
[0093]
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
[0094]
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
[0095]
在一个典型的配置中,计算设备包括一个或多个处理器(cpu)、输入/输出接口、网络接口和内存。
[0096]
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(ram)和/或非易失性内存等形式,如只读存储器(rom)或闪存(flash ram)。存储器是计算机可读介质的示例。
[0097]
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(pram)、静态随机存取存储器(sram)、动态随机存取存储器(dram)、其他类型的随机存取存储器(ram)、只读存储器(rom)、电可擦除可编程只读存储器(eeprom)、快闪记忆体或其他内存技术、只读光盘只读存储器(cd-rom)、数字多功能光盘(dvd)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
[0098]
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个
……”
限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
[0099]
最后应当说明的是:以上实施例仅用以说明本技术的技术方案而非对其限制,尽管参照上述实施例对本技术进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本技术的具体实施方式进行修改或者等同替换,而未脱离本技术精神和范围的任何
修改或者等同替换,其均应涵盖在本技术的权利要求保护范围之内。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献