一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种溶解性有机质影响微塑料光老化行为的评估方法

2023-02-02 02:09:33 来源:中国专利 TAG:


1.本发明属于环境技术领域。更具体地,涉及一种溶解性有机质影响微塑料光老化行为的评估方法。


背景技术:

2.微塑料作为一种新型有机污染物,广泛赋存于水体环境中,在外力作用下(如风、河流和洋流等)发生迁移和转化。由于其粒径小,比表面积大等特点,容易吸附环境中的持久性有机污染物和重金属,加速水体污染,威胁生态环境甚至人体健康。研究表明,微塑料能通过食物链富集进入人体,诱发组织炎症,甚至损害免疫细胞。因此,阐释微塑料在水体环境中的迁移转化对评估水生态环境影响具有重要意义。
3.微塑料的迁移转化受到多种环境因素所影响,从而改变其环境行为,其中微塑料在环境中光老化是研究其在水体环境中迁移转化的重要前提,受不同环境因素如ph、溶解性有机质(dissolved organic matter,dom)、离子浓度等所影响。其中dom作为自然界中光化学性质较活泼的物质之一,能介导多种自由基的生成,从而影响环境污染物的迁移转化和空间分布(参见:科学通报,2021,66(36):4619-4632)。因此dom与微塑料之间的相互作用是研究微塑料光老化过程中不容忽视的一部分。
4.dom是由含氮、磷和硫的氨基酸、脂肪族和芳香族等官能团组成的复杂有机物,在环境中无处不在。不同来源的dom的组分存在差异,具备不同的光化学活性,从而对环境中污染物(如多环芳烃等)的光化学行为产生影响。然而,目前研究中,不同来源的dom对微塑料光老化作用机制尚不明确。一方面,dom中含有大量的共轭发色团在微塑料光老化过程中可能会竞争光子吸收,产生光屏蔽作用,从而抑制微塑料的光老化。另一方面,dom在光照下会被激发形成三重态(3dom
*
),或与含氧物种(如水,氧气)作用形成活性氧物种(ros),如羟基自由基(
·
oh)、单线态氧(1o2)等,从而加速微塑料的光老化。不同来源dom的主要成分差异性决定了其产生ros能力也不尽相同,dom中芳香组分与含氧官能团的含量是影响ros生成的主要因素。可见,研究不同来源的dom对微塑料光老化作用机制,对阐述微塑料在水环境中的迁移转化规律,以及评估微塑料在水体环境中的生态风险,具有重要意义。然而,大量的研究集中于微塑料对环境物质的吸附和富集,并没有系统、全面的评估方法对微塑料在dom影响下光老化行为进行阐述。因此,开发一种用于水环境中不同来源dom影响微塑料光老化行为的评估方法刻不容缓。


技术实现要素:

5.本发明要解决的技术问题是克服现有微塑料光老化研究体系中的缺陷和不足,提供一种溶解性有机质影响微塑料光老化行为的评估方法。
6.本发明的另一目的是提供所述评估方法在评价微塑料光老化行为中的应用。
7.本发明上述目的通过以下技术方案实现:
8.一种溶解性有机质影响微塑料光老化行为的评估方法,包括以下步骤:
9.s1.测定溶解性有机质的芳香度、组分情况与相对丰度;
10.s2.测定微塑料的粒径、表面形貌、结晶度和羰基指数,用于反映微塑料的光老化行为;
11.s3.确定吸附模型,用于反映微塑料对溶解性有机质的吸附行为:
12.伪一级动力学模型:ln(q
t-qe)=lnq
e-k1t
13.伪二级动力学模型:
14.式中:qe是达到吸附平衡时溶解性有机质在微塑料上的理论吸附量,q
t
是一定吸附时间t时溶解性有机质在微塑料上的吸附量,单位均为mg/g;k1代表一级动力学吸附速率,单位为min-1
;k2代表二级动力学吸附速率,单位为g/(mg min-1
);
15.s4.确定溶解性有机质作用微塑料的主要作用自由基,以微塑料的粒径减少率代表自由基活性,解析微塑料光老化行为。
16.进一步地,所述芳香度的计算公式如下:
[0017][0018]
式中:suva
254
是指测试样品的芳香度;uv
254
为测试样品在254nm处的吸光度;doc为测试样品中溶解性有机碳的浓度,单位为mg c/l。
[0019]
进一步地,所述结晶度通过对微塑料进行x射线衍射(xrd)测试后计算得来,计算公式如下:
[0020][0021]
式中:crystallinity为微塑料的结晶度;ic为结晶峰面积;ia为非结晶峰面积。
[0022]
进一步地,所述羰基指数通过对微塑料进行傅里叶变换红外光谱(ftir)测试后计算得来,计算公式如下:
[0023][0024]
式中:ci为羰基指数;a
c=o
为傅里叶变换红外光谱图中c=o处(1750cm-1
左右)的吸收峰面积;a
reference
为参比吸收峰面积。
[0025]
进一步地,所述ftir图中参比吸收峰通过微塑料的类型确定。
[0026]
优选地,所述ftir图中参比吸收峰根据pla微塑料选定为波长为1450cm-1
的c-h伸缩振动峰。
[0027]
进一步地,所述粒径减少率的计算公式如下:
[0028][0029]
式中:sr为粒径减少率;s
t
为微塑料在光照t时刻的粒径,单位为μm;s0为微塑料的初始粒径,单位为μm。
[0030]
优选地,所述溶解性有机质的浓度为6~12mg c/l。
[0031]
优选地,所述微塑料为聚苯乙烯微塑料、聚乙烯微塑料和聚乳酸(polylactic acid,pla)微塑料中的任意一种。
[0032]
更优选地,所述微塑料为聚乳酸微塑料。
[0033]
另外的,本发明还提供所述评估方法在评价微塑料光老化行为中的应用。
[0034]
进一步地,所述微塑料光老化行为为水环境中的微塑料光老化行为。
[0035]
本发明具有以下有益效果:
[0036]
本发明提供了一套准确、全面和系统的微塑料光老化的评估体系,即通过表观形貌、粒径大小、结晶度、羰基指数等指标的测定来反映微塑料光老化行为,结合对不同来源溶解性有机质的芳香度、三维荧光及其在光老化过程中的组分变化的测定,进一步通过对自由基的探测解析微塑料的光老化行为,为微塑料光老化行为评估提供了重要的指导意义。
附图说明
[0037]
图1为本发明实施例3测定的ndom和bdom的三维荧光(a~b)、芳香度(c)、及其组分相对丰度图(d~h)(i:类酪氨酸蛋白组分;ii:类色氨酸蛋白组分;iii:类富里酸组分;iv:可溶性微生物代谢副产物组分;v:类腐殖酸组分);
[0038]
图2为本发明实施例4测定的pla微塑料在ndom和bdom作用下发生光老化的粒径变化-时间图;
[0039]
图3为本发明实施例4测定的初始(a)pla微塑料以及在ndom(b)和bdom(c)作用下进行7天光老化后的扫描电镜图;
[0040]
图4为本发明实施例4测定的pla微塑料在ndom和bdom作用下发生光老化的结晶度-时间图;
[0041]
图5为本发明实施例4测定的pla微塑料在ndom和bdom作用下发生光老化的羰基指数-时间图;
[0042]
图6为本发明实施例4测定的ndom和bdom在pla微塑料发生光老化过程中的芳香度-时间图;
[0043]
图7为本发明实施例4测定的ndom(a)和bdom(b)在pla微塑料发生光老化过程中的组分相对丰度-时间图;
[0044]
图8为本发明实施例5测定的pla微塑料对ndom和bdom的吸附曲线及吸附动力学模拟情况;
[0045]
图9为本发明实施例5测定的pla微塑料对ndom和bdom吸附3天后的傅里叶变换红外光谱图;
[0046]
图10为本发明实施例6中活性氧物种淬灭实验前后pla微塑料在ndom和bdom作用下发生光老化的粒径变化图。
具体实施方式
[0047]
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
[0048]
除非特别说明,以下实施例所用试剂和材料均为市购。
[0049]
实施例1溶解性有机质的制备
[0050]
取50g玉米秸秆洗净后烘干至恒重,粉碎过筛得到秸秆粉末,然后将秸秆粉末放入马弗炉中,在450℃的温度条件下炭化2h,升温速率为5℃/min,自然冷却至室温后取出,得到玉米秸秆生物质炭。称取2g所得生物炭于20ml去离子水中,使得固液比为1:10,超声15min,随后在120rpm下避光振荡72h,最后在1000rpm下进行离心,并通过0.45um滤膜过滤,收集滤液保存于4℃冰箱中,命名为bdom,其浓度由总有机碳分析仪(toc)测定,并调整为10mg c/l备用。
[0051]
实施例2溶解性有机质的制备
[0052]
称取在ihss官网上购买suwannee river fulvic acid 10mg,用100ml去离子水与其进行混合,使得固液比为1:10,然后用0.45um滤膜进行过滤,收集滤液保存于4℃冰箱中,命名为ndom。其浓度由toc测定,并调整为10mg c/l备用。
[0053]
实施例3不同来源溶解性有机质的表征
[0054]
1、实验目的
[0055]
确定不同来源dom的初始组分情况。
[0056]
2、实验方法
[0057]
(1)芳香度(suva
254
)测定
[0058]
suva
254
是用来反映芳香族化合物含量的一项重要指标,为dom在254nm处的吸光度与溶解性有机碳(doc)之比,其中紫外可见光分光光度计的波长范围设置为200~700nm,计算公式如下:
[0059][0060]
式中:suva
254
是指测试样品的芳香度;uv
254
为溶解性有机质在254nm处的吸光度,doc为溶解性有机质中溶解性有机碳的浓度,其浓度由总有机碳分析仪toc测定。
[0061]
(2)组分情况与相对丰度测定
[0062]
三维荧光光谱可以有效识别dom中荧光组分,是由荧光分光光度计测得,激发波长(ex)扫描范围为200~500nm,发射波长(em)扫描范围为250~550nm,扫描间隔为50nm,狭缝宽度为5nm,扫描速度为12000nm/min,得到组分分布三维荧光光谱图。基于荧光区域积分技术,可以将三维荧光光谱划分为五个区域(i~v)。区域i和ii(ex《250nm,em《380nm)分别为类酪氨酸蛋白组分和类色氨酸蛋白组分;区域iii(ex《250nm,em》380nm)为类富里酸;区域iv(ex》250nm,em《380nm)为可溶性微生物代谢副产物;区域v(ex》250nm,em》380nm)为类腐殖酸。
[0063]
3、实验结果
[0064]
图1为本发明实施例1制备的的ndom和实施例2制备的bdom的三维荧光(a~b)、芳香度(c)、及其组分相对丰度图(d~h),其中区域i-v分别为类酪氨酸蛋白组分、类色氨酸蛋白组分、类富里酸组分、可溶性微生物代谢副产物组分和类腐殖酸组分。其中,图1d~h中的罗马数字代表的组分分别对应图1a或图1b的罗马数字代表的组分。由图可知,ndom和bdom中类腐殖酸均表现为主要成分,且ndom中类腐殖酸含量高于bdom,其余四种组分含量均低于bdom。图1c中ndom的芳香度明显高于bdom,表明初始ndom中含有更多的芳香性组分。
[0065]
实施例4不同来源的dom对微塑料光老化实验
[0066]
1、实验目的
[0067]
探究dom对微塑料的光老化作用
[0068]
2、实验方法
[0069]
在25℃下,向30ml ndom或bdom溶液(溶解性有机碳含量为10mg c/l)中加入30mg pla微塑料(粒径约为100um)进行混合,超声15min,置于多通道光反应器中光照下(选定365nm的光照波长)反应7天,间隔一天进行取样。通过倒置荧光显微镜、sem、xrd、ftir和分别对微塑料粒径、表面形貌、结晶度和羰基指数指标进行测试,反映微塑料光老化行为。通过紫外可见光分光光度计和荧光分光光度计对ndom和bdom进行测试,反映不同来源dom在反应过程中芳香度以及组分的变化情况。反应中所选光照波长为365nm。每组实验设置3个平行组,空白对照(pure water-pla)用纯水替代dom,黑暗对照(pla in dark)除无光照以外,其他实验条件均不变。
[0070]
(1)粒径测定
[0071]
先将微塑料过滤、分离,通过倒置荧光显微镜观测溶解性有机质作用前后的微塑料的粒径大小,选取50个代表性样品进行测量,计算平均粒径。
[0072]
(2)表面形貌测定
[0073]
使用扫描电子显微镜对溶解性有机质作用前后的微塑料进行形貌观察。
[0074]
(3)结晶度的测定
[0075]
微塑料结晶度(crystallinity)由xrd测定;xrd中靶材为铜靶,扫描范围为5~90
°
,扫描速度为10
°
/min;计算公式如下:
[0076][0077]
式中:ic为结晶峰面积;ia为非结晶峰面积。
[0078]
(4)羰基指数测定
[0079]
微塑料羰基指数(ci)由ftir测定。扫描范围为4000~400cm-1
,分辨率为4cm-1
,计算公式如下:
[0080][0081]
式中:a
c=o
为傅里叶变换红外光谱图中c=o处(1750cm-1
左右)的吸收峰面积,而a
reference
为参比吸收峰面积。其中,聚乳酸(pla)微塑料的参比吸收峰为1450cm-1
的c-h伸缩振动峰。
[0082]
(5)芳香度测定
[0083]
测试方法参考实施例3
[0084]
(6)组分相对丰度测定
[0085]
测试方法参考实施例3
[0086]
3、实验结果
[0087]
(1)粒径测定结果
[0088]
图2为本发明所述pla微塑料在ndom和bdom作用下发生光老化的粒径变化-时间图。以粒径作为pla微塑料光老化程度的指标,经过3天的光照,相比于pla微塑料的直接光老化(30.4%),ndom和bdom作用下pla微塑料的粒径分别减少了62.8%和59.1%。其中ndom作用下pla微塑料光老化速率(9.7)大于bdom(7.2),均高于pla微塑料的直接光老化速率
(5.1),表明ndom和bdom都不同程度地促进了pla微塑料的光老化,且ndom的促进效果更明显。
[0089]
其中,光老化速率是通过对pla粒径下降的数据进行拟合,在保持横坐标为同一值的时候对拟合曲线上的拐点进行求导,即在拐点处做切线,切线斜率的绝对值代表粒径下降速率,所得粒径下降速率代表光老化速率。
[0090]
(2)形貌测定结果
[0091]
图3为本发明所述初始(a)pla微塑料以及在ndom(b)和bdom(c)作用下发生光老化的扫描电镜图。原始pla微塑料表面光滑无孔洞,而在ndom或bdom溶液中光照7天后,表面都变得粗糙且出现了大量孔隙,表明ndom和bdom促进pla微塑料的光老化与表面破损,ndom作用后pla微塑料表面孔隙更多,表明其效果更显著。
[0092]
(3)结晶度测定结果
[0093]
图4为本发明所述pla微塑料在ndom和bdom作用下发生光老化的结晶度-时间图。结晶度随光照时间的增加而增加,光照7天后,ndom作用和bdom作用下老化后的pla微塑料结晶度分别比直接光解下高出2.5%和1.2%,表明ndom和bdom都促进了pla微塑料结构与晶型变化,且ndom促进效果更好。
[0094]
(4)羰基指数结果
[0095]
图5为本发明所述pla微塑料在ndom和bdom作用下发生光老化的羰基指数-时间图。直接光解、在ndom或bdom作用下的pla微塑料羰基指数都在3天后趋于稳定,同时,ndom作用与bdom作用的羰基指数比较接近,约为直接光解条件下的1.2倍,表明在ndom和bdom的作用下光老化后pla微塑料表面有更多含氧官能团的生成。
[0096]
(5)芳香度测定结果
[0097]
图6为本发明所述ndom和bdom在pla微塑料发生光老化过程中的芳香度-时间图。ndom和bdom的芳香度先随光照时间的增加而减小,在第3天达到最小值,且ndom的芳香度在反应后明显低于bdom,表明光老化过程中dom中芳香组分有部分转化且可能影响微塑料光老化过程,其中ndom的芳香组分转化得更为彻底。
[0098]
(6)组分相对丰度测定结果
[0099]
图7为本发明所述ndom(a)和bdom(b)在pla微塑料发生光老化过程中的组分相对丰度-时间图。其中,图中的罗马数字代表的组分分别对应图1a或图1b中的罗马数字代表的组分。ndom和bdom的类腐殖酸组分含量随光照时间的增加而减少,到第7天时,分别减少了64.3%和42.5%,类腐殖酸中含有大量芳香组分,表明dom中芳香组分在光老化过程中转化且可能影响微塑料光老化过程,其中ndom的芳香组分转化更为彻底。
[0100]
实施例5不同来源dom与微塑料的吸附实验
[0101]
1、实验目的
[0102]
进一步确认dom与微塑料的作用位置
[0103]
2、实验方法
[0104]
在黑暗条件下,向30ml的ndom或bdom溶液(溶解性有机碳含量为10mg c/l)中加入30mg pla微塑料(粒径约为100um)进行混合,超声15min,置于恒温培养箱中120rpm下反应72h,分别在0、2、4、6、8、12、24、36、48、72h进行取样。通过toc和ftir进行定量测试分析。
[0105]
伪一级动力学和伪二级动力学模型平衡方程如下:
[0106]
伪一级动力学模型:ln(q
t-qe)=lnq
e-k1t
[0107]
伪二级动力学模型:
[0108]
式中:qe(mg/g)是达到吸附平衡时溶解性有机质在微塑料上的理论吸附量,q
t
(mg/g)是一定吸附时间t时溶解性有机质在微塑料上的吸附量;k1代表一级动力学吸附速率,单位为min-1
;k2代表二级动力学吸附速率,单位为g/(mg min-1
)。
[0109]
ftir测试微塑料吸附的组分,具体步骤为:吸附后的微塑料分离后通过冷干机干燥24h,随后测试ftir,扫描范围为4000~400cm-1
,分辨率为4cm-1

[0110]
3、实验结果
[0111]
(1)吸附模型结果
[0112]
图8为本发明所述pla微塑料对ndom和bdom的吸附曲线及吸附动力学模拟情况,相关数据如表1所示。pla微塑料对ndom和bdom的吸附数据更符合吸附拟二级动力学模拟,同时,pla微塑料对ndom的二级动力学吸附速率(0.28)高于bdom(1.58
×
10-3
),表明pla微塑料与ndom和bdom的吸附过程主要受化学吸附控制,而且对ndom的吸附亲和性更强。
[0113]
表1 pla微塑料吸附ndom和bdom的动力学参数
[0114][0115]
注:qe.exp是实验所得的实际吸附量,qe是根据不同动力学拟合后计算所得的理论吸附量。
[0116]
(2)傅里叶变换红外光谱结果
[0117]
图9为本发明所述pla微塑料对ndom和bdom吸附3天后的傅里叶红外光谱图。ndom和bdom位于2846cm-1
(脂肪族ch)和2922cm-1
(脂肪族ch2)处峰强增加,表明pla微塑料主要吸附的是ndom和bdom的脂肪族组分,导致溶液中芳香组分被富集,在光解的时候转化为自由基以促进微塑料的老化。
[0118]
实施例6不同来源dom作用下微塑料光老化过程中自由基淬灭实验
[0119]
1、实验目的
[0120]
探测主要作用自由基
[0121]
2、实验方法
[0122]
在25℃下,向30ml ndom或bdom溶液(溶解性有机碳含量为10mg c/l)中加入30mg pla微塑料(粒径约为100um),同时分别加入10mm异丙醇(isopropanol,ipa,用于淬灭
·
oh自由基)、异戊二烯(isoprene,用于淬灭3dom
*
自由基)和l-组氨酸(l-histidine,用于淬灭1o2自由基)自由基淬灭剂,将所得混合溶液超声15min,然后置于多通道光反应器中光照下((选定365nm的光照波长)反应3天,然后用倒置荧光显微镜对微塑料粒径进行测试分析。其
中,淬灭剂浓度为10mm,每组实验设置3个平行组,对照组用水代替淬灭剂。以粒径减少率(sr%)代表自由基活性,计算公式如下:
[0123][0124]
式中:st为微塑料在光照t时刻的粒径,s0为微塑料的初始粒径。
[0125]
3、实验结果
[0126]
图10为本发明所述淬灭实验前后pla微塑料在ndom和bdom作用下发生光老化的粒径变化图。淬灭
·
oh后,ndom作用下的pla微塑料粒径减小率从62.8%下降到9.1%,bdom作用下pla微塑料粒径减小率从59.1%下降到17%,而淬灭1o2后,ndom和bdom作用下pla微塑料的粒径减少率分别为28.1%和27.8%,淬灭3dom
*
后,ndom和bdom作用下pla微塑料的粒径减少率依然高达30.9%和33.9%,这表明
·
oh、1o2和3dom
*
都是不同来源dom作用微塑料光老化过程中的自由基,
·
oh为光老化过程中的主要自由基。
[0127]
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献