一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种椭圆形多台面激光器结构

2022-11-28 11:42:10 来源:中国专利 TAG:


1.本发明涉及半导体激光器技术领域,特别是涉及一种椭圆形多台面激光器结构。


背景技术:

2.垂直腔面发射激光器是发光方向垂直于芯片表面的一种半导体激光器,与传统的激光器相比更有优势,具有体积小、光斑为圆形、相应频带宽、易于实现二维阵列集成等优越性能,在光纤通信系统、陀螺仪、原子钟等领域具有重要的应用。
3.但是,常规的垂直腔面发射激光器(vcsel)存在着许多的局限性。首先常规的vcsel采用单层的圆型或方型台面及单氧化层和结构单一的反射镜层;该方法存在的问题是台面散热环境差;激光器p掺杂层内较高的自由载流子吸收和p-型层的较差迁移率导致的非均匀电流注入;谱线宽度较大,出光单色性待提高。
4.目前有将space层引入的面发射激光器结构中,主要的两种用法其一为将space层运用到量子阱中以增加增益谱宽度,让更大的温度范围内得到平坦增益。另外一种是将space层代替bdr中的高al组分alxga1-xas材料以减少dbr对数增大对比折射率从而达到减少串联电阻和光吸收的目的。
5.但是现有的激光发射器的出光单色性和热稳定性较差,电流的注入效率低,输出和转化功率较差;影响垂直腔面发射激光器的效率;因此亟需一种椭圆形多台面激光器结构来解决上述问题。


技术实现要素:

6.本发明的目的是提供一种椭圆形多台面激光器结构,以解决上述现有技术存在的问题。
7.为实现上述目的,本发明提供了如下方案:本发明提供一种椭圆形多台面激光器结构,包括:
8.衬底层,所述衬底层上固接有n接触层;
9.n-dbr,所述n-dbr固接在所述衬底层的顶端,所述n接触层环绕所述n-dbr设置;所述n-dbr内插入设置有space层;
10.功能层,所述功能层固接在所述n-dbr的顶端;
11.p-dbr,所述p-dbr固接在所述功能层的顶端,所述p-dbr顶端固接有p接触层;所述p-dbr内插入设置有另外的所述space层。
12.优选的,所述功能层包括固接在所述n-dbr上的限制层组,所述限制层组的顶端与所述p-dbr固接;所述限制层组内嵌设固接有有源层。
13.优选的,所述限制层组包括分别固接在所述有源层上下端面的上方氧化限制层组和下方氧化限制层组,所述下方氧化限制层组的底端与所述n-dbr顶面固接,所述上方氧化限制层组的顶面与所述p-dbr的底面固接。
14.优选的,所述上方氧化限制层组和所述下方氧化限制层组均包括若干层alxgaas
氧化层,所述上方氧化限制层组和所述下方氧化限制层组相对于所述有源层对称设置。
15.优选的,所述n-dbr包括四对层叠固接的具有四分之一波长光学厚度的alas/gaas,四对所述alas/gaas的中间插入具有与alas折射率一致的所述space层,所述space层的厚度为n倍的半波长光学厚度。
16.优选的,所述p-dbr包括四对层叠固接的具有四分之一波长光学厚度的alas/gaas,四对所述alas/gaas的中间插入具有与gaas折射率一致的另外的所述space层,所述space层的厚度为n倍的半波长光学厚度。
17.优选的,所述衬底层由不透光材质制成。
18.优选的,所述衬底层与所述n-dbr之间固接有缓冲层,所述n接触层固接在所述缓冲层的顶面。
19.本发明公开了以下技术效果:本发明公开了一种椭圆形多台面激光器结构,衬底层为第一椭圆柱体,n-dbr、功能层和p-dbr外径相同形成第二椭圆柱体,第一椭圆柱体和第二椭圆柱体同轴设置,便于激光器的散热;n-dbr和p-dbr中插入space层,使其谱线宽度变窄,结合第一椭圆柱体的台面和第二椭圆柱体的台面的散热及功能层对电流的限制,提高了出光的单色性和热稳定性,优化了电流的注入效率,提高器件的的输出功率和转化效率,优化激光器的性能。
附图说明
20.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
21.图1为本发明椭圆形多台面激光器结构的结构示意图;
22.图2为本发明椭圆形多台面激光器结构的轴视图;
23.其中,301、衬底层;302、缓冲层;303、n接触层;304、n-dbr;305、下方氧化限制层组;306、有源层;307、上方氧化限制层组;308、space层;309、p-dbr;310、p接触层;311、功能层。
具体实施方式
24.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
25.为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
26.参照图1-2,本发明提供一种椭圆形多台面激光器结构,包括:
27.衬底层301,衬底层301上固接有n接触层303;
28.n-dbr304,n-dbr304固接在衬底层301的顶端,n接触层303环绕n-dbr304设置;n-dbr304内插入设置有space层308;
29.功能层311,功能层311固接在n-dbr304的顶端;
30.p-dbr309,p-dbr309固接在功能层311的顶端,p-dbr309顶端固接有p接触层310;p-dbr309内插入设置有另外的space层308。
31.本发明公开了一种椭圆形多台面激光器结构,衬底层301为第一椭圆柱体,n-dbr304、功能层311和p-dbr309外径相同形成第二椭圆柱体,第一椭圆柱体和第二椭圆柱体同轴设置,便于激光器的散热;n-dbr304和p-dbr309中插入space层308,使其谱线宽度变窄,结合第一椭圆柱体的台面和第二椭圆柱体的台面的散热及功能层311对电流的限制,提高了出光的单色性和热稳定性,优化了电流的注入效率,提高器件的的输出功率和转化效率,优化激光器的性能。
32.进一步的,本发明的第一椭圆柱体和第二椭圆柱体均使用干法刻蚀,由材料刻蚀速率的各向异性,依据各方向的刻蚀速率的数值将刻蚀速率较快的方向设计为椭圆型的短轴部分,将刻蚀速率较慢的方向设置为椭圆型的长轴部分,使得刻蚀孔径能获得较好的圆形模式。
33.进一步的,dbr又叫分布式布拉格反射镜,是由两种不同折射率的材料以abab的方式交替排列组成的周期结构,每层材料的光学厚度为中心反射波长的1/4,是一种四分之一波长多层系统,相当于简单的一组光子晶体。由于频率落在能隙范围内的电磁波无法穿透,布拉格反射镜的反射率可达99%以上。一般用于提升led亮度方面,它没有金属反射镜的吸收问题,又可以透过改变材料的折射率或厚度来调整能隙位置。
34.进一步优化方案,功能层311包括固接在n-dbr304上的限制层组,限制层组的顶端与p-dbr309固接;限制层组内嵌设固接有有源层306;限制层组包括分别固接在有源层306上下端面的上方氧化限制层组307和下方氧化限制层组305,下方氧化限制层组305的底端与n-dbr304顶面固接,上方氧化限制层组307的顶面与p-dbr309的底面固接。使用时,载流子通过上方氧化限制层组307和下方氧化限制层组305传输至有源层306复合发光。
35.进一步的,下方氧化限制层组305为p型限制层,上方氧化限制层组307为n型限制层。
36.进一步的,有源层306是半导体注入激光器或光发射二极管中提供光学增益的层或活性区域。有源层306包括若干个子层,各个子层可具有其自身的晶格常数;有源层306包括具有压缩应变量子阱层和通常的拉力应变势垒层的多个量子阱,电子从有源层306的n-型侧(靠近上方氧化限制层组307一侧)注入有源层306,而空穴从p-型侧(靠近下方氧化限制层组305一侧)注入,电子和空穴在有源层306中的复合产生光子,这使得激光器工作发光。
37.进一步优化方案,上方氧化限制层组307和下方氧化限制层组305均包括若干层alxgaas氧化层,上方氧化限制层组307和下方氧化限制层组305相对于有源层306对称设置。alxgaas氧化层中x在0.94-1范围。
38.进一步的,上方氧化限制层组307和下方氧化限制层组305上设有椭圆氧化孔,椭圆氧化孔长轴孔径范围为1-10μm,上方氧化限制层组307和下方氧化限制层组305中每一层的厚度范围为10-30nm。
39.进一步的,本发明中,上方氧化限制层组307和下方氧化限制层组305均包括6层alxgaas氧化层。
40.进一步优化方案,n-dbr304包括四对层叠固接的具有四分之一波长光学厚度的alas/gaas,四对alas/gaas的中间插入具有与alas折射率一致的space层308,space层308的厚度为n倍的半波长光学厚度;p-dbr309包括四对层叠固接的具有四分之一波长光学厚度的alas/gaas,四对alas/gaas的中间插入具有与gaas折射率一致的另外的space层308,space层308的厚度为n倍的半波长光学厚度;n-dbr304层由4对具有四分之一波长光学厚度的alas/gaas层叠而成并在其中1~4对n-dbr304中插入单独的光学厚度为λ/2的具有与alas折射率的space层308,p-dbr309层由4对具有四分之一波长光学厚度的alas/gaas层叠而成并在其中1~4对p-dbr309中插入单独的光学厚度为λ/2的具有与gaas折射率的space层308,即可在dbr中插入1~8层space层308,插入的单个λ/2的space层308对设计的波长的平均折射率对比对保持不变,故对该波长的功率反射率不变但影响了其他的波长,所以随着插入的space层308增多,截止频带宽度也随之变窄;同时:n-dbr304层由4对具有四分之一波长光学厚度的alas/gaas层叠而成并在其第中插入的光学厚度为nλ/2的(n=1,2,3...)具有与alas折射率一致的space层308、随着插入的space层308增加在设计波长中功率反射光谱改变,dbr的最大反射功率发射率显著增加,并且截止带宽变窄的更加显著。
41.进一步优化方案,衬底层301由不透光材质制成。衬底层301为装置基座,起到支撑作用。
42.进一步的,n-dbr304和p-dbr309均采用组分渐变的alxga1-xas布拉格反射镜,x在0.1-1范围。
43.进一步优化方案,衬底层301与n-dbr304之间固接有缓冲层302,n接触层303固接在缓冲层302的顶面。缓冲层302的目的是方便安装n-dpr和提高抗震性。
44.进一步的,p接触层310掺杂浓度高于3x1018cm3的p型掺杂层,实现金属欧姆结构,p接触层310厚度大于15nm,p型接触层置于于光场波节位置。
45.制备方法:
46.提供激光器结构,包括由下到上设置的衬底层301、n接触层303、n-dbr304、功能层311、p-dbr309和p接触层310,p接触层310层镀p电极。
47.蚀刻p-dbr309和功能层311获得第二椭圆柱体的台面,第二椭圆柱体的台面长轴在18-30μm,采用icp-rie刻蚀形成;通过湿法氧化工艺在上方氧化限制层组307和下方氧化限制层组305中形成不同尺寸的氧化限制孔径,上方氧化限制层组307和下方氧化限制层组305中的最小孔径半径尺寸小于7μm。
48.蚀刻至缓冲层302获得第一椭圆柱体的台面,第一椭圆柱体的台面尺寸大于第二椭圆柱体的台面尺寸,尺寸约为第二椭圆柱体的台面尺寸 30μm,第一椭圆柱体的台面采用icp-rie刻蚀形成。n接触层303层镀n电极,最终获得本发明的椭圆形多台面激光器结构。
49.本发明的n-dbr304和p-dbr309中插入space层308,使其谱线宽度变窄,结合第一椭圆柱体的台面和第二椭圆柱体的台面的散热及功能层311对电流的限制,提高了出光的单色性和热稳定性,优化了电流的注入效率,提高器件的的输出功率和转化效率,优化激光器的性能。
50.在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明,而不是指示或暗示所指的装置或元件必
须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
51.以上的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献