一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种滴感雨量检测装置及其使用方法与流程

2022-11-23 15:53:13 来源:中国专利 TAG:


1.本发明涉及雨量检测技术领域,尤其涉及一种滴感雨量检测装置及其使用方法。


背景技术:

2.雨量检测能够实时记录降雨量数据,通过获取的雨量数据,可以检测出各地不同区域的降水量,对于农业上的灌溉有一定的指导作用。降水量的多少会极大的影响到人类的生产生活等各个领域。若降水过多会洪涝灾害,滑坡,泥石流等自然灾害,还有对人类的生产生活造成极大的经济损失与不便;若降水过少则会加生活用水和农田灌溉用水还有工厂用水之间的矛盾;造成土地盐泽化或土地沙漠化等等。安装雨量检测系统的意义就是及时对过去降水量的数据进行整合,做出调整,减少降雨造成的危害。
3.为了使降水量具有较高的精确性和比较性,气象观测规范中规定:降水量指从天空中降落到地面上的液态或固态(经融化后)降水,未经蒸发、渗透、流失而在水平面上积聚的深度。降水量以毫米为单位。传统测定降水量的仪器根据原理主要可以分为翻斗式雨量计、称重式雨量计和压电式雨量计。传统测定降水量的仪器计体积大,检测准确度低,并且,很难与其它器件集成雨量检测的电子器件。
4.鉴于此,克服该现有技术所存在的缺陷是本技术领域亟待解决的问题。


技术实现要素:

5.本发明的目的在于如何克服现有测量雨量的雨量计体积大、测量准确率低,难以与其它器件集成的问题。
6.本发明是这样实现的:
7.第一方面,本发明提供了一种滴感雨量检测装置,包括外筒、雨量底座、引流板、水滴计数器和激光模块;
8.所述外筒呈上下开口设置,所述外筒内部的中段部位设置有引流板,所述引流板的中心处设置有滴水口,所述引流板沿着滴水口向下呈第一预设角度设置;
9.所述雨量底座设置在引流板的下方,所述雨量底座包括雨量支撑柱和雨量底板,所述雨量支撑柱的下端设置在雨量底板的中心处,所述雨量底板的中心处设置有第一通孔,所述雨量支撑柱内设置有竖直轴向的引流通道,所述引流通道的直径大于所述滴水口的直径,所述引流通道、滴水口和第一通孔设置在同一竖直轴线上,形成水滴计数的通道;
10.所述雨量支撑柱的侧壁设置有第二安装孔,所述水滴计数器设置在第二安装孔内,与水滴下落的轨迹垂直并交于一点,以便于对下落的水滴进行计数;
11.所述激光模块设置在引流板中心处的正上方,并与所述滴水口对准,激光模块发射激光信号用于检测滴水口形成水滴滴落瞬间的长度,并通过水滴滴落瞬间的长度与水滴体积的关系,以获取水滴的体积。
12.优选的,还包括防溅锥,所述防溅锥的锥角向上呈第二预设角度设置,所述防溅锥的底部沿竖直方向设置有至少两个安装柱,所述引流板上设置有至少两个第一安装孔,所
述安装柱与所述第一安装孔相匹配,所述安装柱插入所述第一安装孔内,以使防溅锥的底部与引流板上表面呈预设高度悬挂设置。
13.优选的,所述防溅锥内部呈中空设置,所述防溅锥内部设置有支撑架,所述支撑架用于固定激光模块。
14.优选的,还包括电路板,所述电路板设置在引流板与雨量支撑柱之间,所述电路板与所述水滴计数器和激光模块电性连接。
15.优选的,所述引流板的上表面设置有纹路,雨水通过所述纹路均匀的流向滴水口的边缘各处,以便于雨滴在滴水口下表面处形成水滴。
16.优选的,还包括雨量底盖,所述雨量底盖的上表面设置有安装槽,所述外筒的下部插入安装槽内,所述雨量底盖设置有凸出部,所述凸出部内设置有第三安装孔,所述第三安装孔用于固定所述雨量检测装置。
17.优选的,所述第一预设角度小于等于15
°
,且大于等于5
°
;所述第二预设角度小于等于95
°
,且大于等于70
°

18.优选的,所述滴水口呈圆柱形,并且所述滴水口的直径大于等于3毫米,小于等于6毫米。
19.第二方面,本发明基于滴感雨量检测装置的基础上,还提出了一种滴感雨量检测装置的使用方法,包括:
20.按照预设雨量梯度,在所述滴感雨量检测装置内模拟出不同雨量条件下所形成的水滴,并获取水滴滴落瞬间的长度,以及水滴对应的体积;
21.利用所述滴感雨量检测装置实时检测目标区域的雨量情况,获取在所述滴感雨量检测装置内所形成的水滴滴落瞬间的长度,并按照滴落的时间顺序进行记录;
22.通过比对目标区域内形成的水滴滴落瞬间的长度与所述在所述滴感雨量检测装置内模拟出不同雨量条件下所形成的水滴滴落瞬间的长度,获取目标区域内在所述滴感雨量检测装置内形成水滴的体积,并计算目标区域内的降雨量。
23.优选的,通过取平均值的方式,获取所述水滴滴落瞬间的长度,以及水滴对应的体积,具体包括:
24.设定水滴的预设数量,利用水滴计数器检测水滴下落的过程,待相邻水滴之间下落的时间间隔相等后,利用激光模块检测水滴滴落瞬间的长度;
25.通过取平均值的方式,计算出水滴滴落瞬间的平均长度,并利用测量仪器测量水滴对应的平均体积。
26.本发明通过设置激光模块对滴感雨量检测装置收集的雨滴在滴水口形成水滴滴落瞬间的长度进行测量,以校准水滴的体积,进而提高雨量检测的准确度。
附图说明
27.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
28.图1为本发明实施例提供的水滴在滴水口滴落瞬间的形态示意图;
29.图2为本发明实施例提供的一种滴感雨量检测装置的整体结构示意图;
30.图3为本发明实施例提供的一种滴感雨量检测装置的剖面结构示意图;
31.图4为本发明实施例提供的一种滴感雨量检测装置的雨量底座结构示意图;
32.图5为本发明实施例提供的一种滴感雨量检测装置的雨量底板结构示意图;
33.图6为本发明实施例提供的一种滴感雨量检测装置的防溅锥结构示意图;
34.图7为本发明实施例提供的一种滴感雨量检测装置的支撑架的一种具体结构示意图;
35.图8为本发明实施例提供的一种滴感雨量检测装置的电路板位置结构示意图;
36.图9为本发明实施例提供的一种滴感雨量检测装置的引流板俯视图;
37.图10为本发明实施例提供的一种滴感雨量检测装置的雨量底盖结构示意图;
38.图11为本发明实施例提供的一种滴感雨量检测方法的使用方法流程图;
39.图12为本发明实施例提供的一种滴感雨量检测装置的使用方法流程图;
40.其中,附图标记为:
41.1-外筒;11-刃口;2-雨量底座;21-雨量支撑柱;211-引流通道;212-第二安装孔;22-雨量底板;221-第一通孔;3-引流板;31-滴水口;32-第一安装孔;33-纹路;4-水滴计数器;5-激光模块;6-防溅锥;61-安装柱;62-支撑架;7-电路板;8-雨量底盖;81-安装槽;82-凸出部;821-第三安装孔。
具体实施方式
42.在本发明的描述中,术语“内”、“外”、“纵向”、“横向”、“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不应当理解为对本发明的限制。
43.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。
44.实施例1:
45.本发明实施例提供了一种滴感雨量检测装置,包括外筒1、雨量底座2、引流板3、水滴计数器4和激光模块5;
46.所述外筒1呈上下开口设置,所述外筒1内部的中段部位设置有引流板3,所述引流板3的中心处设置有滴水口31,所述引流板3沿着滴水口31向下呈第一预设角度设置;
47.所述雨量底座2设置在引流板3的下方,所述雨量底座2包括雨量支撑柱21和雨量底板22,所述雨量支撑柱21的下端设置在雨量底板22的中心处,所述雨量底板22的中心处设置有第一通孔221,所述雨量支撑柱21内设置有竖直轴向的引流通道211,所述引流通道211的直径大于所述滴水口31的直径,所述引流通道211、滴水口31和第一通孔221设置在同一竖直轴线上,形成水滴计数的通道;
48.所述雨量支撑柱21的侧壁设置有第二安装孔212,所述水滴计数器4设置在第二安装孔212内,与水滴下落的轨迹垂直并交于一点,以便于对下落的水滴进行计数;
49.所述激光模块5设置在引流板3中心处的正上方,并与所述滴水口31对准,激光模
块5发射激光信号,用于检测滴水口31形成水滴滴落瞬间的长度,并通过水滴滴落瞬间的长度与水滴体积的关系,获取水滴的体积。
50.如图1所示,表示水滴在滴水口滴落瞬间的形态示意图,其中,为了更清楚的看出水滴的形态,在滴水口处形成的水膜层并未画出。雨滴在滴水口31处形成水滴并从滴水口31脱离,滴入引流通道211内。在此过程中,基于水滴内部的张力,水滴的形态会发生一系列的变化,首先雨滴汇聚形成水滴后,水滴的竖直方向(重力方向)的长度会变长,当到达最大值(对应水滴滴落的瞬间)时,水滴会脱离滴水口31,随即受到水滴内部张力的作用,水滴会发生回弹。理论上分析,水滴滴落的瞬间对应水滴竖直长度最大的时刻,水滴的体积与水滴滴落瞬间的长度一一对应。
51.在实际应用场景下,不同雨量条件、不同雨滴状态都会影响水滴滴落时的体积,进而造成水滴滴落瞬间的长度发生变化,因此,并不能认为水滴滴落的过程中,每一滴水滴的体积都是不变的,目前是采用雨滴数量乘以固定体积来计算降雨量,由前述分析可知,不同的条件下,水滴的体积不同,则采用固定体积计算降雨量的方式存在检测不准确的问题。
52.为了解决前述问题,在本实施例中,利用滴感雨量检测装置对目标区域进行雨量检测时,通过设置在检测装置内的激光模块5,对水滴滴落瞬间的长度进行测量,并通过水滴的体积与水滴滴落瞬间的长度之间的关系(可以通过查表或者函数关系,确定雨滴的体积),获取水滴的真实体积,进而测量出目标区域内的降雨量。
53.值得注意的是,本发明不同雨量条件表示目标区域内降雨量的大小,不同雨滴状态表示目标区域内的雨滴进入本发明检测装置内的速度、方向、加速度等情况。为了以示区别,降水过程进入到检测装置内的液滴统称为雨滴,雨滴从滴水口31形成的液滴统称为水滴。
54.如图2-5所示,本发明的外筒1采用上下开口设置,激光模块5设置在引流板3中心处的正上方,并与滴水口31对准,激光模块5包括激光发射组件和激光接收组件,所述激光发射组件发射激光信号,激光信号首先经过水滴的上表面,经过水滴上表面的作用,激光信号会发生反射和透射,激光信号一分为二,第一部分激光信号被反射到激光模块5内(被激光接收组件所接收),第二部分激光信号进入水滴内;第二部分激光信号到达水滴的下表面后,第二部分激光信号同样会一分为二,分成第三部分激光信号和第四部分激光信号,第三部分激光信号被反射到激光模块5内,第四部分激光信号发生透射,从水滴进入到空气内。
55.因此,激光模块5只需要分析被反射至激光模块5中的第一部分激光信号和第三部分激光信号,就能实时测量水滴沿重力(滴落轨迹)方向上的长度变化,具体地,获取第一部分激光信号与第二部分激光信号传输到激光模块5的时间差,按照时间差除以2,再乘以激光信号的传输速度的方式,可以得到水滴滴落瞬间的长度。
56.本发明基于水滴形态的变化,通过激光模块5分析不同状态下的反射的激光信号就能知道水滴滴落瞬间的长度,具体分析为:如图1所示,当水滴滴落后的很小一段时间内,可认为此时的滴水口31处形成了一层水膜,水滴与滴水口31处的水膜存在空气间隙,通过激光模块5会接收到滴水口31水膜的上、下表面的反射信号,以及水滴上、下表面的反射信号;当水滴未滴落时(未形成水滴),激光模块5只会接收到滴水口31水膜的上、下表面的反射信号,激光模块5通过分析反射信号的数量变化,可以获取水滴滴落瞬间对应的时刻,进而测量此时刻水滴对应的长度。通过水滴计数器4对形成的水滴进行计数,并按照水滴滴落
的顺序依次测量出水滴的长度,并依次换算成水滴的校准的体积,进而提高目标区域降水量测量准确度的目的。
57.本发明利用水滴滴落瞬间的长度与水滴的体积之间的关系,对水滴不同状态下的体积进行校正,通过激光模块5对滴感雨量检测装置收集的雨滴在滴水口31形成水滴滴落瞬间的长度进行测量,以校准水滴的真实体积,进而提高雨量检测的准确度。
58.为了阐述本发明完整的方案,接下来对本发明的细节做详细的解释。为了尽可能的避免雨滴滴入检测装置内发生溅射,使得收集的雨量减少,进而造成测量不准的问题。如图6所示,还包括防溅锥6,所述防溅锥6的锥角向上呈第二预设角度设置,所述防溅锥6的底部沿竖直方向设置有至少两个安装柱61,所述引流板3上设置有至少两个第一安装孔32,所述安装柱61与所述第一安装孔32相匹配,所述安装柱61插入所述第一安装孔32内,以使防溅锥6的底部与引流板3上表面呈预设高度悬挂设置。本发明通过设置防溅锥6,雨滴滴入本发明的检测装置后,通过防溅锥6锥面的缓冲作用,使得雨滴即使发生飞溅,也能控制雨滴尽可能保留在本发明检测装置内(雨滴会飞溅到本发明的外筒1内壁上,以至于不会飞溅出本发明之外)。
59.为了使雨滴能顺利的汇聚到滴水口31,本发明的防溅锥6需要与引流板3之间存在一定的间隔,本发明通过在防溅锥6的底部设置第一安装柱61,并在引流板3上对应的位置设置第一安装孔32,防溅锥6通过第一安装柱61插入第一安装孔32内,形成悬空设置结构。本发明防溅锥6的底面直径小于外筒1内部直径,使得雨滴能顺利的进入引流板3,引流板3沿着滴水口31向下呈第一预设角度设置,使得雨滴能顺利的汇聚到滴水口31内,当滴水口31内的雨滴聚集到一定程度会形成水滴,并从引流通道211内滴落,通过水滴计数器4对水滴进行计数,并获取检测过程水滴滴落的长度,来获取水滴的实际体积。
60.值得注意的是,在获取水滴实际体积之前,本发明还需要对水滴滴落瞬间的长度与水滴实际体积之间的关系进行模拟,并制成表格或函数关系,通过查表的方式,获取实际检测过程水滴的实际体积。具体实现方式为:获取目标区域内实际检测水滴滴落瞬间的长度,通过模拟的表格或函数关系,获取水滴的真实体积,进而测量出目标区域内的降水量。
61.本发明防溅锥6的预设高度根据实际需求进行设置,不宜过高,也不宜过低。本发明提供的滴感雨量检测装置内设置有防溅锥6,能尽可能的降低滴入本发明内水滴的损失,提高测量的准确度。除此之外,本发明的原理是在检测装置内形成水滴,通过单位时间检测的水滴数量来计算出目标区域内的降雨量。基于本发明的检测原理,本发明的开口可以设计得很小(例如外筒1的直接设计成几十厘米的直径),相对于现有雨量测量仪而言,体积可以设置得足够小,更能适应小型化集成的要求。
62.为了避免设置在滴感雨量检测装置内的激光模块5接触雨滴,造成激光模块5短路失效的问题;以及激光模块5检测过程中发生偏移,造成测量失效或不准的问题。本发明实施例所述防溅锥6内部呈中空设置,所述防溅锥6内部设置有支撑架62,所述支撑架62用于固定激光模块5。
63.本发明实施例通过将激光模块5固定在防溅锥6的内部,利用防溅锥6的保护作用可以有效的避免激光模块5接触雨滴而引起的激光模块5短路失效的问题。除此之外,本发明通过在防溅锥6的内部设置支撑架62,支撑架62主要用于固定激光模块5,使得激光模块5能稳定对准滴水口31,使得激光模块5发射的激光信号的轨迹与水滴滴落的轨迹始终重合。
如图7所示,表示本发明支撑架62的一种具体结构示意图,本发明的支撑架62主要起到固定的作用,可以为图示中的结构,也可以为挂钩结构(激光模块5上设置安装孔,挂钩挂住激光模块5),设置可以直接将激光模块5焊接在防溅锥6的内部(将防溅锥6作为支撑架62)。
64.为了本发明水滴计数器4和激光模块5能顺利的工作,还需要给水滴计数器4和激光模块5提供电能。如图8所示,本发明还包括电路板7,所述电路板7设置在引流板3与雨量支撑柱21之间,所述电路板7与所述水滴计数器4和激光模块5电性连接。值得注意的是,水滴计数器4在对水滴进行计数时,水滴计数器4需要与水滴下落的轨迹垂直并交于一点,以便于实现对下落的水滴进行计数。通常情况下,电路板7与所述水滴计数器4和激光模块5之间通过金属丝连接,为了尽可能的避免电路与水滴接触,本发明实施例存在一种可实现的方案,将设置在防溅锥6底部的某一个具体安装柱61的中心掏空(设置成中空结构),将电路板7与所述水滴计数器4和激光模块5之间连接的金属丝放入安装柱61内。值得注意的是,为了使得水滴能顺利的在引流通道211内滴落,本发明在滴水口31形成水滴后,水滴滴落到引流通道211的路径上应保证没有任何遮挡物,本发明电路板7中心处呈中空设置,通常情况下,电路板7中心处孔径直径应大于等于所述引流通道211的直径。
65.本发明所述引流板3沿着滴水口31向下呈第一预设角度设置,当预设角度过大时,容易造成雨滴汇聚在滴水口31后无法形成水滴(水会以水流的形式从滴水口31处流出),当预设角度过小时,雨滴有很难汇聚在滴水口31处,通过实验得知,本发明所述第一预设角度小于等于15
°
,且大于等于5
°
时,能保证测量精度的要求。
66.本发明防溅锥6主要用于防止雨滴溅出检测装置,防溅锥6的角度(第二预设角度)不宜过大也不宜过小,本发明的防溅锥6的角度设置在小于等于95
°
,且大于等于70
°
。通过实验可以知,当设置在70
°
至95度之间时,能满足检测精度的要求(雨滴尽可能少的飞溅出检测装置外)。
67.为了使得落入本发明检测装置内的雨滴能顺利的在滴水口31处形成水滴,并且能通过水滴计数器4进行检测。本发明的滴水口31的孔径不宜过大,也不宜过小。当滴水口31的孔径过大时,雨滴很难在滴水口31的固定位置形成水滴(形成水滴的位置可能会发生变化),或雨滴会以水流的形式滴水口31的侧壁流入引流通道211内,无法形成水滴;当滴水口31的孔径过小时,雨滴很难从滴水口31滴出,雨量足够大时,雨滴会以喷射的形式形成一股水柱,从滴水口31内流入引流通道211内,无法形成水滴,使得检测装置无法进行测量。通过实验测试可知,本发明所述滴水口31呈圆柱形,并且所述滴水口31的直径大于等于3毫米,小于等于6毫米。具体滴水口31的直径大小根据精度要求进行确定。
68.为了使雨滴通过引流板3流入滴水口31的过程中,不至于使雨滴沿滴水口31各方向汇聚的雨量不一致,导致形成的水滴不均匀,进而造成测量产生较大的误差。如图9所示,本发明所述引流板3的上表面设置有纹路33,雨水通过所述纹路33均匀的流向滴水口31的边缘各处,以便于雨滴在滴水口31下表面处形成水滴。通过纹路33的设置,雨滴会首先在引流板3上进行润湿,并且会沿着纹路33进行移动,对于水流速度较快的一侧,可以通过纹路33的阻挡作用,稍微减缓到达滴水口31的时间和流速,有助于形成稳定的水滴,提高本发明测量的准确度。
69.进一步的,如图10所示,本发明还包括雨量底盖8,所述雨量底盖8的上表面设置有安装槽81,所述外筒1的下部插入安装槽81内,以便于所述外筒1与所述雨量底盖8固定。所
述雨量底盖8设置有凸出部82,所述凸出部82内设置有第三安装孔821,所述第三安装孔821用于固定所述雨量检测设备。通过雨量底盖8上的第三安装孔821将本发明固定在需要安装的位置上。相应可实现的方式,可以使用插销、螺钉或焊接的方式将本发明固定在需要安装的位置上。
70.为了进一步避免雨滴通过检测装置溅出,如图2所示,本发明所述外筒1的顶部设置有刃口11,所述刃口11呈第三预设角度向内延伸设置。值得注意的是,第三预设角度通常根据实际需求进行设置。
71.本发明利用水滴滴落瞬间的长度与水滴的体积之间的关系,对水滴不同状态下的体积进行校正,通过激光模块5对滴感雨量检测装置收集的雨滴在滴水口31形成水滴滴落瞬间的长度进行测量,以校准水滴的真实体积,进而提高雨量检测的准确度。
72.实施例2:
73.本发明在利用实施例1的滴感雨量检测装置的基础上,还提出了一种滴感雨量检测装置的使用方法,如图11所示,具体包括:
74.步骤201:按照预设雨量梯度,在所述滴感雨量检测装置内模拟出不同雨量条件下所形成的水滴,并获取水滴滴落瞬间的长度,以及水滴对应的体积。
75.其中,本发明实施例通过预先获取水滴滴落瞬间的长度与水滴体积之间的关系,并制成表格(对照表)或获取函数关系。在对目标区域进行雨量检测时,通过激光模块5实时检测水滴滴落瞬间的长度,并通过比对或函数关系,获取对应水滴的真实体积。值得注意的是,通过本发明所获取水滴的真实体积同样存在着一定的误差,但相对于将产生的每一滴水滴作为一个固定体积值而言,本发明实施例的准确度会显著提高,并且,在实时测量的过程中,可以省去了测量水滴体积的装置。本发明在进行实时测量之前,首先需要获取水滴滴落瞬间的长度与水滴真实体积之间的关系,通过实时测量水滴滴落瞬间的长度,并查表或利用函数关系,获取实时测量的水滴体积,进而确定目标区域内的降水量。值得注意的是,在模拟的过程中,水滴的体积需要利用测量工具进行测量;在实际实时检测的过程中,并不需要使用测量工具对水滴的体积进行测量,只需要通过比对就可以获取水滴的体积。
76.步骤202:利用所述滴感雨量检测装置实时检测目标区域的雨量情况,获取在所述滴感雨量检测装置内所形成的水滴滴落瞬间的长度,并按照滴落的时间顺序进行记录。
77.其中,本发明主要利用激光模块5获取水滴滴落瞬间的长度。激光模块5内至少包含有发射子模块、接收子模块和分析子模块;其中,发射子模块主要用于发射激光信号,接收子模块主要用于接收发射的激光信号,分析模块用于分析反射的激光信号数量、水滴内两次反射的激光信号的时间差,以及激光信号在水滴内传播的速度,进而获取水滴滴落瞬间的长度。
78.下面将对此实现过程做具体详细的解释:雨滴脱离滴水口31形成水滴后,激光模块5的接收子模块接收的激光信号数量会增加两个(前面已经解释过来,在此不做赘述),通过激光信号数量的变化获取水滴滴落瞬间的临界时刻;通过水滴内两次反射的激光信号的时间差,以及激光信号在水滴内传播的速度,计算出水滴滴落瞬间的长度。
79.步骤203:通过比对目标区域内形成的水滴滴落瞬间的长度与所述在所述滴感雨量检测装置内模拟出不同雨量条件下所形成的水滴滴落瞬间的长度,获取目标区域内在所述滴感雨量检测装置内形成水滴的体积,并计算目标区域内的降雨量。
80.其中,当获取水滴滴落瞬间的长度后,通过查表或函数关系,获取水滴的真实体积。本发明预先获取水滴滴落瞬间的长度与水滴的体积之间的关系,获取不同降雨量下水滴的真实体积,通过激光模块5对滴感雨量检测装置实时收集的雨滴在滴水口31形成水滴滴落瞬间的长度进行测量,以获取实时检测过程水滴的真实体积,进而提高雨量检测的准确度。
81.为了尽可能的减少测量误差,通常采用平均值的方式测量目标区域内的降雨量。本发明无论在预先模拟获取不同降雨量水滴滴落瞬间的长度与水滴真实体积之间的关系,还是在目标区域内,通过本发明滴感雨量检测装置实时获取水滴滴落瞬间的长度,都使用平均值的方式进行计算。接下来以预先模拟获取不同降雨量水滴滴落瞬间的长度与水滴体积之间的关系为例,对此进行说明。本发明实施例通过取平均值的方式,获取所述水滴滴落瞬间的长度,以及水滴对应的体积,如图12所示,具体包括:
82.步骤301:设定水滴的预设数量,利用水滴计数器4检测水滴下落的过程,待相邻水滴之间下落的时间间隔相等后,利用激光模块5检测水滴滴落瞬间的长度。
83.其中,本发明实施例的滴感雨量检测装置首先需要进行润湿,再模拟获取水滴滴落瞬间的长度与水滴体积之间的关系,以及实时检测目标区域内水滴滴落瞬间的长度过程中,需要保证水滴稳定产生后,才开始进行。
84.步骤302:通过取平均值的方式,计算出水滴滴落瞬间的平均长度,并利用测量仪器测量水滴对应的平均体积。
85.其中,在具体检测过程中,由于不同降雨量条件下,单位时间内滴落的水滴数量不相同(单位时间的降雨量越大,本发明滴感雨量检测装置单位时间内收集的雨量越大,单位时间内产生的水滴数量也会越多)。本发明实施例选取预设数量的水滴,获取每一滴水滴滴落瞬间的长度,通过平均值的方式获取水滴滴落瞬间的平均长度,通过测量装置测量水滴的平均体积。并制成比对表或获取水滴滴落瞬间的长度与体积之间的函数关系,以备后续实时检测获取每一滴水滴的体积,进而计算出目标区域内单位时间的降水量。值得注意的是,在实际测量的过程中,通常在该区域内均匀的设置一定数量的滴感雨量检测装置,通过滴感雨量检测装置所采集的数据,换算成目标区域内的降水量。
86.以上所述仅为本发明的较佳实施例而已,本发明并不能将所有具体实施例一一列举,因此前述具体实施例并不是对本发明的具体限定,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献