一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种GNPs/YSZ复合陶瓷粉体及其制备方法和应用

2022-11-12 12:09:32 来源:中国专利 TAG:

一种gnps/ysz复合陶瓷粉体及其制备方法和应用
技术领域
1.本发明属于陶瓷材料技术领域,具体涉及一种gnps/ysz复合陶瓷粉体及其制备方法和应用。


背景技术:

2.随着航天事业的飞速发展,大量的航天器被送入太空,航天器的电子元器件在空间中会受到高能电子、质子以及重离子等辐射效应的作用而失效。利用封装加固的方式设计防护涂层以延长航天器的使用寿命很有必要。研究表明,封装加固方法目前主要有金属层屏蔽、薄膜屏蔽、塑料封装屏蔽、包封料屏蔽以及陶瓷材料屏蔽,其中陶瓷材料屏蔽功能和钨铜相当,但密度较小,能够有效减轻产品的整体重量,而且陶瓷材料具有优异的高温稳定性和辐射耐受性被广泛关注。
3.氧化钇稳定氧化锆(ysz)陶瓷具有优良的绝缘性能、耐腐蚀性能、力学性能、高温稳定性和抗辐射性能,在防腐、隔热以及抗辐射防护等应用方面有很大前景。此外,石墨烯纳米片(gnps)因具有优良的导电性、导热性等特点,可以疏导在材料内积累的电荷。两种材料复合后制备得到的gnps/ysz复合陶瓷涂层,拓展了ysz陶瓷在极端复杂的辐射环境中应用。当前,陶瓷因与金属材料有着相差较大的热膨胀系数,导致很难在金属基底上制备结合强度较好的陶瓷涂层,而粘结层的使用极大的改善了陶瓷涂层与基体之间的不匹配性,但粘结层的使用也使得制备工艺复杂,成本高,涂层界面多。此外,粘结层的存在也使得涂层在“寸土寸金”的航天应用中增加了重量以及成本。
4.当前,虽然关于gnps/ysz复合材料的报道很多,但是利用硅溶胶包覆石墨烯改性ysz材料,制备结合强度较高的无粘结层gnps/ysz复合陶瓷涂层的方式尚未发现。华南理工大学郁柏松等公开了硅溶胶改性多层石墨烯的水润性研究(issn 1001-1935,cn41-1136/tf),采用硅溶胶真空浸渍并在埋碳气氛下分别于300、500、700℃保温3h热处理后以改性多层石墨烯,该技术利用硅溶胶改性多层石墨烯是采用真空浸渍的方式,硅溶胶的作用是为了改善石墨烯的水润湿性。北京理工大学柳彦博等公开了一种封严涂层用ysz/石墨烯复合粉体及其制备方法(公布号:cn112645385a),该公开技术所述的复合粉体是由ysz与石墨烯按照26~82:1的质量比组成的经混合造粒和等离子球化处理的熔融共晶态复合粉体,上述公开技术仅应用于封严涂层,虽然在背景技术部分也提到封严涂层需具有较强的结合强度,但内容中没有涉及到涂层结合强度的任何内容和数据,无法提供一个涂层增韧的同时既减少界面又显著提高其结合强度的新颖思路。


技术实现要素:

5.为了解决现有技术中存在的问题,本发明提供一种gnps/ysz复合陶瓷粉体及其制备方法和应用。
6.为了实现上述目的,本发明采用的技术方案如下:
7.一种gnps/ysz复合陶瓷粉体,包括硅溶胶包覆的gnps粉体和ysz粉体。
8.进一步的,所述gnps/ysz复合陶瓷粉体由硅溶胶包覆的gnps粉体与ysz粉体混合烧结而得。
9.进一步的,所述硅溶胶包覆的gnps粉体中硅溶胶与gnps的质量比为1-100:1,所述gnps/ysz复合陶瓷粉体中gnps占ysz的质量百分比为1-10wt%。
10.进一步的,所述硅溶胶包覆的gnps粉体和ysz粉体均是团聚的微米级粉体。
11.一种所述的gnps/ysz复合陶瓷粉体的制备方法,包括以下步骤:
12.步骤一、将纳米级gnps粉体、分散剂、硅溶胶和去离子水混合均匀,然后加入粘结剂混合均匀得到混合液a,然后喷雾造粒得到硅溶胶包覆的gnps粉体;
13.步骤二、将硅溶胶包覆的gnps粉体与ysz粉体混合均匀,烧结得到gnps/ysz复合陶瓷粉体。
14.进一步的,根据实际需求,将纳米级ysz粉体、分散剂和去离子水混合均匀,然后加入粘结剂混合均匀得到混合液b,然后喷雾造粒得到所需粒径的ysz粉体。
15.进一步的,ysz粉体为4-8mol%的y2o3稳定zro2。
16.进一步的,步骤二中,烧结的温度为600-800℃,保温1-3h。
17.一种所述的gnps/ysz复合陶瓷粉体的应用,将gnps/ysz复合陶瓷粉体沉积在可伐合金上,在可伐合金上形成无粘结层的gnps/ysz复合陶瓷涂层。
18.进一步的,所述gnps/ysz复合陶瓷粉体的粒径为1-100um,gnps/ysz复合陶瓷涂层的厚度为50-500um。
19.本发明相对于现有技术的有益效果:
20.本发明中,耐高温亚稳态四方相为主的ysz材料中,引入导热性较好的石墨烯纳米片且利用硅溶胶进行包覆,可以有效的减少热喷涂时由于温度梯度导致的残余应力;此外,硅溶胶包覆的石墨烯纳米片对陶瓷起到增韧作用,使得裂纹不易扩展,改善涂层结合强度。
21.本发明利用硅溶胶包覆gnps的方式,对gnps进行改性处理,使得石墨烯在gnps/ysz复合陶瓷粉体中更易分散且分散更加均匀,在喷涂过程中更易在涂层中保留,本发明制备的gnps/ysz复合陶瓷粉体,制备工艺简单,成本较低,可实现大批量生产。
22.本发明中,因为硅溶胶包覆gnps的加入保证了陶瓷涂层在铁基或者钛基材料上的结合强度,从而制备了无粘结层陶瓷涂层,无粘结层的设计也使得陶瓷涂层的成本大大降低,简化了制备工艺。且加入硅溶胶包覆的石墨烯后又能有效消除普通陶瓷涂层中经常遇到的热生长氧化物的不利影响,从而使得涂层结合强度大幅提升,减少了涂层间的界面问题。
23.本发明制备的gnps/ysz复合陶瓷涂层力学性能优异,抗辐照性能强,可以在极端高温、复杂的辐射环境中应用,延长了航天器的服役寿命,降低了成本。
附图说明
24.图1:gnps/ysz复合陶瓷粉体的制备流程图;
25.图2:gnps/ysz复合陶瓷粉体的sem图;
26.图3:gnps/ysz复合陶瓷粉体的xrd图;
27.图4:gnps/ysz复合陶瓷涂层的sem图;
28.图5:原始gnps粉和无粘结层的gnps/ysz复合陶瓷涂层拉曼示意图;
29.图6:无粘结层的gnps/ysz复合陶瓷涂层的结合强度图。
具体实施方式
30.具体实施方式一
31.一种gnps/ysz复合陶瓷粉体,包括硅溶胶包覆的gnps粉体和ysz粉体。
32.进一步的,所述gnps/ysz复合陶瓷粉体由硅溶胶包覆的gnps粉体与ysz粉体混合烧结而得,经烧结后的粉体更加致密。
33.进一步的,所述硅溶胶包覆的gnps粉体中硅溶胶与gnps的质量比为1-100:1。
34.进一步的,所述gnps/ysz复合陶瓷粉体中gnps占ysz的质量百分比为1-10wt%,随石墨烯含量的增加,所制备的复合陶瓷涂层的结合强度逐渐增大。
35.优选的,所述硅溶胶包覆的gnps粉体和ysz粉体均是团聚的微米级粉体,适用于热喷涂的工艺。
36.具体实施方式二
37.具体实施方式一所述的gnps/ysz复合陶瓷粉体的制备方法,包括以下步骤:
38.步骤一、将纳米级gnps粉体(1-100nm)、分散剂、硅溶胶和去离子水混合,50-80℃水浴加热的条件下磁力搅拌4h,然后加入粘结剂,磁力搅拌5min,得到混合液a,然后按照实际需求喷雾造粒得到所需粒径的硅溶胶包覆的gnps粉体;
39.步骤二、将硅溶胶包覆的gnps粉体与ysz粉体均在70-120℃下干燥2-18h,然后利用机械搅拌的方式混合均匀,在马弗炉中600-800℃,保温1-3h,烧结得到gnps/ysz复合陶瓷粉体。通过固相烧结消除喷雾造粒过程中引进的粘结剂等有机物(pvp、pva),从而提升复合gnps/ysz复合陶瓷粉体的质量,使gnps/ysz复合陶瓷粉体更加致密。
40.优选的,步骤一和步骤二所使用的分散剂均为pvp,所使用的粘结剂均为pva。
41.进一步的,步骤一中的分散剂和粘结剂占混合液a的质量分数均为1-5%,步骤二中的分散剂和粘结剂占混合液b的质量分数均为1-5%。
42.优选的,步骤一中,分散剂占混合液a的质量分数为5%,粘结剂占混合液a的质量分数为1%,步骤二中,分散剂占混合液b的质量分数为5%,粘结剂占混合液b的质量分数为1%。
43.进一步的,步骤二中,所述ysz纳米粉体以亚稳态四方相为主,ysz为8mol%的y2o3稳定zro2。
44.进一步的,步骤一和步骤二喷雾造粒的工艺参数为进风温度:110~350℃,出风温度:80~110℃,蠕动速度:10~60rpm,通针速率:5~8次/min,风机15m3/min。
45.优选的,根据实际需求,将纳米级ysz粉体(片径大小500~1000nm,厚度1nm)、分散剂、粘结剂和去离子水,球磨(转速:250~1000r/min,球料比:3:1)混合4-5h,得到混合液b,然后喷雾造粒得到所需粒径的ysz粉体。在实际应用中,不同的用途所需要的ysz粉体粒径和硅溶胶包覆的gnps粉体粒径不同。
46.本发明利用硅溶胶包覆石墨烯纳米片,通过喷雾造粒得到所需粒径的硅溶胶包覆的gnps粉体,然后将ysz粉体和硅溶胶包覆的gnps粉体共同混合,并烧结,制备得到gnps/ysz复合陶瓷粉体,此gnps/ysz复合陶瓷粉体为非共晶态粉体。
47.具体实施方式三
48.一种具体实施方式一所述的gnps/ysz复合陶瓷粉体的应用,将gnps/ysz复合陶瓷粉体沉积在可伐合金基体上,在可伐合金基体上形成无粘结层的且结合强度高的gnps/ysz复合陶瓷涂层,减少了涂层的界面问题。
49.优选的,所述沉积包括喷涂、涂覆或打印;优选的,所述喷涂方式为热喷涂;优选的,所述热喷涂的方式为大气等离子体喷涂,大气等离子喷涂参数为:在喷涂电压为40~70v,喷涂电流500a~750a的条件下,以35mm/s的送粉速度,距离基体距离为10cm~30cm进行喷涂。工作气体:氩气和氢气。在大气等离子体喷涂之前,首先对可伐合金的基体进行预热,完成预热后喷涂。
50.优选的,将gnps/ysz复合陶瓷粉体制成浆料直接涂覆在可伐合金的基体上,然后干燥处理,在可伐合金基体上形成gnps/ysz复合陶瓷涂层。
51.优选的,所述可伐合金为铁基合金或钛基合金。
52.进一步的,所述gnps/ysz复合陶瓷粉体的粒径为1-100um,gnps/ysz复合陶瓷涂层的厚度为50-500um。
53.优选的,在喷涂gnps/ysz复合陶瓷粉体之前,首先对可伐合金基体(的圆柱形基板)进行打磨,使表面平整;然后使用无水乙醇对基体超声清洗以去除基体表面的油污、锈渍等污染物,随后对基体进行喷砂处理,以提高基体表面粗糙度,增强基体与涂层之间的机械结合强度。喷砂处理后再次对基体进行酒精超声清洗,超声清洗后使用电动吹风机吹干基体表面的酒精,等待喷涂。
54.图1展示了硅溶胶包覆石墨烯纳米片的过程易操作,成本较低,可实现后续的大批量生产;gnps和ysz的喷雾造粒以及制备涂层的工艺简单,后续可操作性强。
55.图2中黑色的为硅溶胶包覆后的微米级gnps粉体,灰色代表微米级ysz粉体,据图可知gnps和ysz粉混合均匀,涂层的性能更好。
56.图3gnps/ysz复合陶瓷粉体的xrd物相图展示了ysz,gnps以及硅溶胶的物相状态,以ysz物相为主,硅溶胶成功包覆石墨烯有利于涂层后续的制备。
57.图4是利用热喷涂在可伐合金基底上沉积gnps/ysz粉体,形成熔融颗粒的截面图,根据该图可知喷砂处理得到的金属基体表面起伏大,粗糙度大,得到的涂层结合强度更高。
58.图5是gnps粉末和gnps/ysz复合陶瓷涂层的拉曼示意图,制备的复合涂层的d、g和2d峰与gnps的d、g和2d峰的吻合度较高,说明复合涂层中成功保留了石墨烯。
59.图6表示随着石墨烯含量的增加,涂层结合强度整体呈现上升的趋势。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献